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The effects of thermal convection on turbulence in accretion discs, and particularly its
interplay with the magnetorotational instability (MRI), are of significant astrophysical
interest. Despite extensive theoretical and numerical studies, such an interplay has not
been explored experimentally. We conduct linear analysis of the azimuthal version of
MRI (AMRI) in the presence of thermal convection and compare the results with our
experimental data published before. We show that the critical Hartmann number (Ha) for
the onset of AMRI is reduced by convection. Importantly, convection breaks symmetry
between m = ±1 instability modes (m is the azimuthal wavenumber). This preference for
one mode over the other makes the AMRI wave appear as a ‘one-winged butterfly’.
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1. Introduction

Magnetic processes are ubiquitous in astrophysics. Magnetorotational instability (MRI,
Balbus & Hawley 1991) is one of the most important candidates for explaining
enhanced transport of angular momentum in accretion discs and mass concentrations
onto the central object. Magnetorotational instability may also be non-linearly interwoven
with the magnetic dynamo process, leading to the concept of the MRI dynamo – a
class of instability-driven dynamos (Rincon 2019; Mamatsashvili et al. 2020; Held &
Mamatsashvili 2022).

† Email address for correspondence: g.mamatsashvili@hzdr.de
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Since its rediscovery in 1991, there have been significant experimental efforts to study
MRI in the laboratory. The PROMISE experiment, using a liquid metal GaInSn, observed
both the helical MRI (with an imposed helical magnetic field, Hollerbach & Rüdiger
2005; Stefani et al. 2006) and the azimuthal MRI (with an imposed azimuthal magnetic
field, Hollerbach, Teeluck & Rüdiger 2010; Seilmayer et al. 2014), which both represent
inductionless variants of MRI. By contrast, a conclusive confirmation of the standard MRI
in the presence of an axial magnetic field is still elusive, despite promising recent findings
(Wang et al. 2022). For this purpose, a large-scale liquid sodium experiment is currently
under construction in the frame of the DRESDYN project (Stefani et al. 2019), aiming
to reach large enough values of Lundquist and magnetic Reynolds numbers, ∼10 and
∼40, respectively, which are necessary for the onset and development of the standard MRI
(Mishra, Mamatsashvili & Stefani 2022, 2023).

While many numerical studies have shown that convection can foster hydrodynamic
and magnetohydrodynamic turbulence in accretion discs, thereby enhancing accretion rate
and angular momentum transport efficiency (Klahr, Henning & Kley 1999; Bodo et al.
2013; Coleman et al. 2018; Held & Latter 2018, 2021), there have been no endeavours
to explore the interaction between MRI and convection in a laboratory setting. Here,
in a first-of-its-kind attempt, we theoretically and experimentally study the azimuthal
version of MRI (AMRI) in the presence of a radial temperature gradient which, although
being different from the vertical stratification often considered in accretion discs, can still
provide physical insights into the interplay between MRI and convection.

The AMRI is a non-axisymmetric instability arising in the presence of a purely
azimuthal magnetic field and is characterized by dominant azimuthal wavenumbers m =
±1 (Hollerbach et al. 2010). It emerges as a travelling wave in a differentially rotating
flow that is otherwise hydrodynamically stable. The AMRI was first observed in the
PROMISE experiment (Seilmayer et al. 2014) as a characteristic travelling-wave pattern,
in reasonable agreement with theoretical predictions. After improving the symmetry of
the applied azimuthal field, the strongly interpenetrating waves still observed in the
2014 experiment were replaced by a much clearer ‘butterfly’-like wave pattern, revealing,
however, a new noteworthy effect of symmetry breaking between the two unstable m = ±1
modes (Seilmayer, Stefani & Gundrum 2016); the reason for which was not clear by that
time. In a more recent linear study of AMRI (Mishra et al. 2021, hereafter Paper I), we
showed that the absolute form of AMRI with zero group velocity (but non-zero phase
velocity), which is more relevant and important in experiments, successfully describes the
observed butterfly-shaped structure of axially upward and downward travelling waves.

