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THE LATTICE OF EQUATIONAL CLASSES 
OF COMMUTATIVE SEMIGROUPS 

EVELYN NELSON 

Introduction. There has been some interest lately in equational classes 
of commutative semigroups (see, for example, [2; 4; 7; 8]). The atoms of the 
lattice of equational classes of commutative semigroups have been known for 
some time [5]. Perkins [6] has shown that each equational class of commutative 
semigroups is finitely based. Recently, Schwabauer [7; 8] proved that the 
lattice is not modular, and described a distributive sublattice of the lattice. 

The present paper describes a "skeleton" sublattice of the lattice, which is 
isomorphic to A X N+ with a unit adjoined, where A is the lattice of pairs 
(r, s) of non-negative integers with r ^ s and s ^ 1, ordered component-wise, 
and N+ is the natural numbers with division. Every other equational class 
"hangs between" two members of the skeleton in a certain way; the relation
ships between intervals of the form [$i, $2] where $i , $ 2 are members of the 
skeleton are investigated. Finally, it is shown that Schwabauer's distributive 
sublattice is actually a maximal modular sublattice. 

1. BASIC CONCEPTS 

1.1. Equations and completeness. A semigroup is a pair ( S , / ) consisting 
of a set 5 and a binary operation / on 5 satisfying / ( / ( # , ô), c) = f(a,f(b, c)) 
for all a,b, c G S. (S,f ) is called commutative if, for all a , K S,f(a, b) = f(b, a). 
We deal exclusively with commutative semigroups and will write simply ab 
for f(a, b) and 5 for (S,f). 

The free commutative semigroup on countably many generators, F(œ), is 
the set of sequences (un)neN of non-negative integers, such that un = 0 for all 
but finitely many n £ N and ]L un ^ 1, with component-wise addition. For 
convenience we write (un) for (un)n^N and, if un = 0 for all n > m, we some
times write (ui, u2, . . . um) for (un)nç.N. 

A commutative semigroup equation is a pair ((un), (vn)) of elements of 
F(œ). A commutative semigroup 5 is said to satisfy the equation ((un), (vn)) 
if, for every family (an)nç.N of elements of 5, 

n w<k<̂ o} =rn^h^o}. 
A class S of commutative semigroups is said to satisfy an equation e (a set 2 of 
equations) if every semigroup in M satisfies e (satisfies every equation in 2) . 
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For a set 2 of equations, we define a set TS of equations as follows: g Ç T2 
if and only if there exists a finite sequence ei, e2i . . . em of equations such that 
em = e, and such that 

(P): for each i rg m, one of the following holds. 
(PI) et 6 S or et = ((un), (un)) for some (un)nÇ.N G ^(co). 
(P2) There exists7 < i such that e^ = ((wn), (vn)) and e* = ((zO, (un)). 
(P3) There existsj < i and a permutation 7r of Nsuch that £., = ((un), (vn)) 

a n d £* = ((«x(n))i (*V(n)))-

(P4) There exists 7 < i such that e% is obtained from ^ by multiplication, 
i.e., ej = ( W , CO) and e, = ( 0 „ + wn), (»w + wn)) for some (wn)neN Ç ^(w). 

(P5) There exists7 < i such that d is obtained from e^ by substitution, i.e., 
tj = ((«n)t (*0) and for some p £ N and (kn)n(iN £ F(co), et = ((«„ + &„«?), 
(^ + knvp)). (See note below.) 

(P6) There exists j < i such that et is obtained from e;- by identification of 
variables, i.e., e^ = ((un), (vn)) and there exist p, q with 1 S P < q such that 

£* = ((Ui, . . . Wp_l, 0, Up+i, . . . Ug-i, Ug + Up, Uq+i, . . . ) , 

( » ! , . . . ^ - 1 , 0, Up+i, . . . Vq-l, ^ + fy, Vff+i, . . . ) ) . 

(P7) There exist j , k < i such that e^ = ((un), (vn)), ek = ((vn), (wn)) and 
et = ((#»), W ) . 

iNfofe. (P5) does not yield what intuitively is the result of substituting some 
term (hn)n(zN for the pth variable in e^ to obtain 

((ui + hiUp, . . . Up-i + hp-iup, hpup, Up+i + hp+iup, . . .), 

(z/i + Ax^, . . . ^_ i + hp-ivp, hvVp, vp+1 + hp+1vp, . . .)) 

from ((un)nç.Nl (vn)nçtf). However, these two operations are equivalent modulo 
(P6). For example, to obtain the above equation from ((un), (vn)) using (P5) 
and (P6): if hp ^ 1 then apply (P5) with kt = ht for i 9^ p and kp = hp — 1. 
If hP = 0 then we may assume, in view of (P3), that hq ^ 1 for some q > p 
and then apply (P5) with kt = ht for i ?± q, kq = hq — 1. The result will be 

{{u\ + hiUp, . . . Up-i + hp-iUp, Up, up+i + hp+iUp, . . . uq -\- hqup — up, . . .), 

(*/i + Ali;,,, . . . vv-i + A„_i^, ^ , ^+i + hp+iVp, . . . vg + ^ A — ^PI • • •))• 

If (P6) is then applied to identify the pth variable with the gth, one obtains 
the desired result. 

