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Abstract. We continue our investigation of the general notion of universal
enveloping algebra introduced in [A. Ardizzoni, A Milnor–Moore type theorem for
primitively generated braided Bialgebras, J. Algebra 327(1) (2011), 337–365]. Namely,
we study a universal enveloping algebra when it is of Poincaré–Birkhoff–Witt (PBW)
type, meaning that a suitable PBW-type theorem holds. We discuss the problem of
finding a basis for a universal enveloping algebra of PBW type: as an application,
we recover the PBW basis both of an ordinary universal enveloping algebra and of
a restricted enveloping algebra. We prove that a universal enveloping algebra is of
PBW type if and only if it is cosymmetric. We characterise braided bialgebra liftings
of Nichols algebras as universal enveloping algebras of PBW type.

2010 Mathematics Subject Classification. Primary 16W30, Secondary 16S30.

1. Introduction. Let L be a Lie algebra which is assumed to have a totally ordered
basis (X,≤). A classical result from the theory of Lie algebras asserts that the elements
x1, . . . , xn, where n ≥ 1, xi ∈ X , for all 1 ≤ i ≤ n, and x1 ≤ x2 ≤ · · · ≤ xn, along with
1, form a basis of the universal enveloping algebra U(L) of L. This theorem is due
to Poincaré, Birkhoff and Witt and the basis is called the PBW basis of the universal
enveloping algebra (see e.g. [15, Corollary C, p. 92]). This result essentially relies on the
existence of a bialgebra map ω : S (L) → G (U(L)), where S(L) denotes the symmetric
algebra on L and G (U(L)) is the graded braided bialgebra associated with the standard
filtration of U(L). The fact that the map ω is bijective sometimes is called the PBW
theorem, see e.g. [15, Corollary C, p. 92].

Motivated by these observations, we intend to investigate a PBW-type theorem
for a general notion of universal enveloping algebra appeared in [2, Definition 5.2]. To
explain better this notion we need to recall the definition of braided bialgebra.

Recall that a braided vector space (V, c) consists of a vector space V and a K-
linear map c : V ⊗ V → V ⊗ V , called braiding, obeying the so-called quantum Yang–
Baxter equation c1c2c1 = c2c1c2. Here c1 = c ⊗ V and c2 = V ⊗ c. A braided bialgebra
is then a braided vector space which is both an algebra and a coalgebra with structures
suitably compatible with the braiding. Examples of braided bialgebras are all bialgebras
in those braided monoidal categories which are monoidal subcategories of the category
of vector spaces.

In [2, Theorem 6.9], it is proved that every primitively generated braided bialgebra
is isomorphic, as a braided bialgebra, to the generalised universal enveloping algebra
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U(V, c, b) of its infinitesimal braided Lie algebra (V, c, b) (here b denotes the bracket
on the braided vector space (V, c) consisting of primitive elements in the given braided
bialgebra). This result can be seen as an extension of the celebrated Milnor–Moore
theorem [23, Theorem 5.18] for cocommutative connected bialgebras (once observed
that such a bialgebra is always primitively generated): in characteristic zero, any
cocommutative connected bialgebra is the enveloping algebra of its space of primitive
elements, regarded as a Lie algebra in a canonical way.

Now, in order to investigate a PBW-type theorem for U(V, c, b), we have to choose
an appropriate substitute for the symmetric algebra. Since in the classical case such an
algebra is obtained as the universal enveloping algebra of L regarded as a Lie algebra
through the trivial bracket, the natural candidate is the Nichols algebra B (V, c) which
is indeed of the form U(V, c, btr), where btr denotes the trivial bracket on (V, c).

The results in Detail. The paper is organised as follows: Section 2 contains
preliminary facts and notations that will be used in the paper; Section 3 deals with
the standard filtration (U(n))n∈� on U := U(V, c, b). This filtration is induced by the
standard filtration on the braided tensor algebra T(V, c) (the latter is just the tensor
algebra T(V ) which is regarded as a braided bialgebra through a comultiplication
depending on the braiding c). Having in mind the classical case, we consider the graded
braided bialgebra G(U) associated with the standard filtration. Denote by grU the
graded braided bialgebra associated with the coradical filtration of U . In Proposition
3.6, we produce a graded braided bialgebra homomorphism ξU : G (U) → grU and
we characterise when this morphism is bijective. In Proposition 3.7 and Proposition
3.8, we show there exist canonical graded braided bialgebra homomorphisms ϑU :
T (V, c) → G (U) and χU : B (V, c) → grU such that the diagram

T(V, c) � ��

ϑU ��

B (V, c)
χU��

G(U)
ξU �� grU

(1.1)

commutes, where � denotes the canonical projection. Moreover, ϑU is surjective and
χU is injective.

We say that U is of PBW type whenever ϑU quotients to a braided bialgebra
isomorphism ωU : B (V, c) → G (U):

T(V, c) � ��

ϑU �������� B (V, c)

ωU��
G(U)

(1.2)

Therefore, U is of PBW type means that U fulfills a PBW-type theorem. In Theorem
3.11, we prove that U (V, c, b) is always of PBW type whenever (V, c) has combinatorial
rank at most one in the sense of [19, Definition 5.4].

Section 4 deals with the problem of determining a basis for a universal enveloping
algebra. In Proposition 4.2, mimicking classical ideas, we find a criterion that helps to
obtain a basis of U = U(V, c, b) knowing a suitable basis of B (V, c) in case U is of
PBW type. This criterion is applied in Example 4.4 and Example 4.6 to recover the PBW
basis both of an ordinary universal enveloping algebra and of a restricted enveloping
algebra. In Example 4.7, we compute a PBW basis for the universal enveloping algebra
of a braided Lie algebra whose bracket c is not a symmetry, i.e. c2 	= Id.
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Section 5, is devoted to the investigation of universal enveloping algebras which
are cosymmetric in the sense of [20, Definition 3.1]. In Theorem 5.2, using the results in
[20], we give several characterisations of the fact that U is of PBW type: in particular,
this is equivalent to require that U is cosymmetric. In Theorem 5.4, we provide a
sufficient condition to have that U is cosymmetric. This result is used in Corollary 5.5
to get that a braided vector space has combinatorial rank, at most, n + 1 whenever the
corresponding symmetric algebra of rank n is cosymmetric. As a result, in Example
5.6, we exhibit a universal enveloping algebra U which is not of PBW type.

In Section 6, we investigate braided bialgebra liftings of the Nichols algebra.
Explicitly, given a braided vector space (V, c), we say that a braided bialgebra B is a
lifting of B (V, c) if there is a graded braided bialgebra isomorphism B (V, c) ∼= grB.
Theorem 6.2 characterises braided bialgebra liftings of Nichols algebras as universal
enveloping algebras of PBW type. This result is applied in Corollary 6.3 to Nichols
algebras algebras of a braided vector space of combinatorial rank at most one.

On PBW-type theorems. Several attempts to extend the classical PBW results to
more general contexts appeared in the literature. Some of them, such as [21, 26, 27, 33],
are related the quantised enveloping algebras Uq(g) of Drinfeld and Jimbo (note that
this enveloping algebra is pointed but not connected whence it can not be described as
a universal enveloping algebra of our kind). We now list some PBW-type results which
are closer to our approach (see also the references therein):
� A PBW Theorem for connected braided Hopf algebras with involutive braidings

was obtained in [20, Theorem 7.1]. Our result can be seen as an extension of this
one to the non-symmetric case.