The motivation for the present study comes from the recent work by Seilmayer, Ogbonna
& Stefani (2020), who experimentally investigated the interplay of AMRI and thermal
convection in PROMISE. They observed that convection driven by radiative heat flux
from the central current-carrying rod causes the symmetry breaking of the m = ±1 AMRI
waves and the systematic shift of their characteristic frequencies, phase velocities and
wavenumbers. Moreover, the direction of the phase velocity of the dominant AMRI wave
appeared to be linked to the direction of heat flux defining the convective motion. Our
goal is to explain this behaviour based on the linear stability analysis of a dissipative
Taylor–Couette (TC) flow in the presence of thermal convection and an azimuthal
background magnetic field. Following Paper I, in this work we also focus on the absolute
form of AMRI. The main result is that the convection flow causes symmetry breaking
between the m = ±1 AMRI modes, giving preference to either of these two modes and
increasing its growth rate, while decreasing that of the other. This preferred mode gives
rise to a characteristic ‘one-winged butterfly’ pattern of the AMRI wave observed in the
experiments.
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Figure 1. The PROMISE experiment using GaInSn as a working fluid. (a) Cross-section of the experiment
with the height h = 40 cm and the inner and outer radii, rin = 4 cm and rout = 8 cm, of the central TC-cell:
(1) vacuum insulation, (2) upper motor, (3) current-carrying copper rod, (4) ultrasound Doppler velocimetry
(UDV) sensors, (5) outer cylinder, (6) top acrylic glass split rings, (7) inner cylinder, (8) central cylinder,
(9) bottom split rings, (10) bottom motor and (11) interface. (b) Two-dimensional (2-D) sketch of the
PROMISE-TC set-up showing heat radiation from the vacuum-insulated current-carrying rod. Heat flux is
directed from the inner to outer cylinder with temperatures T1 and T2, respectively, obeying T1 > T2, which
induces convective motion in the fluid. A reverse temperature gradient and hence opposite convective velocities
can be set by preheating the outer solenoidal coil before starting the experiment.

2. Theoretical model

We consider an infinitely long cylindrical TC set-up consisting of inner and outer cylinders
with radii rin and rout rotating with angular velocities Ωin and Ωout in the cylindrical
coordinates (r, φ, z) corresponding to the PROMISE set-up (figure 1). In the absence
of endcaps, the equilibrium azimuthal flow u0φ = rΩ(r) between the cylinders has a
classical hydrodynamical TC profile of angular velocity Ω(r) = S1 + (S2/r2), where
S1 = Ωin(μ − η2

Ω)/(1 − η2
Ω) and S2 = Ωin(1 − μ)r2

in/(1 − η2
Ω) with the ratio of the

cylinders’ radii ηΩ = rin/rout (= 0.5 in PROMISE) and angular velocities μ = Ωout/Ωin.
Note that a split-endcaps configuration is used in the PROMISE set-up, which significantly
reduces the global Ekman pumping, thereby sustaining this TC profile in the bulk flow to
a good approximation (Stefani et al. 2009). A central rod carrying current I produces
an azimuthal magnetic field B0φ(r) = μ0I/(2πr) between the cylinders, where μ0 is the
magnetic permeability of vacuum. Since this current of the order of 10 kA produces
appreciable Ohmic dissipation, Prod ∼ 1 kW, a water cooling system and a vacuum
insulation balance the thermal heating at the centre, see figure 1.