A set 2 of equations is called closed if 2 = T2. We also write 2 —> e for 
e G T2 and in the case 2 consists of exactly one equation/, we write/—> e. 

Then e G T2 if and only if every commutative semigroup that satisfies 2 
also satisfies e; this is the completeness theorem for commutative semigroups. 

LEMMA 1.1. If e = {(un)n<zN, (vn)n(zN)), then for each i Ç N, 

e —> ((fli, . . . , Vi-i, Vi + uu vi+u . . .), (»i, • • . f«-i, 2^z, i;<+i, . . .))• 

https://doi.org/10.4153/CJM-1971-098-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-098-0


LATTICE OF EQUATIONAL CLASSES 877 

Proof, By (P4), 

e -> ((«i, . . . Ui-u 2ut, ui+1, . . .), (vu • . • »<-i, Vi + ui9 vi+1, . . .)) 

and by (P5), 

e —» ((wi , . . . « i _ i , 2«< f w f + i , . . . ) , (»i, • . • » i - i , 2»<f » i + 1 , . . . ) ) . 

The result follows from (P2) and (P7). 

For a class $ of commutative semigroups, let $* be the set of all equations 
satisfied by every member of $ ; then $* is closed. For a set S of equations, 
let 2* be the class of all commutative semigroups satisfying 2 ; then 2* is 
equational. For equational classes $ , $ ' , $ C $ ' if and only if $'* £ $*, and 
for closed sets 2, 2 ' of equations, 2 C 2 ' if and only if 2'* C 2*. 

Let 2 be the lattice of equational classes of commutative semigroups, and 
8' the lattice of closed sets of equations; then 2 is dually isomorphic to 8' by 
the mapping $ ~* $*. For $ i , $ 2 G 8, 

« i As $2 = « i H $ 2 = (« i* Vg' $2*)*, 
and 

« i v s $ 2 = («i* A g* «2*)* = («i* r\ $2*)*. 

1.2. T h e invar iants D, V, L, U. The equation ((un), (vn)) is called non-
trivial if un T^ vn for some n Ç iV. A set of equations is called non-trivial if it 
contains at least one non-trivial equation; an equational class $ is called non-
trivial if $* is non-trivial. 

For a non-trivial equation e — ((un), (vn)), define 
D(e) = g.c.d.{|w» - vn\ \n G N,un?* vn) 
V(e) = min{wn> vn\n £ N,un ^ Vjl] 
L[e) = min{max{un\n 6 N}} max{vn\n £ N}} 

m i n ^ X ) un, X »n( if X ) «n ^ Z ) ^n 

I S wn + (̂*0 if X) «n = S n̂-

Note that D(e), Lie), and 27(e) ^ 1 and that V(e) S L{e) S U(e). 
For example, if e = ((0, 1), (1, 0)), t h e n c e ) = 1, V(e) = 0,L(e) = 1 and 

Z7(e) = 1 + 0 = 1. A semigroup 5 satisfies e if and only if 5 has at most one 
element. 

If e = ((1,0), (l,p)) then D(e) = p, V(e) = 0, and Lie) = U(e) = 1. 
A commutative semigroup 5 satisfies e if and only if for all s, t £ 5, 5 = s£p

f i.e., 
if and only if 5* is an abelian group satisfying sp = 1 for all s (z S. 

For a non-trivial set 2 of equations, we define 
D ( 2 ) = g.c.d.{D(e)\e £ 2, e non-trivial} 
7 ( 2 ) = min{ V(e)\e 6 2, g non-trivial} 
L(2 ) = min{L(£)|e Ç 2, e non-trivial} 
£7(2) = min{£/(e)|e £ 2, e non-trivial}. 
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For each pair (r, n) of natural numbers, define 

f r f B : / + ~ > { 0 , l l . . . r + » - 1} 
as follows: 

f (h\ - ft if * - r 

Jr»W ~ \ r + [ k - r ] n if k>r, 

where [m]n is the least non-negative residue of m modulo n, and /+ is the set 
of non-negative integers. 

Let Frt7l = {1, 2, . . . r + n — 1} and for ii,i% G FTtn define iii2 = fr,n(ii + H)> 
Then FT%n with this operation is a commutative semigroup satisfying 
((0, (r + n)). 

Let Frtn
+ be 7<V,n with a unit adjoined, i.e., FTtn+ = Fr%n\J {u\ where 

ux = xu = x for all x Ç Fr,w
+-

LEMMA 1.2. 7 r̂>n satisfies a non-trivial equation e if and only if U(e) ^ r and 
n\D(e). 

Proof. Let e — ((Ui)ieN, (Vi)i(zN) be a non-trivial equation with r ^ Z7(e) 
and n\D(e). 