� A PBW Theorem for quadratic algebras can be found in [9] and in [10]. See also [7,
Theorem 3.9].

� Deep results on the PBW basis are obtained in [18, Theorem 2] and, more generally,
in [30, Theorem 34]) for braided vector spaces of diagonal type or left triangular,
respectively. See also the more recent paper [14].

We would like to point out that our aim here is not to compute explicitly a PBW basis
for the Nichols algebra associated with a braided vector space. Instead, we will give a
method to produce a basis for a universal enveloping algebra U(V, c, b) of PBW type
once known a basis for the Nichols algebra B (V, c), see Remark 4.3.

2. Preliminaries. Throughout this paper, K will denote a field. All vector spaces
will be defined over K and the tensor product over K will be denoted by ⊗.

In this section, we recall the main notions that we will deal with in the paper.

DEFINITION 2.1. Let V be a vector space over a field K . A K-linear map c = cV :
V ⊗ V → V ⊗ V is called a braiding if it satisfies the quantum Yang–Baxter equation
c1c2c1 = c2c1c2 on V ⊗ V ⊗ V , where we set c1 := c ⊗ V and c2 := V ⊗ c. The pair
(V, c) will be called a braided vector space. A morphism of braided vector spaces (V, cV )
and (W, cW ) is a K-linear map f : V → W such that cW (f ⊗ f ) = (f ⊗ f )cV .

A general method for producing braided vector spaces is to take an arbitrary
braided category (M,⊗, K, a, l, r, c), which is a monoidal subcategory of the category
VectK of K-vector spaces (here a, l, r denote the associativity, the left and the right unit
constraints, respectively). Hence any object V ∈ M can be regarded as a braided vector
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Figure 1 The braiding cT .

space with respect to c := cV,V , where cX,Y : X ⊗ Y → Y ⊗ X denotes the braiding in
M, for all X, Y ∈ M.

Let N be either the category of comodules over a coquasitriangular Hopf algebra
or the category of Yetter–Drinfeld modules over a Hopf algebra with bijective antipode.
Then the forgetful functor F : N → VectK is a strict monoidal functor. Hence M =
ImF is an example of a category as above.

DEFINITION 2.2. [8] A quadruple (A, m, u, c) is called a braided algebra if (A, m, u)
is an associative unital algebra and (A, c) is a braided vector space for which the
following conditions hold:

c(m ⊗ A) = (A ⊗ m)(c ⊗ A)(A ⊗ c), c(A ⊗ m) = (m ⊗ A) (A ⊗ c) (c ⊗ A),

c(u ⊗ A) = A ⊗ u, c(A ⊗ u) = u ⊗ A.

A morphism of braided algebras is, by definition, a morphism of ordinary algebras
which, in addition, is a morphism of braided vector spaces. Similarly, the notions of
braided coalgebra and of morphism of braided coalgebras is introduced.

[29, Definition 5.1] A sextuple (B, m, u,�, ε, c) is a called a braided bialgebra if
(B, m, u, c) is a braided algebra, (B,�, ε, c) is a braided coalgebra and the following
relation hold:

�m = (m ⊗ m)(B ⊗ c ⊗ B)(� ⊗ �).

Examples of the notions above are algebras, coalgebras and bialgebras in any
braided category M which is a monoidal subcategory of VectK . The notion of braided
bialgebra admits a graded counterpart which is called graded braided bialgebra. For
further results on this topic, the reader is refereed to [5, 1.8].

EXAMPLE 2.3. Let (V, c) be a braided vector space. Consider the tensor algebra
T = T(V ) with multiplication mT and unit uT . This is a graded braided algebra with nth
graded component Tn(V ) = V⊗n. The braiding cT on T is defined using the braiding c
of V (the graded component cn,m

T of cT is represented in Figure 1, where each crossing
stands for a copy of c).

Now T ⊗ T becomes itself an algebra with multiplication mT⊗T :=
(mT ⊗ mT ) (T ⊗ cT ⊗ T) . This algebra is denoted by T ⊗c T. The universal property
of the tensor algebra yields two algebra homomorphisms �T : T → T ⊗c T and
εT : T → K . It is straightforward to check that (T, mT , uT ,�T , εT , cT ) is a graded
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braided bialgebra. Note that �T really depends on c. For example, one has �T (z) =
z ⊗ 1 + 1 ⊗ z + (c + Id) (z), for all z ∈ V ⊗ V .

DEFINITION 2.4. The graded braided bialgebra described in Example 2.3 is called
the braided tensor algebra and will be denoted by T(V, c).

Claim 2.5. Recall that a coalgebra C is called connected if the coradical C0 of C
(i.e. the sum of all simple subcoalgebras of C) is one-dimensional. In this case, there
is a unique group-like element 1C ∈ C such that C0 = K1C . A morphism of connected
coalgebras is just a coalgebra homomorphisms (clearly, it preserves the group-like
element).

By definition, a braided coalgebra (C, c) is connected if the underlying coalgebra
is connected and, for any x ∈ C, c(x ⊗ 1C) = 1C ⊗ x and c(1C ⊗ x) = x ⊗ 1C .

DEFINITION 2.6.
(1) Let B be a braided bialgebra with comultiplication � and unit 1B. Consider the

space

P (B) = {b ∈ B | � (b) = b ⊗ 1B + 1B ⊗ b}

of primitive elements in B. By [3, Lemma 2.10], the braiding of B induces a
braiding cP of P that will be called the infinitesimal braiding of B. The braided
vector space (P, cP) will be called the infinitesimal part of B (see [3, Defini-
tion 2.11]).

(2) A braided bialgebra B is called primitively generated if it is generated as an
algebra by P (B). See [23, p. 239].

REMARK 2.7.
(1) Let B be a primitively generated braided bialgebra. Then the underlying

braided coalgebra is connected (see [3, Proposition 5.8]).
(2) Let B be a connected braided bialgebra. Since B0 = K1B, then IdB is

convolution invertible in Hom(B0, B). In view of the Takeuchi’s result [24,
Lemma 5.2.10], we conclude that IdB is convolution invertible in Hom(B, B).
Hence B has an antipode, i.e. it is a braided Hopf algebra (this reasoning
is similar to [1, Remark 9.17] which is due to Masuoka). In particular, by
(1), any primitively generated braided bialgebra is indeed a braided Hopf
algebra.