The magnetohydrodynamics (MHD) equations for an incompressible fluid with a
temperature gradient are

∂u
∂t

+ (u · ∇)u = − 1
ρ

∇p + J × B
ρ

+ ν∇2u − gβδT, (2.1)

∂B
∂t

= ∇ × (u × B) + η∇2B, (2.2)

∇ · u = 0, ∇ · B = 0. (2.3a,b)
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where ρ is the constant density, u is the velocity, p is the thermal pressure, B is the
magnetic field, ν and η are, respectively, the fluid kinematic viscosity and magnetic
diffusivity and J = μ−1

0 ∇ × B is the current density. The last term −gβδT on the
right-hand side of (2.1) is the buoyancy force in the Boussinesq approximation driving
thermal convection flow (Landau & Lifshitz 1987), where β > 0 is the coefficient of
thermal expansion of the fluid, δT = T − T0 is the temperature deviation from the
reference stationary profile T0(r) in the absence of convection, which is set by the
temperatures T1 and T2 of the inner and outer cylinders, respectively (figure 1). The
gravitational acceleration g = −gez points opposite the unit vector ez of the z-axis.
The background azimuthal magnetic field due to the central current I is written as
B0 = B0(rin/r)eφ , where B0 = μ0I/(2πrin) is the value of this field at rin and eφ

is the unit vector in the azimuthal direction. In addition, the present set-up of the
PROMISE experiment uses an enhanced pentagonal-shaped frame system maintaining an
axisymmetry of the background azimuthal field with a relative error 
Bφ/B0 < 10−2.

Apart from being a magnetic field source, the current also represents a heat source,
as illustrated in figure 1(b), where the thermal radiation from the Joule heating of the
current-carrying central rod transports heat outwards to the inner cylinder (see details in
Seilmayer et al. 2020). As the inner cylinder’s wall heats up, it drives convective motion
of the fluid with an axial velocity u0z, which is directed upwards along that wall, but
downwards along the outer cylinder wall. A heat flux in the opposite direction and hence a
reverse convection flow is obtained by preheating the outer solenoidal coil (e.g. by letting
current through it) before the start of the experiment. Assuming balance between Lorentz
and axial buoyancy forces in a stationary convection flow, Seilmayer et al. (2020) estimated
the characteristic axial velocity of this flow as u0z ≈ 0.2 mm s−1 at the outer cylinder for a
temperature difference 
T ∼ 0.1 K and a current of I = 20 kA used in those experiments.
This velocity is smaller than that of the basic azimuthal TC flow. Thus, the equilibrium
flow represents a combination of the main TC flow and the radially varying axial velocity
u0z, i.e. u0 = (0, rΩ(r), u0z(r)) with the corresponding pressure profile p0(r). Due to
the small temperature difference, we neglect the thermal effects (i.e. buoyancy term) for
perturbations analysed in the next section. In fact, as we will see below, thermal convection
influences the dynamics of AMRI primarily through its axial velocity.

2.1. One-dimensional linear stability analysis
We consider small perturbations of velocity u′ = u − u0, pressure p′ = p − p0 and
magnetic field b′ = B − B0 about the above equilibrium values, which are functions of
the radius r and depend on time t, azimuthal angle φ and axial coordinate z as a normal
mode ∝ exp(γ t + imφ + ikzz), where γ is the (complex) eigenvalue, while kz and the
integer m are the axial and azimuthal wavenumbers, respectively. A positive real part
(growth rate) of any eigenvalue, R(γ ) > 0, indicates the instability of perturbations. We
normalize length by rin, time by Ω−1

in , γ and Ω(r) by Ωin, u by Ωinrin, p by ρr2
inΩ

2
in,

B0 by B0, and b′ by RePmB0, where Re = Ωinr2
in/ν is the Reynolds number and the

magnetic Prandtl number Pm = ν/η = 1.4 × 10−6 is very small, typical of the working
liquid GaInSn in the experiments. We also define another main parameter – the Hartmann
number Ha = B0rin/

