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Abstract. Programs designed to observe gravitational microlensing are
poised to provide a great deal of information about binary populations
far from Earth, including those in the Galactic Bulge, in the Magel-
lanic Clouds, in M31, and perhaps in other external galaxies. Because
many millions of stars are monitored, microlensing observations allow us
to study binaries in three ways: (1) when they are “involved” in a mi-
crolensing event (as either a lens or lensed source), (2) when variability
due to binarity produces significant variations in the light curve, and (3)
when light from a more distant star is attenuated or refracted by matter
associated with the binary system (e.g., in a disk).

Microlensing observations will discover large numbers of binaries and
planetary systems in a variety of galactic environments. Thus, compar-
ative statistical studies of binary properties (distributions of mass ratios
and orbital separations) are possible.

An intriguing sign that we have already begun to learn about binaries
through microlensing observations comes from work indicating that all of
the lenses detected to date may in fact be binaries. For observations
along the direction of the Magellanic Clouds this would imply that, if
the lenses are primarily located in the Halo, then MACHOs tend to be
binaries. If, on the other hand, most of the lenses are located in the
Magellanic Clouds, microlensing observations are giving us a unique way
to explore a distant stellar population of binaries.

1. Introduction

We began this meeting by considering the history of the field. It is now fitting
that we end with a look toward the future. Although microlensing programs
were not designed to study binaries, they are nevertheless poised to provide
important and unique insights into the characteristics of binary populations.
Observations designed to detect evidence of gravitational microlensing typ-
ically involve nightly monitoring of the flux received from tens of millions of
stars. Such observations can teach us about binaries in three ways.
(1) When a binary system serves as a lens or as a source of light that is lensed, it
may be possible to constrain the values of the binary mass, mass ratio, projected
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orbital separation of the binary, and transverse velocity of the lens with respect
to the line of sight to the source star.
(2) The light curve associated with the binary itself may be time variable, due
to, e.g., eclipses or accretion processes.
(3) Light from a distant star may experience electromagnetic interactions with
matter associated with the binary, e.g., in a disk (DiStefano & Keeton 2000).
Such interactions can cause the light to be attenuated or even to be refracted.
In this talk I will discuss what the microlensing observations have con-
tributed thus far, but will focus on providing an overview of their broad ca-
pabilities to contribute to our knowledge of binary populations. As I hope to
demonstrate, the possibilities are wonderfully diverse. No single “bottom line”
can therefore summarize what we may hope to learn about binaries from the mi-
crolensing observations. There are, however, some simple expectations. These
are derived from the fact that observations designed to discover evidence of mi-
crolensing probe such vast volumes of our own and other galaxies that they will
provide an unprecedented statistical view of binary populations and of planetary
systems as a function of galactic environment. This will provide insight into the
circumstances and frequency of binary formation.

2. Gravitational Microlensing

Gravitational lensing is simply the phenomenon in which the path of light is
affected by gravitational interactions. If a point source of light, a point lens of
mass M, and the observer are perfectly aligned, then the image of the source is a
ring of angular dimension, 6, the Einstein angle. Let Dy, represent the distance
from the observer to the lens, and z be the ratio of D to Dg, the distance to
the lensed source.

O = | /301:12(;% — 0.003" \/(1 — ) (Mﬁo) (%c) (1)

The associated Einstein radius as projected onto the lens plane is
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c? 10 kpc

Alignment that is not perfect leads to multiple distorted images of the source.
If the lens is a point mass, there will be 2 images, with characteristic angular
separations comparable to fg. For stellar-mass lenses located at distances on the
order of a kpc from the observer, 8z is typically too small to allow ground-based
optical telescopes to resolve the images.