DEFINITION 2.8. [2, Definitions 5.2 and 5.4] Let (V, c) be a braided vector space.
Suppose that, for each n ∈ �, there are a braided bialgebra U [n] and a map i[n] :
V → P

(
U [n]

)
that fulfil the following requirements, where we set P[n] := P

(
U [n]

)
and

V [n] := i[n] (V ).
� U [0] := T (V, c) and i[0] : V → P[0] is the restriction of the canonical map V →

U [0].
� For each n ∈ �, there exists a map b[n] : P[n] → V such that

cV [n]

(
i[n]b[n] ⊗ V [n]) = (

V [n] ⊗ i[n]b[n]) cP[n],V [n] , (2.1)

cV [n]

(
V [n] ⊗ i[n]b[n]) = (

i[n]b[n] ⊗ V [n]) cV [n],P[n] , (2.2)

where cV [n] : V [n] ⊗ V [n] → V [n] ⊗ V [n] and cP[n],V [n] , : P[n] ⊗ V [n] → V [n] ⊗ P[n]

denote the restrictions of the braiding of P[n].
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� For each n ∈ �,

U [n+1] = U [n]

([
Id − i[n]b[n]

] [
P[n]

]) ,

πn+1
n : U [n] → U [n+1] is the natural projection of U [n] onto U [n+1] and i[n+1] :

V → P[n+1] is the restriction of the canonical map V → U [n+1], so that i[n+1] =
P(πn+1

n ) ◦ i[n], where P(πn+1
n ) : P[n] → P[n+1] is the map induced by πn+1

n .
In this case we will say that b := (

b[n]
)

n∈�
is a bracket for a braided vector space (V, c).

This way, we get a direct system of braided bialgebras

U [0] π1
0→ U [1] π2

1→ U [2] π3
2→ · · · .

The direct limit of this direct system will be denoted by (U (V, c, b) , πU ) :=(
U [∞], π∞

n

)
, where πU : T(V, c) → U (V, c, b) is the canonical projection. Now

U (V, c, b) becomes a primitively generated braided bialgebra which will be called
the universal enveloping algebra of (V, c, b) . Denote by iU : V → U (V, c, b) the (not
necessarily injective) canonical map and set P[∞] := P

(
U [∞]

)
. Note that Im (iU ) ⊆ P[∞]

so that iU induces a morphism of braided vector spaces i[∞] : V → P[∞].
We say that (V, c, b) is a braided Lie algebra whenever (V, c) is a braided vector

space, b is a bracket on (V, c) and iU : V → U (V, c, b) is injective.
Let B be a braided bialgebra. By [2, Theorem 6.5], the infinitesimal part (P, cP) of

B is endowed with a specific bracket bP such that (P, cP, bP) is a braided Lie algebra.
(P, cP, bP) will be called the infinitesimal braided Lie algebra of B.

REMARK 2.9.
(1) Let (V, c, b) be a braided Lie algebra and set U := U (V, c, b). In view of

[2, Corollary 5.6], the map iU : V → U induces an isomorphism between V
and P (U).

(2) By [2, Theorem 6.9], every primitively generated braided bialgebra is
isomorphic as a braided bialgebra to the universal enveloping algebra of
its infinitesimal braided Lie algebra.

REMARK 2.10. Let (V, c, b) be a braided Lie algebra. When c is a symmetry,
i.e. c2 = IdV⊗V , and the characteristic of K is zero, our universal enveloping algebra
U(V, c, b) reduces to the one introduced in [12] (cf. [3, Remark 6.4] using Remark 3.10
below). Other notions of Lie algebra and universal enveloping algebra, extending the
ones in [12] to the non-symmetric case, appeared in the literature. Let us mention some
of them without any pretension of exhaustiveness:

� Lie algebras for braided vector spaces (V, c) where c is a braiding of Hecke type
[31, Definition 7.1]. Compare with [3, Section 6] using Remark 3.10 to see how
our notion of universal enveloping algebra behaves in this setting.

� Lie algebras for braided vector spaces (V, c) where c is constructed by means
of braidings of Hecke type [13, Definition 1]. See [7, Remark 3.6] using Remark
3.10.

� Braided Lie algebras for objects L in a braided or quasi-tensor category equipped
with a co-product, a co-unit and a bracket [, ] : L ⊗ L → L satisfying some
axioms, [22, Definition 4.1]. Here the universal enveloping algebra is defined
as the quotient of the tensor algebra over L modulo some quadratic relations.
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� Quantum Lie algebras for objects g in a monoidal category equipped with
a braiding σ : g ⊗ g → g ⊗ g and a bracket [, ] : g ⊗ g → g satisfying some
axioms, see [11, Definition 2.1], which naturally arises in the context of covariant
differential calculus over quantum groups [32, Theorems 5.3 and 5.4].

� Lie algebras for objects in the braided monoidal category of Yetter–Drinfeld
modules over a Hopf algebra with bijective antipode [25, Definition 4.1].
Compare with [3, Section 8] using Remark 3.10.

� Lie algebras defined by considering quantum operations (see [17, Definition
2.2]) as primitive polynomials in the tensor algebra. When the underline braided
vector space is an object in the category of Yetter–Drinfeld modules over some
group algebra, to any Lie algebra of this kind, Kharchenko associates a universal
enveloping algebra which is not connected (see [19]). Note that the universal
enveloping algebra we deal with in the present paper is connected as it is meant
to describe the structure of primitively generated (whence connected) braided
bialgebras over K , see (2) in Remark 2.9.

DEFINITION 2.11. In view of [2, Example 7.1], any braided vector space (V, c) can
be endowed with the so-called trivial bracket btr, which makes of (V, c, btr) a braided
Lie algebra. Set U := U (V, c, btr). Then U [n] is called the symmetric algebra of rank
n of (V, c) and is denoted by S[n]. It is the braided bialgebra S[n] (B) introduced in [4,
Definition 3.10] in the case B = T(V, c). Explicitly, S[0] = T(V, c) and, for all n > 0,
S[n] is the graded braided bialgebra obtained dividing out S[n−1] by the two-sided ideal
generated by the homogeneous primitive elements in S[n−1] of degree at least two.
Moreover, U [∞] = U is denoted by S[∞] and identifies with the Nichols algebra B (V, c)
(see [4, 5.3] for a different definition). We will denote by � : T(V, c) → B (V, c) the
canonical projection.

If there exists a least n ∈ � such that S[n] = S[∞], then we will say that (V, c) has
combinatorial rank n (cf. [19, Definition 5.4], see also [4, Section 5]).

We include here a technical result about P[n] that will be used to prove Theorem
5.4.

LEMMA 2.12. Let (V, c, b) be a braided Lie algebra. Let P[n] and V [n] be the spaces
introduces in Definition 2.8. Set W [n] := Ker(πn+1

n ) ∩ P[n]. Then W [n] = Ker(b[n]) =
Im(IdP[n] − i[n]b[n]) and P[n] = W [n] ⊕ V [n], as a direct sum of braided subspaces.

Proof. As in Definition 2.8, denote by P(πn+1
n ) : P[n] → P[n+1] the natural map

induced by πn+1
n . Since (V, c, b) is a braided Lie algebra, by [2, Proposition 5.7], we

have that b[n+1]P(πn+1
n ) = b[n] and b[n]i[n] = IdP[n] . By the first equality, for w ∈ W [n], we

have

0 = b[n+1]πn+1
n (w)

w∈P[n]= b[n+1]P
(
πn+1

n

)
(w) = b[n] (w) ,

so that W [n] ⊆ Ker(b[n]). On the other hand, if z ∈ Ker(b[n]), then z ∈ P[n] and

πn+1
n (z)

z∈P[n]= πn+1
n i[n]b[n] (z) = 0,

so that Ker(b[n]) ⊆ W [n] whence W [n] = Ker(b[n]). Now, from b[n]i[n] = IdP[n] , one gets
W [n] = Ker(b[n]) = Im(IdP[n] − i[n]b[n]) and P[n] = W [n] ⊕ V [n], as a direct sum of braided
subspaces. �
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Finally, for the reader’s convenience, we quote a technical result we will invoke
three times in the paper.