Case 1. ^ M j ^ S ^ . Then E uu E ^ ^ ^ If (ki)i£N is a family in 7<Vin 

then 

and 

n {*<f<b< ^ o} = /r .„(E {*i»ii»i ^ on . 
But E {^i^tl^i ^ 0} ^ E {̂ < N* 7e 0} = X) ^i = ^; similarly 

E {*<»>< 5* 0} ^ r. 
Moreover, since «|Z>(e), it follows that n\ui — vt for all i\ thus, E ktUi = 
E ^z^z (modulo #) . This implies tha t / r > w (E ^ ^ 0 = /r ,n(E kfli); thus, 

IT {^zMl>z ^ 0} = n {*/'>< 5*0}. 
Case 2. ^ M j = ^ z .̂ Then t/(e) = E ut + V(e) ^ f. Let (kt)ieN be a 

family in Fr>n. If &z- = 1 for all i with z^ =̂  vt then E &^* ~ E &^;z- If &* > 1 
for some i with ^ ^ ẑ  then, since z^ ^ ẑ  implies that w4, vt ^ F(e), it follows 
that E &*«i è E Ui + F(e) ^ r, E &*«>< ̂  E ẑ + ^OO è r. Thus we again 
have / r , n (E kiUi) = fr.nŒ, &^0 Î hence 

It follows that Fr>n satisfies e. 

For the converse, assume that e = ((Ui)ieN, (vt) ieN) is a non-trivial equation 
with U(e) < r. If E u% y^ E ^u then r > min{E Uu E Vt}j (l)zov is a family 
in FTtn and 
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Thus, in this case FT%n does not satisfy e. If J^ ut = ]T vu then we may assume 
without loss of generality that V(e) = U\ (and then 

V\ > U\ and X) ui + ui < r)-

Thus, by Lemma 1.1, e —> ((2*/i, p2, . . • )> (yi + 2J1, ^2, . • .))• (!)*€# is a 
family in ZYïW and 

n {lWi\u>i = 2vhWi = vt fori ^ 2} = / r , n ( ^ » f + »i) ^/r.n(]Cï>< + «1) 

= n {1**1̂ 1 = «1 + »i, * * = ^ for i ^ 2}. 

Thus Fr,w does not satisfy ((2z/i, z>2, . . .), (yi + 1̂» ̂ 2, . . .)) a n d hence does not 
satisfy e. 

If U(e) ^ r but w | D ( é ) then we may assume without loss of generality 
that u\ ^ Vi and n \ \u\ — Vi\. As above, e —> ((2vu v2, . . .)» (̂ 1 + ^i» ^2, • • •))• 
But since ]£ fl* + #i ?̂  2 *>* + ^i (modulo w), it follows that FTtVi does not 
satisfy ((2^i, z/2, . . .), fai + ^1, ^2, . . .)) and hence does not satisfy e. 

This completes the proof. 

LEMMA 1.3. Frt7l
+ satisfies a non-trivial equation e if and only if V(e) ^ r and 

n\D(e). 

Proof. Fr>n
+ satisfies ((r), (r + n)). ((/-), (r + w)) —> ((r), (r + to)) for 

all k ^ 1. If ^ = ({Ui)iç.N, (vt)ieN) and if F(e) è f and n\D{e), then ^ ^ fl* 
implies that uk, vk ^ r and w|% — zjft; thus, ((r), (r + ^)) —» ((uk), fe))-
Thus ((r), (r + w)) —> {{Ui)iç.Nj (Vi)iÇ.N) = e. It follows that if V{e) ^ r and 
n\D(e) then F r f n

+ satisfies e. 
Conversely, if -Fr,n

+ satisfies e = ((Ui)ieNl (*>*)*€#) > then since T7,.̂  is a sub-
semigroup of FTtU

+, it follows that FTtU satisfies e and thus n\D{e). We may 
assume without loss of generality that V(e) = u\ (and then U\ < Vi). Let 
d\ = 1 G ^r,7z+ and for i ^ 2, let at = u € ZV,W

+- Then (#*)*€# is a family in 
7VW

+ and 

n M . . , * o,. {/-*-•) ;; »;;° 
and 

n i ^ ^ ^ o } =/r.„(wi). 
Since Fryn

+ satisfies e, it follows that U\ = 0 and fr,n(ui) = fr,n(vi). But 
Wi F^ z>i: thus, Wi, ̂ 1 ^ r. This means that F(e) ^ r. 

THEOREM 1.1. if 2 —» £ awd £ is non-trivial, then 27(2) :§ £/(e), 
F(S) g F(e) ,L(S) g £(*) andD(2)\D(e). 

Proof. Assume S —-> e. Since /V(2),z>(2) satisfies 2, it also satisfies e; thus, 
J7(2) ^ £/(e) and Z>(2)|D(^). Moreover, if F(S) > 0, then Fv^)tD(i:)+ 
satisfies S, and hence also e, and thus F(S) ^ F(^). 

To show that 1/(2) ^ Z, (e) it is enough to show that if ei, . . . ^m is a sequence 
of equations satisfying (P) andL(^ ) ^ L (2) for ali i < m, then L(em) ^ -Z(2). 
Let gf = («f, /3Z) where «j-, /3̂  G P(w). Then L{et) ^ Z(2) means that there 
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exists an entry §:L(2) in each of at and /?*. But if this holds for all i < m, 
then it is clear that whichever of (PI) to (P7) em satisfies, there will be an 
entry ^ L ( S ) in each of am and /3W, i.e., L(em) ^ L(1). 

COROLLARY 1. If 2-^2', then Z7(2) ^ Z7(2'), F(S) ^ 7 ( 2 ' ) , £ ( 2 ) ^ L ( S ' ) 
a«dZ>(2)|Z>(2'). 

