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SUMMARY

In this paper an exact treatment is given for the stochastic behaviour of
the frequency of haploid genotypes in an infinite population when the ab-
solute fitnesses of the two genotypes vary at random over generations. The
main qualitative result from this treatment is that natural selection will
favour that allele with the largest geometric mean fitness. A diffusion equa-
tion is derived whose solution is identical to the exact solution. The drift
coefficient for this equation is of the form —fip(l —p) + <x2(£ — p)p(l —p).
This differs from the drift coefficient used in previous treatments of this
problem and reduces the rate of quasi-fixation. Various waiting time
problems are solved using this diffusion equation.

1. INTRODUCTION

The behaviour of haploid alleles in uncorrelated environments has been investi-
gated by Kimura (1954) and Dempster (1955), and recently reviewed by Crow &
Kimura (1970). The mathematical techniques employed in the first two papers
are different, though the underlying model is the same (Crow & Kimura, 1970). As
far as I have been able to discover, no one has carried Dempster's approach to the
point of displaying the probability density function for the process. When this is
done, it differs in rather important ways from the density obtained by Kimura
using a diffusion approximation. As will be shown in this paper, a better diffusion
approximation is possible, and its simple relationship to the Brownian motion
process allows various waiting-time problems to be readily solved. Before arriving
at this approximation I will redescribe Dempster's model in a way which will
emphasize its biologically important properties. In particular it will be shown that
the mean fitness of a population can decrease through the action of natural selection
in a stochastic environment.

2. THE STOCHASTIC MODEL

Consider a discrete-generation haploid population of two genotypes, A1 and A2,
whose absolute fitnesses in the nth generation are 1 + Un and 1 + Vn, respectively. If
the frequency of A1 in the wth generation is Xn, the difference equation describing
the trajectory of Xn is given by

Xn(l-Xn)(Un-Vn)
- i+xnun+(i-xn)vn'

 (1)
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whose solution is

If Un and Vn are random variables, not necessarily independent, and if the density
of the sum

is fn(Yn), then the density of Xn is

In the special case where the random vector (Un, Vn) is independent of and identically
distributed with (Un+j, Kw-j)>A(̂ n) approaches a normal distribution with moments

l-
(3)

= wvarlnl-—yf)

The central limit theorem implies that the density of Xn becomes, asymptotically,

exp

V^' J(27Tno*)x(l-x) • ()

This density is exact, for all n, if 1 + Un and 1 + Vn are lognormally distributed with
moments as above. Otherwise, the rapidity with which the approximation (4)
approaches the exact solution (2) depends on the density of (Un, Vn). Note that this
model has the quasi-fixation property:

iimPr{Xne(8,l-S)} = 0.
n—Kn

From a biological point of view, the most important property of this model rests
with the fate of alleles as a function of the first- and second-order moments of
(Un,Vn). This information may be obtained by examining the probability mass of
<pn(x) in the interval (0, a):

C
Jo

The change of variable

y =

shows that pn(oc) is equal to the integral of the standardized normal over the interval

l-xnl-a \
— n/i + ln- * • < )

a
, c o / .
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As n->oo the asymptotic value of this interval is determined solely by the sign of fi.
Using (3) we can conclude that

pn(a) + 0 iff /t<0,

pn(oc)^-l iff 11 > 0,

Pn(a)->i iff ii = 0.

Since the geometric mean of a random variable is just the expectation of the
logarithm raised to the power e, the above implies that the allele with the largest
geometric mean fitness is favoured by natural selection. In the case where both
alleles have equal geometric mean fitnesses, both alleles have (asymptotically)
equal probabilities of being found in the population.

If the stochastic effects are small, /i can be approximated by

which illustrates the role of the second-order moments of fitness in determining the
fate of an allele. Note that the arithmetic mean tends to overestimate the true effect
of fitness on gene frequency changes. This admits the possibility of selection favour-
ing an allele which actually lowers the mean fitness of the population. For example,
if U < V, but (5) holds, a population consisting almost entirely of allele A2 with mean
fitness 1+ V will be replaced by a population of Ax individuals with mean fitness
1 + U, resulting in a drop in mean fitness of U — V.