Evidence of lensing can nevertheless be obtained by monitoring the lumi-
nosity of the lensed star. Magnification of the images leads to an enhancement
in the received light. Let u be the projected separation between the lens and
source, measured in units of Rg. The magnification A(u) is '

u? 42

A =TT

(3)
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Figure 1.  The magnification due to a point mass. In the case shown,
the distance of closest approach between the projected position of the
source and the lens is 0.5 Rg. Note that point-lens events are highly
degenerate, as only a single measurement, the time duration of the
event, can be used to constrain the combination of M.,s, Ds, Dr, and
Vt.

The Einstein time is the time taken for the source to traverse a distance 2 Rg;
significant changes in magnification can take place on much shorter time scales.

_ Rg 100km/s
tg = 17.4days (AU) ( m ) (4)

The optical depth is defined to be the probability that a microlensing event
is occurring: it is roughly equal to the fraction of the sky enclosed by Einstein
rings. It is typically a very small number: e.g., the optical depth due to stellar
lenses located along the direction to Baade’s window is on the order of 1075,

3. Monitoring Many Stars

Because the probability of lensing is so small, it is impractical to wait for any
given star to be lensed. Programs to observe microlensing events therefore con-
centrate on dense fields, to monitor the light received from tens of millions of
stars. The Magellanic Clouds are monitored because they are located behind a
significant portion of the Galactic Halo, and because the optical depth due to
known stellar populations was initially thought to be small enough (roughly an
order of magnitude smaller than for Baade’s window), that any signal from MA-
CHOs would be readily detected. The Galactic Bulge, as seen through Baade’s
window, is also an important target in that it serves as a “control” field; lensing
along this direction is expected to be mostly due to stars.

The microlensing teams monitor multiple fields each night, having created
a template of point sources for each field. During the first years of observations,
variable stars among the template stars were identified. The teams then concen-
trated on looking for changes in flux from any of the template stars that had not
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Figure 2. The magnification due to binary lenses. In all cases the
mass ratio is 0.5 and the distance of closest approach between the pro-
jected position of the source and the lens is 0.5 Rg. Note the diversity
of shapes: lens binarity introduces structure that can help break the
degeneracy inherent in point-lens fits. Only 2 of these light curves
(a =1.0RE,6 = 0,7/8) exhibit caustic crossings.

previously been observed to deviate from the measured baseline. Most of the
more-than-400 events discovered to date have been discovered using the criterion
of an acceptable point-lens fit to identify promising candidates for microlensing
events.

4. Binary Lenses

When the lenses are binaries, the situation is quite different. There are either 3
or 5 images, and the isomagnification curves are no longer axisymmetric. Nev-
ertheless, for projected binary separations less than roughly 0.1 Rg and greater
than approximately 3 Rg, deviations from the standard Paczynski light curve
tend to be small, and only a small fraction of all light curves are significantly
perturbed.

For binaries with 0.1 Rg < a < 3 Rg, however, a large fraction of all light
curves are recognizably different from the point-lens form, exhibiting a wide
variety of shapes (see Figure 2). The most distinctive light curves are those ex-
hibiting the wall-like structures associated with caustic crossings; caustic cross-
ings occur when the track of the lensed star passes just behind the caustic curves
that separate regions in which there are 3 images from regions in which there
are 5 images.
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4.1. Most of the Lenses May Be Binaries

The relative numbers of caustic-crossing, more gently perturbed, and point-lens-
like light curves depend on the linear dimensions of the caustic structures. For
each lens geometry, as defined by the projected orbital separation of the binary
components and their mass ratio, these relative numbers can be determined
either through a pictorial examination of the caustic structures, or through a set
of scattering experiments. The results are that, even for the large values of ¢ that
maximize the probability of a caustic crossing, there is only 1 caustic-crossing
event for every 4.5 — 5 events. Furthermore, we must take into account the fact
that most binary lenses have orbital separations closer than 0.1 Rg or larger than
3.0 Rg. If the combination of such closer and wider binaries accounts for 2/3
of all binary-lens events, then there should be 14 or more non-caustic-crossing
events for every caustic-crossing event. We can observe significantly fewer non-
caustic-crossing events per caustic-crossing light curve only if binary lenses with
projected separations near Rg are more numerous than other binaries, while
there should be more non-caustic-crossing events if the distribution of mass
ratios is peaked at values of ¢ smaller than ~ 0.4 (DiStefano 2000).