COROLLARY 2. D, F, L, Z7 as operators on sets of equations are invariant under 
Tyi.e.y for any non-trivial set 2 of equations, Z>(2) = Z>(T2), F (2 ) = F ( T 2 ) , 
L (2 ) = L(T2) a«d J7(2) = C7(rs). 

For a non-trivial equational classa, define £>($) = £>($*), F ( $ ) = F($*) , 
L ($ ) = L($*) and £/($) = £/($*). Since for two equational classes 
« i , «2, Si Q $2 if and only if ftf -> $2*, it follows that if ®i C $ 2 then 
Z7(fli) ^ C/(«2), F(Si) ^ 7 ( « 2 ) , i ( « i ) ^ L ( « 2 ) and£>(fli)|Z>($2). 

2. THE SKELETON SUBLATTICE CONSISTING OF THE CLASSES 

2.1. Definition of the skeleton. For non-negative integers r, sy n with 
r ^ s and n M , let ttr,s,n = {((r, s), (r + n, s)), ((s), (s + n))}*. Then 
U(toT.8,n) = s = L(Or>SjW), V(ttr,s,n) = r and D(12r>s>„) = n. 

Note that since ((0, s), (n, s)) -> ((5), (5 + w)) by (P6), Q0,s,n = 
{((0, 5), (n, 5))}*. Since ((r), (r + n)) - • ((r, r) , (r + *, r)) by (P4), 
Qr.r.n= {((r), (r + n))}*. 

fio,i,p is the class of all commutative groups G satisfying xp = 1 for all 
x e G. ^0,1,1 = {((0, 1), (1, 1))}* and since ((0, 1), (1, 1)) -> ((0, 1), (1, 0)) 
it follows that Qo,i,i is the zero of the lattice 8. 

Clearly, in view of (P4), if r ^ £ and 5 g w then 0rjStW C Œ*>W>7Î. If in addition 
w|m, then a simple induction argument yields tir,s,n £ ^«,«,m- On the other 
hand, by the remark at the end of Chapter 1, if iïT,s,n £ ®t,u,m then r S t9 

s ^ u and w|m. Thus tir,s,n £ ^̂ ,w,m if and only if r ^ t, s :g w and w|ra. 

2.2. The set Or,s,n* of equations holding in Qr,,,n. 

THEOREM 2.1. / w a non-trivial equation e, e G Or>s>n* 2/ awd o«/̂ y if r S V(e), 
s ^ L(e) and n\D(e). 

Proof, The "only if" part is a direct consequence of the results of the last 
section of Chapter 1. 

For the converse, let e = ((^0Î(=JV, (^O^JV)) and assume that r 5* V(e), 
s ^ L(e) and n\D(e). It follows directly from the definition of V, D, and L 
that there exist j , k with w ,̂ ^ ^ 5 and that if ut 9^ vu then n\ut — vt and 
Ui,vt ^ r. We may assume without loss of generality that U\ ^ s. But then 

((r, s), (r + n, s)) -> ((w3, u2 . . .), (wi, fl2, *>s, • • •))• 

If Vi ^ 5 then 

((5), (̂  + w)) -> ((wi), (wi)) -> ((wi, y2, . . .), (01, ^2, . . •))• 
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If Vi < s then Vj ^ 5 for some j ^ 2 and then 

(0 , s), (r + n, s)) -> ((wi, Vj), (vh vf)) - • (Oi, i;2, . . .), 0i , i/2, . • .))-

Thus 12r>SfW* •—» e, i.e., g Ç Œr>s>72*. 

COROLLARY 1. For an equational class $ , 12r>5>n C $ if and only if r rg F ( $ ) , 
5 g L ( f ) andn\D($). 

COROLLARY 2. fir,s>ra V ^)W>m = iïv,w,p, where v = max{r, t}, w = max{s, u], 
p = l.c.m.{w, m}. 

Proof. Since flr,5fW £ fi»>w,p and Œ*,M,m C 0 ^ ^ , it follows that 

Thus it is enough to show that Q,VtWtP Q tir,s,n V &t,u,m, i.e., that 
O * / r > \ 0 * C~ O * 

But e non-trivial and e G fir,s,w* ̂  Œ*,«,m* imply by the theorem that V(e) ^ r, 
L(e) ^ 5, n\D(e) and V(e) ^t,L(e)^u and m|Z>(eO; thus, V(e) '^v1L{e)'^w 
and p\D(e). It follows from the theorem that e Ç fiP ,«,,?* and this completes the 
proof. 

Since every non-trivial equational class is contained in some fir,SfW, it follows 
from Corollary 2 that the class of all commutative semigroups is not the join 
of two smaller classes. This was also proved in [2]. 

THEOREM 2.2. &r,s,n A &t,u,m = ®v,w,d, where v = min{r, t},w = min{s, u] 
and d = g.c.d.{^, w}. 

Proof. Since tir,s,n 2 &v,w,d, and Çlt,u,m 3 &v,w,d, it follows that 

^r,s,n A *lt,u,m =2. ^v,w,d* 

To show the reverse inclusion, it is enough to show that 

{((», w), (p + d, w)), ((w), (w + d))} Ç (tir,Stn A Olfllim)* = ttr,5,n* V OlitlfOT*. 