LEMMA 2.13. [24, Lemma 5.3.3] If C is connected and f : C → D is a coalgebra
map such that f|P(C) is injective, then f is injective.

3. Standard versus coradical filtration. In this section, we introduce the standard
filtration of a universal enveloping algebra and we study it in connection with the
coradical filtration of the underlying coalgebra.

DEFINITION 3.1. Recall that a filtration on a vector space M is an increasing
sequence M(0) ⊆ M(1) ⊆ · · · ⊆ M(n) ⊆ · · · of subspaces of M. By convention we write
M(−1) := 0. A filtration

(
M(n)

)
n∈�

on a vector space M gives rise to a graded module

G (M) := ⊕n∈�Gn (M) where Gn (M) := M(n)

M(n−1)
.

Let M and N be filtered vector spaces with filtrations (M(n))n∈� and
(
N(n)

)
n∈�

,
respectively. A filtered homomorphism is a K-linear map f : M → N such that
f

(
M(n)

) ⊆ N(n) for all n ∈ �. Such a morphism induces in a natural way a graded
homomorphism G (f ) : G (M) → G (N) . The nth graded component of G (f ) will be
denoted by Gn (f ).

A braided bialgebra (B, cB) is called filtered if the underlying vector space has a
filtration

(
B(n)

)
n∈�

with B = ∪B(n) such that

�B
(
B(n)

) ⊆
n∑

i=0

B(i) ⊗ B(n−i), B(i) ·B B(j) ⊆ B(i+j) and cB
(
B(i) ⊗ B(j)

) ⊆ B(j) ⊗ B(i)

for all i, j ∈ �. A filtered braided bialgebra homomorphism f : (B, cB) →
(B′, cB′ ) is a filtered homomorphism f : B → B′ which is also a braided bialgebra
homomorphism.

LEMMA 3.2. Let (B, cB) be a filtered braided bialgebra with filtration
(
B(n)

)
n∈�

.
Assume B(0) = K. Then the space G (B) is a graded braided bialgebra with structures
induced by those of B. Furthermore, any filtered braided bialgebra homomorphism f :
(B, cB) → (B′, cB′ ) induces a graded braided bialgebra homomorphism G (f ) : G (B) →
G (B′) .

Proof. Set G := G (B) , Gn := B(n)/B(n−1) and let pn : B(n) → Gn be the canonical
projection, for every n ∈ �. Since

(
B(n)

)
n∈�

is a coalgebra filtration on B, then G carries
a graded coalgebra structure (G,�G, εG) (see [28, p. 230]). Moreover, the coradical
of B is contained in B(0) (see [28, Proposition 11.1.1]) whence it is K. In particular
1B ∈ B(0). Thus

(
B(n)

)
n∈�

is also an algebra filtration on B whence G carries a graded
algebra structure too (see [28, p. 230]). Since by definition cB

(
B(i) ⊗ B(j)

) ⊆ B(j) ⊗ B(i)

for all i, j ∈ �, then cB induces a braiding ca,b
G : Ga ⊗ Gb → Gb ⊗ Ga for all a, b ∈ �.

It is straightforward to prove that (G, mG, uG,�G, εG, cG) is indeed a graded braided
bialgebra. Let f : (B, cB) → (B′, cB′ ) be a filtered braided bialgebra homomorphism.
By [28, p. 229], f induces a graded coalgebra map G (f ) : G (B, cB) → G (B′, cB′ ).
Furthermore, the same map is also a graded algebra map. It is easy to check that
G (f ) is also a morphism of braided vector spaces whence a graded braided bialgebra
homomorphism. �

Let (V, c) be a braided vector space and set T := T (V, c). Recall that the standard
filtration on T is defined by setting T(n) := ⊕n

i=0V⊗i.
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LEMMA 3.3. Let (V, c, b) be a braided bialgebra and set U := U(V, c, b). Let(
T(n)

)
n∈�

be the standard filtration on T (V, c). Set U(n) := πU
(
T(n)

)
, for each n ∈ �.

Then
(
U(n)

)
n∈�

is a filtration on U that makes it a filtered connected braided bialgebra.

Proof. It is straightforward. �

DEFINITION 3.4. Let (V, c, b) be a braided Lie algebra and set U := U(V, c, b).
The filtration

(
U(n)

)
n∈�

of Lemma 3.3 will be called the standard filtration on U
and G (U) will denote the graded braided bialgebra associated with this filtration.

We say that U is strictly generated by V whenever the standard and the coradical
filtration on U coincide. This means the nth term Un of the coradical filtration of U is
given by Un = U(n) = ∑n

i=0 πU (V )i.

REMARK 3.5. Let B be a braided bialgebra. If B is connected, then the coradical
filtration (Bn)n∈� of B makes B itself into a filtered connected braided bialgebra. Thus,
by Lemma 3.2, the graded coalgebra grB associated with the coradical filtration of B
is indeed a graded braided bialgebra. Since B is connected, by [28, Proposition 11.1.1]
we have that grB is connected too. Thus, by [28, Lemma 11.2.3], grB is strictly graded
as a coalgebra. In particular, P(grB) = gr1B = B1/B0.

PROPOSITION 3.6. Let (V, c, b) be a braided Lie algebra and set U := U(V, c, b). Then
the identity on U induces a graded braided bialgebra homomorphism ξU : G (U) → grU.

The following assertions are equivalent:
(1) ξU is bijective.
(2) ξU is surjective.
(3) ξU is injective.
(4) U(n) ∩ Un−1 = U(n−1) for all n ∈ �.
(5) Un = U(n) + Un−1 for all n ∈ �.
(6) U is strictly generated by V.
(7) P (G (U)) = U(1)/U(0).
(8) πU (V )n ∩ Un−1 ⊆ U(n−1) for all n ∈ �.

Proof. Note that, for each n ∈ �, one has U(n) ⊆ Un so that IdU is a filtered braided
bialgebra automorphism whence, by Lemma 3.2, it induces a graded braided bialgebra
homomorphism ξU : G (U) → grU.

(6) ⇒ (1) ⇒ (2) , (1) ⇒ (3) These implications are trivial.
(3) ⇔ (4) Let ξ n

U : U(n)/U(n−1) → Un/Un−1 be the nth graded component of ξU .
Then Ker

(
ξ n

U

) = [
U(n) ∩ Un−1

]
/U(n−1).

(4) ⇒ (6) It is enough to prove that Un ⊆ U(n). Let z ∈ Un. Since πU (V ) generates
U as a K-algebra, there is a least t ∈ � such that z ∈ U(t). If t ≥ n + 1, then z ∈
U(t) ∩ Un ⊆ U(t) ∩ Ut−1 = U(t−1) contradicting the minimality of t. Then t ≤ n whence
z ∈ U(t) ⊆ U(n).

(2) ⇔ (5) It follows from ξU
(
U(n)/U(n−1)

) = [
U(n) + Un−1

]
/Un−1.