When these simple consequences of the geometry of binary lenses are com-
pared with observations, the result is striking. All of the microlensing monitor-
ing teams that have been active for several years have observed caustic-crossing
events, and the ratio of caustic-crossing to other events ranges from 1/20 to 1/2.
The figure of 1/20 comes from the data set with the largest number of events,
the MACHO team’s store of some 350 events along directions to the Galactic
Bulge (Alcock et al. 1999). The OGLE I collaboration and the DUO team,
with smaller numbers of events, have found the ratio of caustic-crossing to other
events to be ~ 1/12 (Udalski et al. 1994; Alard, Mao, & Guibert 1995). This is
similar to the LMC results published by the MACHO team (Alcock et al. 1997a),
although the latest results reduce the ratio to between 1/13 and 1/17 (Alcock
et al. 2000). The ratio of 1/2 comes from the SMC data set. Thus, in each
data set, along every line of sight investigated so far, the ratio of the numbers
of caustic-crossing events to other events is so high that it is consistent with a
lens population composed entirely of binaries (Di Stefano 1999, 2000). Indeed,
the hypothesis that all of the lenses are binaries cannot presently be falsified.
If the lenses are primarily located in the Galactic Halo, then we may be on the
verge of establishing the intriguing result that MACHOs travel in pairs.

4.2. The Magellanic-Cloud Events

I have made the case that each caustic-crossing event can essentially carry with
it ~ 10 or more other events, most of which are point-lens-like, and that these
additional events may comprise the majority of the events discovered so far.
Thus, if we could discover the location of the lenses responsible for the caustic-
crossing events, we would also know the location of most of the other lenses. In
fact, we have been able to determine that the most likely lens location for each
of the two caustic-crossing events along directions to the Magellanic Clouds is
in the Clouds themselves (see, e.g., Alcock et al. 1997a, Afonso et al. 2000).
This determination depends on being able to use information about the caustic
crossing to constrain the value of the transverse velocity, and then comparing
the value so derived with the probability distributions of transverse velocities

https://doi.org/10.1017/5S0074180900225643 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900225643

534 Rosanne Di Stefano

expected for lenses in the Galactic Halo and in the Magellanic Clouds. The
discovery and study of a relatively small number of additional caustic-crossing
events would provide the simplest route to establish that the majority of the
lenses are in the Magellanic Clouds, should that prove to be true, or that a
significant fraction of the lenses are Halo objects (Di Stefano 1999, 2000). Thus,
each caustic-crossing event subject to the sort of intensive study accorded 98-
SMC-1 (Afonso et al. 2000 and references therein) has the potential not only to
break the degeneracy in the physical parameters associated with that event, but
also to determine the location of a large number of other lenses and to thereby
help determine the MACHO Halo fraction.

4.3. A Puzzle and a Challenge

If most lenses are binaries, then there are many events with characteristics distin-
guishing them from point-lens events, but which do not exhibit caustic crossings.
In fact, the calculations summarized above indicate that there should be roughly
2 — 4 times as many such events as there are caustic-crossing events. Yet, few
such events have been observed. Also missing from the mix of observed events
are binary-source events. This clearly indicates that a fairly significant fraction
of events have either been missed or misidentified. Work to understand what
this means for the microlensing observations is underway.