Assume that s ^ u. Then there exist natural numbers p, q such that 
pn = qm + d and /w ^ u. By Theorem 2.1, 

((5), (5 + 2pn)) = ((5), (s + jm + qm + d)) G Q,.,.,* 

((5 + pn + qm + d), (s + pn + d)) £ ttt,u,m* 
«s + pn + d,s + d)) G Ori,tn*. 

Thus ((5), (5 + ^)) G ^r,5,«* V ^*,w,m*- The case u < s follows by symmetry; 
t h u s , ( O ) , (W + d)) e Qr'.,.n* V 6ttUtm*. 

Now assume that r S t. Then v = r. There exist natural numbers h, k such 
that w + kd ^ s, r + hn ^ w. Then: 

((r, w), (r, w + fed)) G Œr>SjW* V 12*,MfOT* 
((r, ze; + &d), (r + te, ze; + kd)) Ç Œ,.̂ ^* 

((r + te, w + èd), (f + te + J, w + kd)) <c ^r . s , / V Œi)W>m* 
((r + te + d, w + fed), (r + d, w + ferf)) G fiî;5,w* 

((r + d, w + kd), (r + d, w)) e 0rf,,n* V Qt.u.m*. 
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Thus, ( 0 , w), (v + dt w)) G ( 0 r , s / V ttt,u,m*) V Q*,MfW* = Ûr,*,»* V Û/fM,TO*. 
The case £ < f follows by symmetry. This completes the proof. 

Let A be the lattice of pairs (r, s) of non-negative integers such that r S s 
and s ^ 1, ordered component-wise, i.e., (r, s) ^ (£, w) if and only if r S t 
and s ^ u. Let A74- be the lattice of natural numbers ordered by division. 
Then, by the above theorems, the map given by (r, s, n) -~» toTjS>n is

 a lattice 
isomorphism of A X N+ onto a sublattice of 8. 

2.3. Equations implying Î2r,s,n*. 

THEOREM 2.3. For a non-trivial equation e, e —* tiT,s,n* if and only if V(e) ^ r, 
U(e) S s and D(e)\n. 

Proof. It follows from the results in the last section of Chapter 1 that if 
e->ttr,s,n* then V(e) g r = 7(Ûr,,,n), U(e) g 5 = U(Qr,8,n) and Z>(eO|« = 

For the converse, let e = ((ui)ieN, (Vi)ieN) and assume that V(e) S r, 
U(e) S s and D(e)\n. For each i G A7, by Lemma 1.1, 

e —» (0i , . . . */f_i, ẑ + uu vt+1, . . .)> (»i, • • • »<-i, 2z/*, » i+i, . . . )) . 

Let î^j = Syev Vj + min{w*, z>*} and let dt = |w* — vt\. Then for each i G A7, 
6 —> ((Wi), (Wi + #%)). Thus for each i G A7 with ut ^ z;*, e* C 12w.^.^-. By 
Theorem 2.2, £* Ç 0WfM,td where w = min{wz |^ ?£ vt}, and 

d = g.c.d.{d,|d, ^ 0 } = £>(e). 

If E i ^ ^ i = S^iv^ï then U(e) = Wj for some j G A7 and thus 
e* Q toute),ute)tD(e)- If E w< ^ E »*, then 

e->(ŒwUi), (EitNi>i))-*UU(e)), (U(e) + h)) 

where h = | E ut
 — S ^1 is divisible by £>(e). But then £* C Œtf(C)>Z7(e)>J[>(C). 

Now assume without loss of generality that V(e) = U\. Then 

- > ( (Wl , Z / f c ) + ] C * £ 2 t t i ) , (» ! , [ / ( e ) + Z l z > 2 ^ z ) ) . 

Since £>0) |Z^2 ^j — 2^>2 *>* and since e —* ((U(e)), (U(e) + D(e))), it 
follows that e •—» ((^i, U(e)), (vi, U{e))). Thus e* Ç 12F(e))C7(e))/i, where 
h = Vi — Ui is divisible by £>(<?)• This, together with e* C Œu^^g)^^) yields 
e* Q £V(e),ere*),/>(*)• Since F(e) ^ r, £/(#) ^ s and D(e)\n, it follows that 
e* C Qr,,>n. 

COROLLARY, / W aw equational class $ , $ ç Or>S(W i/" a^J only if V($î) ^ r, 
U($) è s andD(®)\n. 

Proof. The "only if" part follows from the remark at the end of Chapter 1; 
the converse follows from the fact that if $ is a non-trivial equational class, 
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then there exist equations eu e2, ez Ç $* such that V{e{) = V($), U(e2) = 
U(St) and£>ft3) = D(®). 

LEMMA 2.1. For a non-trivial equation e, if L(e) St then there exists k 6 N 
such that 

e -» (ft t, . . . t), (t + Die), t,t, . . . 0 ) . 

jfe k - 1 

Proof. Let e be a non-trivial equation with Lft) ^ / and -D(e) = d. We may 
assume without loss of generality that e = ((ui, . . . un), fti, . . . vn)) where 
ut S t for all i ^ n. If Uj < vô for somej g w then 

e -> ((/, /, . . . t), fa + t - uu . . . vn + / - un)) 

where Vj-\-t — Uj > /. If ut è z>* for all i S n} then 

e —> ((«i + / — fli, . . . M„ + * — vw), ft . . . /)) 

where, since e is non-trivial, ut -\- t — vt > t for some i ^ w. Thus, in either 
case, there exist w2f . . . wn and s §: 1 such that 

e —> (ft . . . * ) , ( * + s, w2, . . . wn)). 