(5) ⇒ (6) By induction on n ∈ �, we deduce that Un = U(n).
(1) ⇒ (7) Since U is connected, by Remark 3.5, the primitive part of grU is gr1U .

Since ξU is a graded braided bialgebra isomorphism we get that P (G (U)) = G1 (U) .

(7) ⇒ (3) In view of the hypothesis, the restriction of ξU to P (G (U)) is the map ξ 1
U :

U(1)/U(0) → U1/U0. The kernel of this map is
[
U(1) ∩ U0

]
/U(0). Since U is connected,

then U0 = K = U(0) so that U(1) ∩ U0 = U(1) ∩ U(0) = U(0). Hence the restriction of ξU

to P (G (U)) is injective. By Lemma 2.13, ξU is injective too.
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(4) ⇔ (8) It is enough to prove that U(n) ∩ Un−1 = U(n−1) + πU (V )n ∩ Un−1. Let
z ∈ U(n) ∩ Un−1. Then z ∈ U(n) = U(n−1) + πU (V )n. Hence there are x ∈ U(n−1) and y ∈
πU (V )n such that z = x + y. Then y = z − x ∈ U(n) ∩ Un−1 + U(n−1) ⊆ Un−1. We have
so proved that z = x + y ∈ U(n−1) + πU (V )n ∩ Un−1 so that U(n) ∩ Un−1 ⊆ U(n−1) +
πU (V )n ∩ Un−1. The other inclusion is trivial. �

PROPOSITION 3.7. Let (V, c, b) be a braided bialgebra and set U := U(V, c, b). Let(
U(n)

)
n∈�

be the standard filtration on U. Then there exists a graded braided bialgebra
homomorphism ϑU : T (V, c) → G (U) which is surjective and lifts the map ϑ1

U : V →
U(1)/U(0) = G1 (U) : v �→ πU (v) + U(0).

Proof. Set T := T (V, c) and let qn : U(n) → U(n)/U(n−1)= G
n (U) denote the

canonical projection. Since G (U) is a connected graded coalgebra, it is clear that
Im

(
ϑ1

U

) = G1 (U) ⊆ P (G (U)). Moreover, ϑ1
U : V → P (G (U)) is a morphism of

braided vector spaces as, for every u, v ∈ V we have

cG(U)
(
ϑ1

U ⊗ ϑ1
U

)
(u ⊗ v) = cG(U)

(
(πU (u) + U(0)) ⊗ (πU (v) + U(0))

)

= (q1 ⊗ q1) cU (πU (u) ⊗ πU (v))

= (q1 ⊗ q1) (πU ⊗ πU ) cU (u ⊗ v) = (
ϑ1

U ⊗ ϑ1
U

)
c (u ⊗ v) .

By the universal property of the braided tensor algebra there exists a graded braided
bialgebra homomorphism ϑU : T (V, c) → G (U) that restricted to V yields ϑ1

U .
Since G (U) is generated as a K-algebra by G1 (U) = Im

(
ϑ1

U

)
, we infer that ϑU is

surjective. �

PROPOSITION 3.8. Let (V, c, b) be a braided Lie algebra and set U := U(V, c, b).
Let ϑU : T (V, c) → G (U) be the map of Proposition 3.7. Then ξUϑU : T (V, c) →
grU is the unique graded braided bialgebra homomorphism lifting the map χ1

U : V →
U1/U0 =: v �→ πU (v) + U0. Moreover, ξUϑU quotients to an injective braided bialgebra
homomorphism χU : B (V, c) → grU, i.e. (1.1) commutes.

Proof. Let
(
U(n)

)
n∈�

be the standard filtration on U . By Proposition 3.7, ϑU :
T (V, c) → G (U) is surjective and lifts the map ϑ1

U . Then ξUϑU : T (V, c) → grU is
the unique graded braided bialgebra homomorphism from T (V, c) to grU which lifts
the map χ1

U . Let S[n] be the symmetric algebra of rank n of (V, c) as in Definition 2.11.
Now, any homogeneous primitive element of degree greater than one in T (V, c) goes
via ξUϑU in a primitive element of the same degree in grU . Such an element is zero as
non-zero primitive elements in grU are concentrated in degree one (see Remark 3.5).
Thus χ

[0]
U = ξUπ : S[0] → grU quotients to a graded braided bialgebra homomorphism

χ
[1]
U : S[1] → grU . By the same argument, χ

[1]
U sends to zero all primitive elements

of degree grater then one in S[1] so that χ
[1]
U quotients to χ

[2]
U : S[2] → grU and so

on. Finally, one gets a graded braided bialgebra homomorphism χU = χ
[∞]
U : S[∞] =

B (V, c) → grU . Note that P (B (V, c)) identifies with (V, c) via the canonical injection
so that χB restricted to P (B (V, c)) is the map χ1

U . Since πU (v) ∈ P (U), for all v ∈ V ,
we have Ker(χ1

U ) = Ker(
(
πU )|V

) = 0. Thus, by Lemma 2.13, χU is injective. �

DEFINITION 3.9. Let (V, c, b) be a braided bialgebra and set U := U(V, c, b).
Inspired by [10, Definition, p. 316], we will say that U is of PBW type whenever
the canonical projection ϑU : T (V, c) → G (U) of Proposition 3.7 quotients to a
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braided bialgebra isomorphism ωU : B (V, c) → G (U) (cf. [15, p. 92] for motivating
this terminology), i.e. (1.2) commutes.

Next aim is to provide a large class of braided vector spaces which give rise to
universal enveloping algebras of PBW type.

REMARK 3.10. Let (V, c, b) be a braided Lie algebra. Assume that (V, c) has
combinatorial rank at most one, see Definition 2.11. Let β : E (V, c) → V be the
restriction of b[0] to the space E (V, c) spanned by primitive elements of T (V, c) of
homogeneous degree at least two. By [2, Theorem 5.10], (V, c, β) is a braided Lie
algebra in the sense of [3, Definition 4.1] and the corresponding universal enveloping
algebra

� (V, c, β) := T(V, c)
((Id − β)[E (V, c)])

coincides with U := U (V, c, b) (the class S, appearing in [2, Theorem 5.10], is exactly
the class of braided vector spaces of combinatorial rank at most one).

THEOREM 3.11. Let (V, c, b) be a braided Lie algebra. If (V, c) has combinatorial
rank at most one, then U (V, c, b) is of PBW type.

Proof. By [3, Theorem 5.4], � (V, c, β) is of PBW type in the sense of [3, Definition
4.14], i.e. the projection θ : S(V, c) → G (U), that makes the diagram

T(V, c)
πS ��

ϑU �������� S(V, c)

θ��
G(U)

commutative, is indeed an isomorphism (here S(V, c) = S[1] as in Definition 2.11 and
πS denotes the canonical projection). Now, since (V, c) has combinatorial rank at most
one, we have that S(V, c) = B (V, c) and πS = �. Thus U is PBW type in the sense of
Definition 3.9. �

EXAMPLE 3.12. Assume charK = 0. Let L be an ordinary Lie algebra. Consider L as
a braided vector space through the canonical flip map c : L ⊗ L → L ⊗ L, c(x ⊗ y) =
y ⊗ x.