5. Ongoing and Future Observations

The MACHO team has now ceased observations, while other teams continue
with programs that, like EROS II and OGLE II, have been and are continu-
ing to be upgraded. One of the most important improvements beginning to
be implemented is the use of image differencing techniques to identify variabil-
ity. This means that we can now detect modest variability of stars not bright
enough to be visible on a pre-measured template. Image differencing techniques
are now being applied (although not necessarily in real time) to all of the mon-
itored fields, including M31. In fact the monitoring of M31 is one of the very
interesting new developments in the microlensing observations. Even in fields
already monitored, however, image differencing will increase the rate of observed
events by a factor of 2 — 3. New camera systems can lead to additional increases.
Within the next few years we may be detecting hundreds of events per year in
Baade’s window and tens of events per year toward the Magellanic Clouds. Such
numbers, particularly toward the Bulge, will allow us to develop ensembles of
events large enough to provide fodder for meaningful statistical analyses, and
will also discover relatively rare events.

6. Planets

Before the microlensing observations began, it was recognized that binaries could
be detected, with the special case of small-mass-ratio binaries corresponding
to planetary systems (Mao & Paczyriski 1991). Gould & Loeb (1992) focused
on the planetary case, in part spurred on by the following coincidence. If a
system identical to our own solar system, but seen face-on and located in the
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Galactic disk, were to serve as a lens for a Bulge star, Jupiter would be located
approximately 1 Rg from the sun. They estimated that ~ 15% of all source
tracks giving rise to a lensing event would contain evidence of Jupiter’s presence.
The evidence would be in the form of a sharp but short-lived perturbation from
the Pacznski light curve due to lensing by the star.

Once microlensing events had been discovered, more attention was focused
on discovering planets via microlensing. In fact, the microlensing programs were
augmented to achieve the goal of planet detection. The monitoring teams began
to call alerts when they detected a deviation from baseline they were reasonably
sure was due to microlensing. These alerts would trigger more frequent observa-
tions with sensitive photometry, carried on at enough locations in the Southern
hemisphere to achieve 24-hour coverage, at least when the weather cooperated.
(See, e.g., Albrow et al. 1998.) It was hoped that this aggressive approach would
enable microlensing to become the first method to discover extra-solar planets.
Of course we now know that the results have not lived up to these early hopes.
With ~ 30 extra-solar planets discovered, there has not been a single light curve
observed with characteristics that can be uniquely ascribed to the presence of a
planet.

It is natural to ask whether this means that microlensing is a technique
not well-suited to the discovery of planets. For individual well-monitored light
curves that show no evidence of a planet, we can compute the level of confidence
at which we can rule out the presence of planets with various mass ratios and
projected separation from the central star. Less massive planets are difficult to
detect, because of the effects of both finite-source-size and blending. Planets
outside of a thin annulus (0.6 — 1.6 Rg) are essentially impossible to detect using
the observing strategy employed to date. With only a relative handful of light
curves so far subjected to observations detailed enough to detect planets in this
thin annulus, it is clear that we will need to study more light curves in order
to either discover planets in the annulus or to place meaningful limits on the
population of planets.

Perhaps even more important, we must extend the search to include planets
in wider orbits (DiStefano & Scalzo 1999a,b). Detecting such planets requires
good photometry and sensitivity to (a) events of short duration, and/or to (b)
events which are perturbed from the Paczyriski form on the rise from or fall back
to baseline. No systematic searches for planets in wider orbits have yet been
implemented. Nevertheless, improvements in the observations, such as those
described in §4, could well lead even ongoing programs to the discovery of ~ 10
planets per year in Baade’s window, and smaller numbers in other monitored
fields. It seems likely that, during the next decade, microlensing observations will
either discover planets in distant locations and begin to establish the statistics of
mass ratios and orbital separations, or will place meaningful limits establishing
the differences between the solar neighbourhood and other places, such as the
Bulge, with regard to the frequency and characteristics of planetary systems.

7. Variability

There is a romance to the study of variable stars, with individual observers
adopting certain variables as their own, and returning to them again and again.
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The microlensing surveys represent a change in philosophy and practice, inspired
by the ability to obtain and store vast quantities of data. Fields containing
millions of stars are monitored night after night. Given the prevalence of stellar
binarity and the large fraction of binaries that are variable, the monitored fields
are certain to include many thousands of variable binaries.