Choose h so that t -\- hs ^ U(e) and let k = h(n — 1) + 1. For each w with 
0 g w ^ A, let 

«ro = (/ + W5, «/2, • • . wn, . . . w2, . . . wn, t, . . . t). 

m(n — 1) & — m(n — 1) — 1 

By (P4), 

e —-» ((£ + W5, t, . . . t), (t -\- ms -{- s, w2, . . . wn)) 

n — 1 

for each m ^ 0. Thus, again by (P4), g —» (am, am+1) for each w with 
0 ^ w < A. By (P7), it follows that 

e —> («o, «A) = (ft . . .*)»(* + **» w2, . . . wni . . . wn)) 

k k 
and thus by (P4), 

e —> (t + d, t, . . . t), (t + hs + d, w2, . . . wn, . . . w2, . . . w„)). 

But £ + As ^ £7(e); thus g —> ((/ + As), (£ + As + d)). It follows that 

«-» (ft_. ..t), (tj\-d,t,...J)). 

T r 
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COROLLARY. For non-trivial equational classes $1, $J2, £ ( $ i V $2) = 
max(L(8i) ,L(f l2)) . 

Proof. Assume without loss of generality that L($ i ) = t ^ L(®2)- Then 
there exist et G $** for i = 1, 2 such that L(e*) ^ t. By the lemma there 
exists k (z N such that 

**-> ((U^-.^j), (* + </,*,...*)) 
r è - 1 

for i = 1, 2 where J is the least common multiple of D($i) and J9($2). Thus 

( ( / , . . . / ) , (t + d,t,...t)) G ( t i v «2)*. 

& jfe - 1 

It follows that L ( f 1 V $2) ^ /. On the other hand L ($ i V f 2) ^ L ( f 1) = t\ 
t h u s L ( « x V $2) = max{L(«i) f L(« 2 )} . 

Summarizing the results of this section and the preceding one, we have that 
for a non-trivial equational class $ , QV(SI),U8),D&) £ $ £ ^F(«)fi7(«)fD(«)-
Moreover, these choices of the O's are the best possible in the following sense: 
if nr.*,« £ $ then QrfStW C 0F ($ ) > J L(£)> J D ($) and if $ ÇI Qr>,fW then 

Thus if « G [0r,,.n,12rf<,n],then F ($ ) = r ,^(^î) è 5, i7($) g / a n d D ( t ) = n. 

THEOREM 2.4. .D is a lattice homomorphism from 2 — {E} to N+ and V, L and 
U are lattice homomorphisms from 8 — {E} to the non-negative integers with 
their usual order, where E is the class of all commutative semigroups. 

Proof. For non-trivial equational classes $1, $2, 

U(Sti A $2) = tf(«i*U$2*) = min{E7(«i), *7(«2)}. 

The rest of the proof follows from the above remarks, and the corollary to 
the last lemma. 

3. HANGING THE MEAT ON THE BONES 

3.1. The intervals [Œr,,,n, Œ*lW,m]. Since for each equational class $ there 
exist r, s, t, n G N with Çlr,s,n £ $ £ r̂,*,w> it follows that the interval 
p2r,s,n» fir,s,pw] is a jump for £ prime and that [fir,stw> ^r+i,«,w] is a jump for all 
r ^ 0. Thus p2r,s,i! ^r.s.m] consists of exactly the classes Œr)SjW where n\m and 
[O0iS,n, fi*,5,w] consists of exactly the classes fir,SfW where r ^ s. Moreover, if 
$ C ®r,r,n, then either $ C Qr__1>r>n or $ C Or>r>m for some m < n. Thus 
Œi.i.it the class of all semilattices, is an atom in S and for p prime, O0,i,p, the 
class of all abelian groups G satisfying xp = 1 for all x G G, is an atom in 8. 

https://doi.org/10.4153/CJM-1971-098-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-098-0


LATTICE OF EQUATIONAL CLASSES 885 

{((1, 1, 0), (0, 0, 2))}*, the class of all semigroups with constant multiplica
tion, is also an atom in 8. Moreover, it is an easy consequence of the above 
remarks that this exhausts the set of atoms in ?, a result proved in [5]. 

It remains only to investigate intervals of the form p2r,,,re, ®r,t,n] where 
s < t. It is easy to see that every such interval is infinite: for each p ^ t, let 
®P = ttr,s,n V {ettP}* where 

ettV= (OUI , . . . 1 , 0 ) , (0, . . . 0 , 0 ) . 

P P 

Then ®p G [ûr,*f», ®r,ttn] and if p ^ q, then ®p £ $tQ. Moreover, if p > r + s, 
then 

/„ = ((r, s, 1, 1, . . . 1), (r + », 5, 1, 1, . . . 1)) G $ / 
v y < y 

p — r — s p — r — s 

but/?, g fip+i* since eUP -/* fp. Thus {®p\p ^ ty p > r + s} is an infinite chain 

The following lemma will be useful in the rest of this chapter. 