By [2, Example 6.10], there exists a bracket b on (L, c) such that (L, c, b) is a
braided Lie algebra and U(L, c, b) coincide with the ordinary universal enveloping
algebra U := U(L). Now, since charK = 0, we have that (V, c) has combinatorial
rank at most one (cf. [4, Theorem 6.13]). By Theorem 3.11, U(L, c, b) is of PBW
type. Hence there is braided bialgebra isomorphism ωU : B (L, c) → G (U) such that
(1.2) commutes. Now, since (L, c) has combinatorial rank at most one, we have that
B (L, c) = S(L) (cf. [4, Remark 6.14]). Hence, the fact that U(L, c, b) is of PBW type
just means that the classical PBW theorem holds, see [15, p. 92].

EXAMPLE 3.13. Assume charK is a prime number p. Let V be a vector space
regarded as a braided vector space through the canonical flip map c. Consider the
restricted symmetric algebra of V :

s(V ) := T(V )
(xy − yx, xp | x, y ∈ V )

.
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Now s(V ) is nothing but the restricted enveloping algebra of the trivial restricted Lie
algebra V so that, by [23, Theorem 6.11], we have that P(s(V )) ∼= V . Since s(V ) is
obtained dividing out T(V, c) by elements in E(V, c), by [4, Theorem 6.1 and Remark
4.3], (V, c) has combinatorial rank at most one and s(V ) = B (V, c).

Let b be such that (V, c, b) is a braided Lie algebra. By Remark 3.10,

U (V, c, b) = � (V, c, β) = T(V, c)
((Id − β)[E (V, c)])

.

Since xy − yx, xp ∈ E(V, c), for all x, y ∈ V , and the domain of β is E (V, c), it makes
sense to set

[x, y] := β(xy − yx), x[p] := β(xp).

This defines two maps [−,−] : V ⊗ V → V and −[p] : V → V . It is straightforward
to check that (V, [−,−],−[p]) is a restricted Lie algebra, see [16, Definition 4, p. 187].
Consider the restricted enveloping algebra of V :

u(V ) := T(V )(
xy − yx − [x, y], xp − x[p] | x, y ∈ V

) .

Clearly there exists a projection λ : u(V ) → U (V, c, b). Since, by [23, Theorem 6.11],
we have P(u(V )) ∼= V , we can apply Lemma 2.13 to conclude that λ is bijective whence
u(V ) = U (V, c, b).

Conversely, let [−,−] : V ⊗ V → V and −[p] : V → V be such that
(V, [−,−],−[p]) is a restricted Lie algebra and set A := u(V ). This is an ordinary
Hopf algebra, see [24, p. 23]. In particular, it is a braided bialgebra with braiding the
canonical flip map on A. It is primitively generated as, by construction, it is generated
by the image of V in A. By Remark 2.9, A ∼= U (P, cP, bP) where (P, cP, bP) is the
infinitesimal braided Lie algebra of A.

Now the canonical map σ : V → P = P (A) is bijective (cf. [23, Theorem 6.11]).
Since cP is the restriction of the braiding of A, then cP is the canonical flip map on P.
Thus σ : (V, c) → (P, cP) is an isomorphism of braided vector spaces, where c is the
canonical flip map on V . Hence we can endow (V, c) with a bracket b such that (V, c, b)
is a braided Lie algebra and σ : (V, c, b) → (P, cP, bP) is an isomorphism of braided
Lie algebras. Hence A ∼= U := U (V, c, b). By the foregoing, (V, c) has combinatorial
rank at most one so that, by Theorem 3.11, U is of PBW type. Hence there is a
braided bialgebra isomorphism ωU : B (V, c) → G (U) such that (1.2) commutes. Since,
by the initial part, one has that B (V, c) = s(V ), then we get an isomorphism ωU :
s(V ) → G (u(V )) which is a PBW theorem for restricted enveloping algebras, see [23,
Proposition 6.12].

4. Basis for the universal enveloping algebra. In this section, we will discuss the
problem of determining a basis for a universal enveloping algebra of PBW type.
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LEMMA 4.1. Let A, B, C be vector spaces, and let W ≤ A and B′ ≤ B be two vector
subspaces. Let f, g, p and q be K-linear maps as in the following commutative diagram:

A

p

��

f �� B

q
��

C
g �� B

B′

where q is the canonical projection. If g and p|W : W → C are isomorphisms then f (W ) ⊕
B′ = B. Moreover, f|W is injective.

Proof. The first part of the statement is exactly [6, Lemma 4.21]. Let w ∈ W ∩ Kerf .
Then gp (w) = qf (w) = 0. Since g is bijective, we get p (w) = 0. Since p|W : W → C is
an isomorphism, we conclude that w = 0. �

PROPOSITION 4.2. Let (V, c, b) be a braided Lie algebra and set U := U(V, c, b). Let
� : T (V, c) → B (V, c) be the canonical projection and denote by �n : V⊗n → B (V, c)n

the nth graded component of �. Assume that U is of PBW type and let Wn be a vector
subspace of V⊗n such that �n

|Wn
is an isomorphism. Then U(n) = U(n−1) ⊕ πU (Wn), where(

U(n)
)

n∈�
is the standard filtration on U. Moreover, πU|Wn is injective.

Proof. Clearly, πU
(
V⊗n

) ⊆ U(n) so πU induces a map π̃n : V⊗n → U(n). Apply
Lemma 4.1 to the following diagram

V⊗n

�n

��

π̃n
�� U(n)

qn

��
B (V, c)n ωn

U �� U(n)

U(n−1)

where qn : U(n) → U(n)/U(n−1) is the canonical projection and ωn
U is the nth graded

component of the isomorphism ωU : B (V, c) → G (U) of Definition 3.9. �
REMARK 4.3. Let (V, c, b) be a braided Lie algebra and set U := U (V, c, b).

Assume that U is of PBW type. Set � := {n ∈ � | B (V, c)n 	= {0}} and suppose that,
for each n ∈ �, we can find a linearly independent set Zn := {

vn,i | i ∈ In
}

consisting
of elements of V⊗n with the property that Wn := SpanK Zn is such that �n

|Wn
is

an isomorphism. By Proposition 4.2, U(n) = U(n−1) ⊕ πU (Wn). Moreover, πU|Wn is
injective. Therefore,

{
πU (vn,i) | n ∈ �, i ∈ In

}
is a basis for U . Hence, as in the classical

case, finding a basis for U reduces to determine a suitable basis
{
vn,i | n ∈ �, i ∈ In

}

for B (V, c) as above. Results in this direction are obtained by Kharchenko (cf. [18,
Theorem 2]) and, more generally, by Ufer (cf. [30, Theorem 34]) when (V, c) is a braided
vector space of diagonal type or left triangular respectively.

Next aim is show how the computation of a PBW basis for the classical universal
enveloping algebra and for the restricted enveloping algebra fits into the theory above.