√
ρμ0νη (≈7.77 × I/kA for GaInSn) characterizing magnetic field

strength.
The perturbations of the velocity and magnetic field are divergence-free (2.3), so that

they can be split into toroidal and poloidal components (primes will be omitted), u =
∇ × (eer) + ∇ × ∇ × ( f er), b = ∇ × (ger) + ∇ × ∇ × (her), where e, f , g, h are the
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functions of only radius, ez is the radial unit vector and the operator ∇ = (∂/∂r, im/r, ikz).
Linearizing (2.1)–(2.2), substituting these representations of the velocity and magnetic
field, ignoring the buoyancy force and using the above normalizations, we finally get a
system of four coupled one-dimensional (1-D) linear eigenvalue equations (Hollerbach
et al. 2010),

Reγ (C2e + C3f ) + C4e + C5f = Re(E1 + F1) + Ha2(G1 + H1), (2.4)

Reγ (C3e + C4f ) + C5e + C6f = Re(E2 + F2) + Ha2(G2 + H2), (2.5)

RePmγ (C1g + C2h) + C3g + C4h = E3 + F3 + RePm(G3 + H3), (2.6)

RePmγ (C2g + C3h) + C4g + C5h = E4 + F4 + RePm(G4 + H4), (2.7)

where the operators Cn are given by Cn := er(∇×)n(: er), n ∈ [1, 6], while other terms
on the right-hand side of these equations are

E1 = −im
Ωe − ikzu0z
e, E2 = ikz
Ωe + 2imk2
z u0ze/r2,

E3 = 0, E4 = imr−2
e,

}
(2.8)

F1 = ikz(
Ω + 
rΩ ′)f + im(2k2
z u0z/r − 
u′

0z)f /r, (2.9)

F2 = −im[Ω(C4 + 4k2
z /r2) + 
((r2Ω ′)′/r2)] f − ikz[u0zC4 + 
(r(u′

0z/r)′)] f , (2.10)

F3 = imr−2
f , (2.11)

F4 = −ikzr−2
̂f , (2.12)

G1 = imr−2
g, G2 = −ikzr−2
̂g, G3 = 0, G4 = −im
Ωg − ikz
u0zg, (2.13)

H1 = −2im2kzr−4h, H2 = imr−2C4h + 4imk2
z r−4h,

H3 = −im
Ωh − ikzu0z
h,

}
(2.14)

H4 = ikz(2m2r−2Ω − 
rΩ ′)h + im(2k2
z u0z/r + 
u′

0z)h/r, (2.15)

where Δ̂ = 4m2r−2 + 2k2
z and Δ = m2r−2 + k2

z . The stationary and radially varying
axial velocity u0z(r) induced by convection introduces new contributions in several
terms E1, E2, F1, F2, G4, H3, H4 compared with the case without convection (u0z = 0),
which are highlighted in blue. The inner and outer cylinders of the PROMISE device
are made of copper (figure 1) and hence conducting boundary conditions are used for
the magnetic field, while no-slip conditions for the velocity. The eigenvalue problem
posed by (2.4)–(2.7) together with these boundary conditions allow us to determine the
eigenvalues γ and the associated eigenmodes. To solve this problem, we use the 1-D code
of Hollerbach et al. (2010) based on the spectral collocation method with N = 30–40
Chebyshev polynomials, thereby reducing these linear differential equations to a large
4N × 4N matrix eigenvalue equation for γ which is then solved with the LAPACK library.

As already noted in the Introduction, following Paper I, in this work we focus on the
absolute form of AMRI and, using the procedure described in that paper, identify the
corresponding unstable modes that are characterized by zero group velocity (but non-zero
phase velocity) in the axial z-direction and hence stay inside the TC device. A key feature
of these modes is that their axial wavenumber is complex kz,a = R(kz,a) + iI(kz,a),
resulting in the increase of mode amplitudes along or opposite the z-axis depending on
the sign of the imaginary part of the wavenumber I(kz,a) (see details in Paper I). The
requirement of zero group velocity implies mathematically that the wavenumber kz,a
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should be a saddle point of the dispersion relation γ (kz), where its complex derivative
is zero, ∂γ (kz)/∂kz|kz=kz,a = 0. From this condition we determine kz,a and then calculate
the corresponding growth rate γa = R(γ (kz,a)) for different Ha and Re.