LEMMA 3.1. If tir,t,n £ Stfor some t then e G ($ A ^r,s,n)* # ##d 0̂ 3> i/ /Aere 
m r f Tl, T2, T3, T4 £ P ( ^ ) S^C& / t o £ = ( r i , T4) # » d ( r i , T2), (r3 , T 4 ) £ $ * , 

( r 2 , r 3 ) € ^r,s,7i*. 

Proo/. The "if" part is trivial. On the other hand, if e G (fi A Ûr.«.n)* = 
fi* V ^r.s.w*, then, since for arbitrary congruence relations 0i, 02, 

0i V 02 = U{0] o 02 o 0i 0i|» ^ 1, » odd} 

and since ^ and Ors,w* are congruence relations on P(co), it follows that there 
exists a finite sequence n , r2, . . . r2p 6 P(<o) such that £ = (n, T2j>) and 

, . _ (®* for i odd 
( T i , T m ) M W for .even. 

We may assume without loss of generality that (r*, r*+i) is non-trivial for all 
i •£ 1 or 2p - 1 and that £ ^ 2. But then, by Theorem 2.1, L((r*, r<+i)) àfs 
for even i, i.e., for all i with 2 ^ i ^ 2p — 1, n has an entry ^s. But then for 
all odd i with 3 é i£ 2p - 3, 7((r , , ri+1)) ^ r, L( (T*, T ,+I ) ) ^ 5 and 
n\D((ju Tt+i)); thus, (TUTÎ+1) £ &r,s,w*. It follows that (r2, T2P_I) 6 &r,s,/. 
Thus we may take n , T2, T2P-I, T2P for the four elements of P(co) in the theorem 
statement. 

THEOREM 3.1. If $1 € [Ûrf*.»> ^r,*,»] ^wrf if u S r and m\n, then 

® = (fi A Ik.,.*) V Ûr>s,tt. 
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Proof. Since $ A tou,t,m Q $ and Or>s>w C ^ it follows tha t 

( # A Q ^ . L J V O r ia,n Ç « . 

T h u s it is enough to show t h a t if e G ( ( ^ A fiM,*,m) V fir,s,n)*, then e G fi*. 
Assume t h a t g 6 ( ( $ A ^,*,m) V 0r.*(»)* = ( £ A 0*,,.*)* H O r,, tn*. Then 

by Lemma 3.1, there exist n , r2, r3, r4 G ^(co) such t h a t (ri , r 2 ) , (r3, r4) G $*, 
(r2, T 3 ) G fiWfr,m* and e = ( n , r4) € Gr,*,**. But S* C Q r , , t n*; thus, 

{ (ri, r 4 ) , (ri, r 2 ) , (r3, r4)} Ç $2r>5>n*. 

Since { (r l f r 4 ) , (ri , r 2 ) , (r3, r 4 ) j —> (r2, r 3 ) , it follows t h a t (T2, TS) G Qr,*,w*. 
Since (r2, r3) G 14,*,™*, we have t h a t (r2, r3) € fir,*,»* ^ ^ j / = Q r . t / - B u t 
Qr,«,»* £ $* ; thus , it follows t h a t e G $*. 

COROLLARY. If St € [toT,s,n, ®r.t,n] and m\n, then $è = ($£ A fir,«fw) V fio.i.n. 

P / w / . By the theorem, S = (fi A G r, t,m) V Q r.,,n. Bu t QffS>ro Ç fi A ttr,t,m 
and 12r,Stm V fio.i.» = %,s,n\ this yields the desired result. 

L E M M A 3.2. If 

F ( « i ) ^ F ( « 2 ) , g ^ F ( f i i ) , £ ^ V(®2),q û P,mzx{p, F(f i i )} ^ F(f i 2) 

andif n\m = D(f i i ) = D ( $ 2 ) , ^ e » 

( « ! A QfffttiB) V ( « 2 A Qp^n) = ($1 V fi2) A ^ w , 

wAerett è J7(fii), l/(ffi2). 

P w o / . Clearly (fii V fi2) A G w 2 (fii A S W ) V (fi2 A fi, ,«.»)• On the 
other hand, if e G (fii* V O w * ) H (fi2* V S2P ,„,„*), then, by Lemma 3.1, 
there exist n G P(co) for 1 ^ f ^ 6 such t h a t e = (rx, r6) and ( n , r 2 ) , 
(r3, r6) G fii*, ( r i , r 4 ) , (r5> r6) G Ë2*, (T2, TZ) G QfffMfW* and (r4, T5) G Û*,«,«*. 
Let r = F (fii). If both (r2, r3) and (r4, r5) are non-trivial then r2, r3, r4 and 
r5 all contain an en t ry ^u. Bu t ( n , r 2) G fii* ÇI ^r.r.m* and 

(ri, r 4 ) G fi2* £ ^ r> / (W* implies t h a t (r2, r 4 ) G Qr,r,ro*. 