The OGLE team has identified 1459 eclipsing binary stars in the central
2.4 square degree area of the Small Magellanic Cloud (Udalski et al. 1998),
while the MACHO team has reported on 611 eclipsing binary stars in the Large
Magellanic Cloud (Alcock et al. 1997). The OGLE team has instituted regular
studies of both open clusters and globular clusters. In the young open cluster
NGC 5999, 30 eclipsing binaries have been found (Pietrzynski et al. 1998), while
in NGC 5381, 13 eclipsing variables were found (Pietrzynski et al. 1997); among
the variables discovered are W UMa and Algol-like systems. The OGLE team
also identified 12 eclipsing binaries in the globular cluster 47 Tuc (Kaluzny et al.
1998), while surveys of 3 fields covering the central part of the globular cluster
w Cen identified 10 SX Phe stars and 19 eclipsing binaries, most of which were
not previously known (Kaluzny et al. 1997a, b). In addition, further study of
3 detached binaries discovered in their sample can provide direct information
about properties of the turnoff stars in w Cen. It is interesting to note that the
strategies used by the microlensing teams have been so successful that they are
presently being applied specifically to the study of cluster variables, independent
of any lensing applications. (See, e.g., Kaluzny 1999, Olech 1999.) Monitoring by
the microlensing teams has also helped us to characterize the optical variability
of a new class of sources, luminous binary supersoft sources (LBSSSs; Greiner
et al. 1999). There will certainly be many other such results that are difficult to
anticipate.

8. Disks

Gravitational microlensing is just one example of an interaction between light
from a distant star and intervening matter. Electromagnetic interactions can
also lead to time variability that can provide clues about the existence and char-
acteristics of the intervening matter, and even about characteristics of the source
star. Draine (1998) has considered refraction effects that might be associated
with spherical clouds.

An example of particular relevance to star formation is attenuation, or even
refraction, due to disks. DiStefano & Keeton (2000) have considered microlens-
ing, refraction, and attenuation due to disks. Although the signature from just
one of these effects can contain a good deal of structure, and it may even be
necessary to consider more than one effect in some systems, typical time dura-
tions for signals associated with refraction and/or attenuation can be estimated
in a straightforward manner. Consider a disk with axes, as projected onto the
plane of the sky, of width w and length [. With w < [, the shortest disturbance
lasts for time w/v;. If w is on the order of an AU, the time durations of events
will be comparable to those of microlensing events due to lensing by stars.
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9. The Future

There are powerful reasons for collaborative efforts between the community of
scientists interested in binaries and the community of researchers studying mi-
crolensing. The motivation of the binary community is clear, since the mi-
crolensing data sets contain much information about binaries — whether these
binaries serve as lenses, lensed sources, exhibit intrinsic variability, or interact
electromagnetically with light on its way to us from a more distant source. On
the other hand, the microlensing community is beginning to realize that being
alert to signals from binaries may be important for the derivation of meaningful
results about MACHOs. This is because (1) individual binary-lens events can
break the degeneracy inherent in the so-called Paczynski light curve, (2) simple
properties of ensembles of binary-lens events can point to problems, e.g., alerting
us to events that have either been missed or misidentified, (3) the combination
of unrecognized lensing by binaries, combined with the effects of blending, could
lead to errors in the estimate of the optical depth. In fact, there is an excess in
the measured values relative to the value predicted based on stellar populations
even along the direction to the Bulge, the so-called “control” fields. This discrep-
ancy is almost certainly due to something intrinsic to the analysis of ordinary
stellar populations rather than dark matter; it is therefore clearly important to
systematically include the effects of binarity in the analyses.

Given these powerful motivations from each community, it seems clear that
the methods developed to study microlensing will become powerful tools for the
study of binaries. There should be much more to report in our next meeting.
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