Note that the axial velocity of convection, u0z, its radial shear, u′
0z and the azimuthal

wavenumber m enter (2.4)–(2.7) as products mu0z and mu′
0z in the right-hand side terms of

these equations, which thus introduce asymmetry with respect to m – the selection of m =
1 or m = −1 AMRI-unstable modes. As is shown below, this selection effect primarily
manifests itself in the enhancement of the growth rate of either of these two modes and
lowering (or even suppressing) the other.

2.2. Temperature profile
So far, the mathematical expression of the axial velocity u0z has been kept arbitrary, i.e. in
principle it may have any radial dependence and can, therefore, be explored over a broad
range of parameter space in B0 and Ωin which may be of astrophysical interest. However,
finding an exact form of an established stationary u0z in the given cylindrical annulus
of a TC flow bounded by endcaps due to the combined action of buoyancy, inertia and
the imposed azimuthal field is another problem, which we do not address here. Instead,
we adopt its simplified model – infinitely long rotating cylinders in the presence of a
radial temperature gradient and a current-free azimuthal field. Since Pm 	 1, the effect
of the Lorentz force on the convective motion is small. In this case, an exact stationary
axisymmetric solution of momentum equation (2.1) was found by Ali & Weidman (1990)
that consists of a TC flow u0φ = rΩ(r) and the convection axial velocity given by

u0z = A0z

(1 − ηΩ)2

{(
A
B

)(
(1 − ηΩ)2r2 − 1 + (1 − ηΩ)2C − 1

4
[(1 − ηΩ)2r2 − η2

Ω ]C
)}

,

(2.16)

where
A = (1 − η2

Ω)[1 − 3η2
Ω − 4η4

Ω ln(ηΩ)],

B = 16[(1 − η2
Ω)2 + (1 − η4

Ω) ln(ηΩ)], C = ln(r/rout)

ln(ηΩ)

⎫⎬
⎭ (2.17)

and the amplitude factor A0z is a constant proportional to the temperature difference
between the cylinders, 
T = T1 − T2, which can be obtained either experimentally or via
simulations of the corresponding real system of a bounded TC flow with radial temperature
gradient and the magnetic field. To test the validity of this expression for the present
set-up, in figure 2(a) we compare the radial profiles of u0z as given by (2.16) and that
obtained from the simulations of the real system at the central current I = 20 kA using
COMSOL Multiphysics software. For this value of the current, the analytical solution
(2.16) reproduces well the radial profile of the axial velocity from the simulations if we
choose A0z ≈ 4.25.

We prefer, however, to directly derive A0z from the experimental data, as these
simulations are somewhat limited in several respects (low resolution, only axisymmetric,
etc.) and, in particular, do not include AMRI. Figure 2(b) shows the root mean square
(r.m.s.) calculated from the azimuthally and time-averaged axial velocity uz,rms measured
in the experiment close to the outer cylinder where the sensors are located. We apply a
Gaussian fit to these data and, using those fitted values in (2.16) at the radius of the sensor
locations, determine the corresponding A0z (which in fact differs from uz,rms at that radius
by a constant factor) for a given Ha. From the dependence of uz,rms on Ha in figure 2(b)
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Figure 2. (a) Axial velocity u0z of convection vs r obtained when heat flux is directed from the inner to outer
cylinder from the axisymmetric (m = 0) COMSOL simulations (black) for current I = 20 kA and from (2.16)
(red) with the amplitude factor A0z ≈ 4.25. (b) The r.m.s. of axial velocity, uz,rms (blue circles) calculated from
its azimuthally and time-averaged radial profile measured in the experiment as a function of Ha (i.e. current I).
The red curve denotes a Gaussian fit applied to these data points. The vertical dashed line marks the critical
Hac ≈ 62 for the onset of AMRI with convection, see also figure 5(b).