EXAMPLE 4.4. Assume charK = 0. Let L be an ordinary Lie algebra which is
assumed to have a totally ordered basis (X,≤). By Example 3.12, the universal
enveloping algebra U := U(L) can be identified with the universal enveloping algebra
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U(L, c, b) where c is the canonical flip map on L and b a suitable bracket for (L, c).
Moreover, (L, c) has combinatorial rank at most one and B (L, c) is the ordinary
symmetric algebra S(L). Consider the canonical projection � : T (L) → S (L). For
n = 0, set Z0 := {1K} and, for n ≥ 1, let Zn ⊆ L⊗n be the set

{x1 ·T · · · ·T xn | xi ∈ X,∀1 ≤ i ≤ n and x1 ≤ x2 ≤ · · · ≤ xn} .

If we set Wn := SpanK Zn, it is clear that �n
|Wn

is an isomorphism. Hence, by Remark
4.3, The elements x1 ·U · · · ·U xn, where n ≥ 1, xi ∈ X , for all 1 ≤ i ≤ n, and x1 ≤ x2 ≤
· · · ≤ xn, along with 1K , form a basis of the universal enveloping algebra U(L) of L.
This theorem is due to Poincarı̂, Birkhoff and Witt and the basis is called the PBW
basis of the universal enveloping algebra (see e.g. [15, Corollary C, p. 92]).

REMARK 4.5. Keep the assumptions and notations of Example 4.4. Observe that
proving the isomorphism U(L) ∼= U(L, c, b) requires the condition PU(L) ∼= L (cf. [2,
Example 6.10]). One could object that, in order to check this isomorphism, a basis
of U(L) is needed. We can clear the hurdle as follows. By [15, p. 92], U(L) fulfills the
PBW theorem. Now, mimicking the proof of [3, Corollary 5.5], we arrive at PU(L) ∼= L
without using a basis of U(L).

EXAMPLE 4.6. Assume charK is a prime number p. Let (L, [−,−],−[p]) be a
restricted Lie algebra which is assumed to have a totally ordered basis (X,≤). By
Example 3.13, the restricted enveloping algebra u := u(L) can be identified with the
universal enveloping algebra U(L, c, b) where c is the canonical flip map on L and
b a suitable bracket for (L, c). Moreover, (L, c) has combinatorial rank at most one.
Hence by Theorem 3.11, U(L, c, b) is of PBW type. Furthermore, by Example 3.13,
B (L, c) is the restricted symmetric algebra s(L). Consider the canonical projection
� : T (L) → s(L). For n = 0, set Z0 := {1K} and, for n ≥ 1, let Zn ⊆ L⊗n be the set

{
xt1

1 ·T · · · ·T xtn
n | xi ∈ X, 0 ≤ ti ≤ p − 1,∀1 ≤ i ≤ n, t1 + · · · + tn

= n and x1 < x2 < · · · < xn} .

Then Zn = ∅ whenever B (L, c)n = {0} and Zn is linearly independent otherwise. If we
set Wn := SpanK Zn, it is clear that �n

|Wn
is an isomorphism for all n ∈ �. Hence, by

Remark 4.3, The elements xt1
1 ·u · · · ·u xtn

n , where n ≥ 1, xi ∈ X, 0 ≤ ti ≤ p − 1, for all
1 ≤ i ≤ n, and x1 < x2 < · · · < xn, along with 1K , form a basis of u(L). This basis is
called the PBW basis of the restricted enveloping algebra (see e.g. [24, p. 23]).

We now give an example of a PBW basis for the universal enveloping algebra of a
braided Lie algebra whose bracket c is not a symmetry, i.e. c2 	= Id.

EXAMPLE 4.7. Assume charK = 0. Let V := Kx1 ⊕ Kx2 and define a diagonal
braiding c on V by setting c(xi ⊗ xj) = qijxj ⊗ xi, where q11 = γ ∈ K and qij = 1
for all (i, j) 	= (1, 1). Assume γ is not a root of unity. In view of [3, Example
9.8], the endomorphism c has minimal polynomial (X − γ )(X2 − 1) (whence it is
not a symmetry), the braided vector space (V, c) has combinatorial rank at most
one and Nichols algebra B (V, c) = T(V, c)/(x2x1 − x1x2). Consider the braided
bialgebra A := T(V, c)/(x2x1 − x1x2 − x1). Still by [3, Example 9.8], we know that the
infinitesimal part of A identifies with (V, c). Thus, by Remark 2.9, there is a braided
bracket b on (V, c) such that (V, c, b) is a braided Lie algebra and A ∼= U(V, c, b). By
Theorem 3.11, U(V, c, b) is of PBW type.
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For all n ∈ �, set Zn := {
xt1

1 ·T xt2
2 | t1, t2 ∈ �, t1 + t2 = n

} ⊆ V⊗n . If we set Wn :=
SpanK Zn, it is clear that �n

|Wn
is an isomorphism for all n ∈ �. Hence, by Remark 4.3,

The elements xt1
1 ·A xt2

2 , where t1, t2 ∈ �, form a basis of A. It is remarkable that A is not
a classical universal enveloping algebra as its infinitesimal braiding is not a symmetry.
Note also that, as we will see in Theorem 5.2, since U(V, c, b) is of PBW type then U is
strictly generated by V . Hence the nth term of coradical filtration of A is

∑n
i=0 πA (V )i,

where πA : T(V, c) → A denotes the canonical projection. Moreover, by Theorem 6.2,
A is what we will call a braided bialgebra lifting of B (V, c).

5. Cosymmetric. We will investigate universal enveloping algebras which are
cosymmetric in the sense of [20, Definition 3.1].

DEFINITION 5.1. Let (C,�C, εC, c) be a connected braided coalgebra. In view of
[5, Remark 1.12], the braiding of C induces a braiding cP on the space P := P (C) of
primitive elements in C. Moreover, (P, cP) is a braided vector space. Let 1C be the
unique group-like element of C. Let φ : C → C be defined by φ (c) := c − εC (c) 1C

and let �n
C : C → C⊗(n+1) be the nth iterated comultiplication of C. For n ∈ �, let Cn

be the nth term of the coradical filtration of C. By [20, Lemma 2.2], which is deduced
from [28, Proposition 11.0.5], we have Ker(φ⊗(n+1)�n

C) = Cn, for all n ∈ �. Moreover,
φ⊗(n+1)�n

C (Cn+1) ⊆ P⊗(n+1) so that, for all n > 0, the restriction of φ⊗n�n−1
C quotients

to a map μn : Cn/Cn−1 → P⊗n. Set μ0 := IdK . Then μC := ⊕n∈�μn : grC → Tc (P, cP)
is called the linearisation map and it is an injective coalgebra map. Here Tc (P, cP)
denotes the braided cotensor coalgebra of (P, cP) also known as quantum shuffle
algebra and denoted by ShcP (P). The linearisation map can equivalently be constructed
by means of the universal property of the cotensor coalgebra Tc (P) [28, Proposition
12.1.1]. Following [20, Definition 3.1], we will say that a connected braided bialgebra
C is cosymmetric if Im (μC) ⊆ B (V, c) (note that in [20], the Nichols algebra B (V, c)
is denoted by Sc(V )).

For a connected braided bialgebra B, one has that the linearisation map μB :
grB → Tc (P, cP) is indeed a braided bialgebra map (cf. [20, Proposition 3.3]).