The covariance between Un and Vn plays no role in condition (5), but does affect
the rate of quasi-fixation, this being defined as the rate of increase in the variance of

(Gillespie, 1972). For the model under consideration the rate of quasi-fixation is
obviously

Of particular interest here is the role of <ruv. If the covariance of the fitnesses of the
two alleles is negative, the quasi-fixation process can proceed very rapidly. I t is
minimal, for fixed <T\J and cry, when auv = cru(Tv. The bounds on a2 are

for fixed a\,, crv.
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3. THE DIFFUSION APPROXIMATION

In order to arrive at a diffusion approximation for the process defined in the pre-
ceding section we can begin by noting that Yn is a simple random walk and thus can
be approximated by a Brownian motion process with drift and diffusion coefficients
of fi and cr2. The resulting density for the random function X(t) is

exp

To discover the diffusion equation satisfied by (5) we need only examine

T->0

which are the drift and diffusion coefficients of the process X(t). To evaluate M(x),
use

%j — oo L

The bracketed expression under the integral may be approximated near the origin
by its Taylor series:

Using this approximation it is easily verified that

M{x) = x(l-x)[-f

Similarly V(x) = a2x2( 1 - xf.
That (5) does, in fact, satisfy

may be shown by substitution. Warren Ewens (pers. com.) has shown me a deriva-
tion of M(x) directly from (1). This will be published elsewhere.

In his general treatment of this problem that includes the possibility of a non-
zero drift coefficient Kimura (1955) uses a drift coefficient or the form

sz(l —x),

where s is interpreted by Kimura as the difference in the Arithmetic mean fitnesses
of the two genotypes. This coefficient can be compared directly to the one derived in
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this paper by noting that the Brownian motion approximation to the discrete
random walk is obtained by shrinking the mean and variance of Un and Vn to zero at
the same rate, while assuming all higher moments shrink faster. In terms of these
first two moments the drift coefficient is exactly

This suggests that Kimura's coefficient should be viewed as a first-order approxi-
mation which can be considerably improved by the addition of the term

Kimura's symmetric case (his M(x) = 0) considered in his 1954 paper obviously
applies to the situation where the two genotypes have equal geometric mean fitnesses
so the drift coefficient should be

M(x)=<rzx(l-x){%-x).

This coefficient will cause the quasi-fixation process to proceed considerably slower
than Kimura's description of the process would indicate. This can be seen directly
by comparing the density (5) with/* = 0 to the density in Kimura's (1954) paper.

The use of the Brownian approximation of Yn points out the simple relationship
between this process and the genetic process. In fact

x(t) l-x(O)J'

Many of the genetic properties may be arrived at as a consequence of this trans-
formation. Consider, for example, the various waiting-time problems associated with
X(t). The distribution of the waiting-time for an allele with an initial frequency x(0)
to leave the interval (a, b) is the same as the time required for the Brownian motion
process with initial value zero to leave the interval

ml l - 6 '

This distribution is well known and we shall simply note that the mean value of the
distribution is

z(0) a

/i\ l-z(0)l-a 1-6 a

- 1

\b(l-a)

In particular, when allele Ax has a mean selective advantage over A2{/i < 0), the
moments of the time to reach a final frequency of x are:

. / x(0) l-x\

varT = - £ ' - ' *(0) ^
l-a;(0)

l-x\
x )
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Remarkably, the mean time is the same as the associated deterministic process
(<r* = 0 ) .

In an analogous fashion we can examine the probability that X(t) leaves the
interval {a, b) for the first time on the left side. From the Brownian motion theory
this is given by

P =

/ x(0) l-6\V/°-a

j l -g(O) b )

)

One use which can be made of this involves the probability of Ax, when advantages,
reaching a frequency of e (quasi-lost) before attaining the frequency 1 — e (quasi-
fixed). If e and x(0) are small, and if e < X(0), then
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