it is seen that the magnetic field perturbation growing as a result of AMRI back-reacts
on (slows down) the convection due to nonlinearity, modifying the dependence of the
resulting r.m.s. of axial velocity on Ha (denoted by the black dashed line), which would
otherwise increase nearly proportional to Ha (Seilmayer et al. 2020). Afterwards, using
those values of A0z obtained from the experimental data back into (2.16), we recover the
entire radial profile of u0z(r) and plug it into the various terms on the right-hand side
of the eigenvalue (2.4)–(2.7). Ideally, one would treat the dynamics of AMRI and the
background axisymmetric convection flow self-consistently, that is, taking into account
the mutual nonlinear interaction of the AMRI wave and the basic convection flow via
Lorentz force, which will be the subject of future more extensive analysis. Here, we focus
instead only on the linear dynamics of AMRI upon the established convection flow, whose
axial velocity amplitude A0z has been directly derived from the experiments.

3. Comparison of experimental and theoretical results

To experimentally study the effect of convection on AMRI, an upgraded PROMISE set-up
(figure 1) was used at fixed Ωin = 2π × 0.05 Hz (yielding Re = 1480) and μ = 0.26, but
different Ha, as indicated in figure 2(b) (see also Seilmayer et al. 2020). We note that
the PROMISE facility was not originally designed to conduct experiments with thermal
convection. This has introduced some limitations to the experiments, for example, as
the source of heat is the current-carrying rod rather than a special heating device, the
typical temperature gradient between the cylinders, as noted above, is small (
T ∼ 0.1 K)
and not adjustable, leading accordingly to small axial velocities. Nevertheless, given the
working liquid GaInSn, it turned out that even such a small temperature gradient leads to
a sufficient convective flow velocity that can be observed and have an effect on AMRI
(Seilmayer et al. 2020). Indeed, it was found in those experiments that, contrary to the
case of AMRI without convection, where the upward and downward moving waves appear
symmetrically in the whole cylinder height (see figure 5 in Paper I), thermal convection
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Figure 3. The AMRI wave in the presence of thermal convection. The UDV raw data of the axial velocity uz
measured by the sensor close to the outer cylinder as a 2-D series in t and z at current I = 12.87 kA (Ha = 100)
and Re = 1480. The dominant direction of the AMRI wave (marked by dashed elliptical curves) depends on the
direction of heat flux, which is initially from the outer to inner cylinder up to t = 3000 s (marked by the black
dashed line) and then, when the outer coil has cooled down, heating from the central rod prevails, switching
the direction of the heat flux. This figure is adopted from Seilmayer et al. (2020).

breaks this symmetry between the m = ±1 modes, resulting in the AMRI waves appearing
either in the upper or lower half of the cylinder depending on the direction of the heat flux,
as it is seen from the variation of the axial velocity uz in the (t, z)-plane, also known as a
Hovmöller diagram, presented in figure 3, which has been adopted from the experimental
work of Seilmayer et al. (2020). As we will show below, the effect of the heat flux direction
on the wave-pattern structure (butterfly diagram) is, however, indirect – it is the induced
convection flow velocity u0z and its radial shear that primarily cause symmetry breaking
between these two modes. Moreover, as we will see, convective flow can also cause a shift
in phase velocities and onset threshold of AMRI.

We can view the selection of AMRI modes also in analogy with the solar dynamo.
In figure 3, the heat flux is initially from the outer to inner cylinder, i.e. fluid is rising
(u0z > 0) near the outer and sinking (u0z < 0) near the inner cylinder. Since the axial
velocity at the inner cylinder is (approximately 1.33 times) higher than that at the outer one
(see figure 2a), the former prevails in carrying the AMRI wave – the direction of the wave
phase velocity coincides with that of the downward convection velocity near the inner wall.
This effect is quite similar to that of the stronger equator-ward meridional circulation close
to the solar tachocline which governs the direction of the butterfly diagram of sunspots.
When the heat flux is from the inner to the outer cylinder at later times in figure 3, the fluid
rises near the inner cylinder and carries the AMRI wave upwards.