THEOREM 5.2. Let (V, c, b) be a braided Lie algebra and set U := U(V, c, b). The
following assertions are equivalent:

(1) U is of PBW type.
(2) U is cosymmetric.
(3) U is strictly generated by V.
(4) grU is primitively generated.
(5) The map χU : B (V, c) → grU of Proposition 3.8 is bijective.

Proof. By Remark 2.7, the primitively generated braided bialgebra U is indeed a
braided Hopf algebra. Hence, the equivalence between (2) , (3) , (4) and (5) follows by
[20, Theorem 3.5].

Let
(
U(n)

)
n∈�

be the standard filtration on U . Let ϑU : T (V, c) → G (U) be the
graded braided bialgebra homomorphism of Proposition 3.7.

(1) ⇒ (3) By hypothesis, ϑU quotients to a braided bialgebra isomorphism
ωU : B (V, c) → G (U). We have P (G (U)) = ωU (P (B (V, c))) = ωU (V ) = U(1)/U(0).
By Proposition 3.6, we get that U is strictly generated by V .

(5) ⇒ (1) By Proposition 3.8, we have χU� = ξUϑU . Since both χU and � are
surjective, so is ξU . By Proposition 3.6, ξU is bijective. Set ωU := (ξU )−1

χU . �
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REMARK 5.3. In Theorem 3.11, we gave a class of braided vector spaces such that
U (V, c, b) is of PBW type whatever is the bracket. It is still an open question whether
the property of U (V, c, b) to be of PBW type depends just on the braided vector space
(V, c) in general. In Example 5.6, we will exhibit a braided Lie algebra (V, c, b) such
that U (V, c, b) is not of PBW type.

THEOREM 5.4. Let (V, c, b) be a braided Lie algebra and set U := U (V, c, b).
Assume U [n] is cosymmetric for some n ∈ �. Then U [n+1] is cosymmetric and
U (V, c, b) = U [n+1].

Proof. By construction (cf. the proof of [2, Proposition 4.5]), we have that, for all
n ∈ �, K [n] := Im

(
IdP[n] − i[n]b[n]

)
is a categorical subspace of P[n]. For all n ∈ �, set

W [n] := Ker
(
πn+1

n

) ∩ P[n]

By Lemma 2.12, W [n] = K [n] and P[n] = W [n] ⊕ V [n], for all n ∈ �. Assume now
that U [n] is cosymmetric for a fixed n ∈ �. By [20, Lemmata 4.2 and 4.4], taking W [n]

as W and V [n] as W ′, we get that U [n+1] is cosymmetric and P[n+1] = πn+1
n (P[n]). Now

P[n+1] = πn+1
n

(
P[n]) = πn+1

n i[n]b[n] (P[n]) = i[n+1]b[n] (P[n]) = Im
(
i[n+1]) = V [n+1].

Hence W [n+1] = 0. Now, by definition of πn+2
n+1 , we have Ker

(
πn+2

n+1

) = (
K [n+1]

)
so that,

by the foregoing, we get Ker
(
πn+2

n+1

) = (
W [n+1]

) = 0. Therefore, πn+2
n+1 is bijective and

U [n+1] = U [n+2]. Thus U (V, c, b) = lim−→U [i] = U [n+1]. �

COROLLARY 5.5. Let (V, c) be a braided vector space. If there is n ∈ � such that the
symmetric algebra S[n] of rank n is cosymmetric, then (V, c) has combinatorial rank at
most n + 1 in the sense of Definition 2.11.

Proof. Set U := U (V, c, btr) where btr is the trivial bracket on (V, c). Note that
U [t] = S[t] is the symmetric algebra of rank t for all t ∈ �. Hence, by Theorem 5.4,
we have that U [n+1] is cosymmetric and B (V, c) = U (V, c, btr) = U [n+1]. This means
(V, c) has combinatorial at most n + 1. �

EXAMPLE 5.6. At the end of [19], an example of a two-dimensional braided vector
space (V, c) of combinatorial rank 2 is given. The braiding c is of diagonal type of
the form c

(
xi ⊗ xj

) = qi,jxj ⊗ xi, 1 ≤ i, j ≤ 2, where x1, x2 forms a basis of V over K ,
q1,2 = 1 	= −1 and qi,j = −1 for all (i, j) 	= (1, 2). By Corollary 5.5, applied to the case
n = 0, T := T (V, c) is not cosymmetric.

Since T is a primitively generated braided bialgebra, by Remark 2.9, we know
that T coincides with the universal enveloping algebra of its infinitesimal braided Lie
algebra (P, cP, bP). We have so exhibited a braided Lie algebra (P, cP, bP) such that
U (P, cP, bP) is not cosymmetric. By Theorem 5.2, U (P, cP, bP) is not of PBW type.

6. Lifting of Nichols algebras. In this section, we investigate braided bialgebra
liftings of Nichols algebras. We will characterise them in terms of universal enveloping
algebras of PBW type.

DEFINITION 6.1. Let (V, c) be a braided vector space. We will say that a braided
bialgebra B is a lifting of B (V, c) if there is a graded braided bialgebra isomorphism
χB : B (V, c) → grB.
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THEOREM 6.2. Let (V, c) be a braided vector space and let B be a braided bialgebra.
The following assertions are equivalent:

(1) B is a lifting of B (V, c).
(2) There is a bracket b on (V, c) such that (V, c, b) is a braided Lie algebra, U(V, c, b)

is of PBW type and B ∼= U(V, c, b) as braided bialgebras.

Proof. (1) ⇒ (2) By hypothesis, there is a braided bialgebra isomorphism χB :
B (V, c) → grB. Since B (V, c) is primitively generated, the same holds for grB
whence for B. By Remark 2.9, B ∼= U (P, cP, bP), where (P, cP, bP) is the infinitesimal
braided Lie algebra of B. Clearly χB preserves primitive elements so that it induces
an isomorphism of braided vector spaces γ : (V, c) → (P, cP). Since γ is bijective,
there is a bracket b on (V, c) such that (V, c, b) is a braided Lie algebra and
U (V, c, b) ∼= U (P, cP, bP) ∼= B. Set U := U (V, c, b) and denote by ϕ : U → B this
isomorphism. Then ϕ|V = γ . Thus one easily checks that the diagram

grU
grϕ �� grB

B(V, c)
χU

��������
χB

��������

commutes. Since both χB and ϕ are isomorphisms, we get that χU is an isomorphism
too. By Theorem 5.2, we get that U is of PBW type.

(2) ⇒ (1) Since U := U (V, c, b) is of PBW type, by Theorem 5.2 we have that
the map χU : B (V, c) → grU of Proposition 3.8 is bijective. Hence U is a lifting of
B (V, c). �

In view of Theorem 6.2, given a braided vector space (V, c), studying braided
bialgebra liftings of B (V, c) amounts to investigate braided brackets b on (V, c) such
that (V, c, b) is a braided Lie algebra and U (V, c, b) is of PBW type.

COROLLARY 6.3. Let (V, c) be a braided vector space of combinatorial rank at most
one and let B be a braided bialgebra. The following assertions are equivalent.

(1) B is a lifting of B (V, c).
(2) There is a bracket b on (V, c) such that (V, c, b) is a braided Lie algebra and

B ∼= U(V, c, b) as braided bialgebras.

Proof. It follows by Theorem 6.2 and Theorem 3.11. �
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