To interpret the behaviour seen in figure 3 on a more physical footing, we conduct
the 1-D linear stability analysis for the experimental parameters given above. In this
case, the AMRI modes have m = ±1 while other MHD or hydrodynamic higher |m| ≥ 2
modes are stable. Figure 4 shows a similar butterfly-shaped diagram of the perturbed
axial velocity uz associated with the AMRI wave in the (t, z)-plane in the presence of
convection at I = 13 kA (Ha = 101) for both, from the outer to inner cylinder and vice
versa, directions of the heat flux. For only AMRI without convection considered in Paper I,
the spatio-temporal variation of axial velocity exhibits a pattern of upward and downward
moving waves in the (t, z)-plane, which contains both m = ±1 modes with equal weights
(growth rates) located symmetrically with respect to the mid-plane of the cylinder (see
figure 5 in Paper I). As shown in that paper, this is due to opposite signs (but equal absolute
values) of the imaginary parts of the complex axial wavenumbers – I(kz,a) < 0 for m = 1
and I(kz,a) > 0 for m = −1 – of these two absolute AMRI modes, which hence appear to
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Figure 4. Spatio-temporal variation (Hovmöller diagram) of the perturbed axial velocity uz of the most
unstable AMRI wave in the (t, z)-plane having the form of an asymmetric butterfly at I = 13 kA (Ha ≈ 101)
and Re = 1480. In panel (a), m = −1 AMRI mode dominates at the bottom when the heat flux is directed from
the outer to inner cylinder, while in (b) m = 1 AMRI mode dominates at the top when the heat flux is directed
from the inner to outer cylinder. This clearly shows symmetry breaking, or selection effect between the m = ±1
modes due to convection. This selection between these two modes depends on the direction of convective flow
linked to the heat flux, which is consistent with the experimental findings in figure 3.
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Figure 5. (a) Phase velocities and (b) normalized energy content A2 (in a.u.) that is assumed to be proportional
to the growth rate γa of the absolute AMRI in the presence of convection at Re = 1480. The heat flux is directed
from the inner to outer cylinder. Green circles denote the experimental data, red-dashed lines correspond to
the dominant m = 1 mode, while blue lines to the subdominant m = −1 mode, implying symmetry breaking
between these two modes in contrast to the case without convection (black dot-dashed line) where the growth
rates of both m = ±1 AMRI modes are equal. Theoretical values of A2 are normalized by its maximum for
the dominant m = 1 AMRI mode occurring at Ha = 116 (corresponding to the highest growth rate γa,max =
0.0043). Shaded regions are AMRI-stable.

be concentrated towards the top and bottom ends of the cylinders, respectively, but both
components are always present at the same time due to axial symmetry. The direction of
the phase velocities coincides with the corresponding direction of the wave concentration.

The dynamics is significantly altered in the presence of a radial temperature gradient.
The symmetry between the m = ±1 modes is broken due to convection velocity u0z –
either of these two modes is preferred over the other depending on the direction of u0z,
as it is clearly seen in figure 4. When the heat flux is directed from the outer to inner
cylinder (i.e. rising u0z > 0 near the outer cylinder and sinking u0z < 0 near the inner
one), the m = −1 mode with I(kz,a) > 0 is dominant, that increases opposite the z-axis
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and has its phase velocity also directed opposite this axis (figure 4a). By contrast, for the
reversed heat flux direction, the m = 1 mode with I(kz,a) < 0 is dominant, that increases
along the z-axis and has its phase velocity also directed along this axis (figure 4b). As a
result, for each direction of the heat flux, the butterfly diagram takes on a predominantly
one-winged structure corresponding to the dominant mode, being mostly concentrated
near the top (‘upper wing’ for m = 1) or bottom (‘lower wing’ for m = −1) of the cylinder.
This spatio-temporal variation of the wave velocity is in a qualitative agreement with the
experimentally observed pattern of AMRI waves in figure 3.

Figure 5(a) compares the phase velocities u of the AMRI waves as a function of Ha
from the experiments and the linear analysis in the presence of heat flux from the inner
to outer cylinder. In the experiment, u is measured near the outer cylinder using UDV. It
is seen that the theoretical values of the phase velocities for m = ±1 AMRI-wave modes
from the linear analysis match quite well with the experimental ones. This demonstrates
the deviation of the phase velocity from the pure AMRI wave without convection. Due to
symmetry breaking, the m = 1 mode has somewhat larger phase velocity than the m = −1
mode, especially at higher Ha.

Figure 5(b) shows the normalized energy content A2 of perturbations as obtained both
from experiments and the linear stability analysis for the m = ±1 AMRI modes when
the heat flux is directed from the inner to outer cylinder. The experimental data for A2

represents the square of the measured r.m.s. of the axial velocity induced by AMRI,
which are normalized by their maximum value with respect to Ha. On the other hand,
the theoretical values are assumed to be proportional to the growth rate γa of absolute
AMRI, i.e. A2 ∝ γa, as is typical of a slightly supercritical regime according to the
Ginzburg-Landau theory of weakly nonlinear processes (e.g. Landau & Lifshitz 1987;
Umurhan, Menou & Regev 2007). The theoretical values of A2 are also normalized by their
maximum over Ha corresponding to the m = 1 AMRI mode, which is the dominant mode
in this case, since its growth rate is enhanced by convection, as is seen in figure 5(b). This
enhancement of the growth rate is due to the additional free energy provided selectively
for the m = 1 mode by the shear of the axial convective velocity, u′

0z. Such a normalization
allows us to compare the relative magnitudes (growth rates) of the m = ±1 AMRI modes
and the form of their dependence on Ha in the presence and absence of convection as well
as with the experimental data. Namely, the m = 1 AMRI modes are the strongest, while the
m = −1 AMRI modes the weakest, with the pure AMRI modes being between these two.
This clearly demonstrates the nature of symmetry breaking between the m = ±1 modes
caused by u0z – increase in the amplitude (growth rate) of one (m = 1) mode and decrease
in that of the other (m = −1). Note also that the critical Hac ≈ 62 is lower than Hac ≈ 82
for the AMRI without convection.

Thus, it is evident from figure 5 that the experimental data are in a good agreement
with the theoretical results for the dominant m = 1 AMRI mode for the radially outward
heat flux both for the phase velocity and energy content, especially near the onset at 62 �
Ha � 100, where the data points are closest to the m = 1 mode curve.

4. Conclusion

In this paper, we performed linear stability analysis for the absolute version of AMRI in
the presence of thermal convection and compared it with the experimental results from
PROMISE. The theoretical prediction of the early onset of AMRI and symmetry breaking
between m = ±1 modes brought about by convection are in good agreement with the
experimental results. This symmetry breaking is manifested in the increase in the growth
rate of either of these two modes with a given m and the decrease in that of the other. As a
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result, AMRI sets in at lower critical Hac than that in the absence of convection. Although
the experimental and theoretical results are consistent in yielding the dependence of the
amplitudes of the AMRI waves on Hartmann number based on the comparison with the
measured axial convective velocity, future simulations are needed to obtain these features
taking into account nonlinear feedback of AMRI on the convection.

Our findings may have implications for a subcritical MRI-dynamo in astrophysics
(Rincon 2019), which is sensitive to the amplitude of initial perturbations and generally
involves non-axisymmetric modes. Specifically, in the solar tachocline where Pm 	 1,
the combination of differential rotation and thermal convection may foster AMRI modes
with large enough amplitudes to sustain an AMRI-driven dynamo. Furthermore, our
preliminary Wentzel–Kramers–Brillouin (WKB) analysis indicates that |m| ≥ 2 modes
can be unstable at higher Ha and/or Re and may be of astrophysical importance. New
experiments with an upgraded PROMISE set-up including thermal processes may be
helpful in this respect.
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