I t follows t h a t (r2, r4) £ Or,Mim* Cf ix* . T h u s (ri, r 4) G fii*. Similarly, 
(r5, T 6 ) G fii*. T h u s e G (fii* H fi2*) V O w * . If (r2, r 3) is trivial, then 
e = (TI,TG) G fii*. T h u s (ri, r 4 ) , (r5, r 6) and (ri, r 6) G ^r,r,m*- Since 
{ ( n , r 4 ) , (r5, r 6 ) , (ri, r6)} —> (r4, r 5 ) , we have (r4, r 5) G tir,r,m*- T h u s 
(r4, r5) G &r,r,m* r\ 0,.*.»* Ç fi2*. I t follows t ha t g G fii* H fi2*. Similarly, 
if (r4, r5) is trivial then e G fii* H ^2^. T h u s in a n y case, 

e G (fii* H fi2*) V QPtUtn*. 

This completes the proof. 

3.2. T h e s u b l a t t i c e 2W w i t h c o n s t a n t D. For n £ N, let 

8„ = {fi G £ | £ ( f i ) = »} 
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and for each non-negative integer fe, let 2n,k = {̂ î G %n\V($) = k}. Then the 
Sn.fc's are pairwise disjoint, and 2n = U/b^o 8Wffc-

For p S q, define a mapping <V<7,w : %n,q ~> %n,p a s follows: for S G 8n>ff with 
Z7(S) = «, 5p>*fn($) = S A 12Pi„,w. If u g 5, then, since $ Ç î2fltM.n, 

01 A **p,s,n ~ «t A ^q,u,n A ^'p,s,w ~ ot A ^p,u,n == Op,q,n\v^ ) • 

Thus 5p>fffW is a meet homomorphism. It follows from Lemma 3.2 that V<?,n is a 
join homomorphism. By Theorem 3.1, if S G Sw>tf and p < q then 

W » ( « ) V Qfftjr.„ = S; 

thus, 5PffffW is one-to-one. 
Thus, for p < q, ôPtQtn is a lattice monomorphism of 2n,q into 2n,P with the 

property that ôPtQtn($) V fiff,ff>w = S. Clearly, if p < q < r then 

Op,r,n Op,q,n O Oq,r,7i' 

THEOREM 3.2. The mapping S -~> (<Vn£)(W(S), ^ ( $ ) ) ̂  ^ embedding of %n 

as a me££ subsemilattice into 2n,o X I+, where 1+ is the lattice of non-negative 
integers with their usual order. 

Proof. Since F(Si A S2) = min{F(Si), F(S2)} and since the «V^'s are 
one-to-one, it is enough to show that if Si, S2 G 8» then 

(Si A S2). 

Assume that Si, S 2 G 8» and let w = maxj Z7(Si), £7(S2)}. Then 

5o,F(fli),n($i) A ôofF(*2).»(^2) = (ffii A O0fMf„) A (S 2 A S20,M.„) 

= (Si A Q0iMi») A (S2 A Qo,«f») 

= (Si A S2) A Go,«,» 
= 5o,y(«,A«2),n(®l A S 2 ) 

and this completes the proof. 

It will be shown in Section 4 that this embedding is not a lattice embedding, 
i.e., that it does not preserve joins. 

3.3. A mapping between intervals of the lattice. If r, s} t, u, n are non-
negative integers such that r < s ^ t < u and n è 1, then, since 

*us,t,n A *h,u,n = ^r,«,re a n d *&s,u,n A Mr.w.n = = ^r tw,w» 

it follows that the restriction of <5r>5)W to [&Sti,n, &*,«,*] is a lattice monomorphism 
mapping into ft2r,<iB, Qr.«,»]. Let <j>T,s,t,u,n : ft*,,*,», Û,,«,»] —> [Qr.i.n, Qr,«fJ be the 
restriction of <5r>SjW. We will investigate which of the cf>r StttU>n

Js are actually 
isomorphisms, i.e., for which values of r, s, t, u, n the image of <t>r,a%ttu,n is the 
whole interval [flrf*,n> ®r,u,n]-

LEMMA 3.3. #0,1, «.w.n w a ^ 0^/0 PV«,n» ̂ o,w,»] /or all t,u,n ^ 1. 
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Proof. Let $ G l&o,t,n, ^0>W>J. It is enough to show that for each non-trivial 
e G $*, there exists 2 e Ç iïlfttn* such that {<?} U O0,M,n* <-> 2 e U ^0?M,n*, for 
then $ = <Ki ,^( (Ue€^*2 e )* A tti,u,n)-

Let e G $* be non-trivial. Then L(e) ^ / and ^ |P(^) . If V(e) ^ 1, then 
we can take 2 e = {e}. If V(e) — 0, then we may assume without loss of 
generality that e = ((Ui)i(zN, (Vi)ieN) where U\ = 0, V\ > 0 (and then n\v^) 
and u2 > 0. Then let 

?e = { ( 0 z ) ^ V > (2^1,^2, • • . ) ) i ( («2, «3, . . . ) , (>2 + »l, «3 , . • • ) ) } • 

Clearly, 2 e £ ^if«,»* and e —> 2 e . It remains only to show that Sô VJ 120)M>/i* —* e. 
But 

O z W , (^1,^2,^3, • • •)) G T2 e 

((W»l, V2, Vz, . . . ) , (0, M2 + ^ 1 , «3, . . . ) ) £ ^0.M>/2* 

( ( 0 , ^ 2 + UVU tt3, . . . ) , (0, «2, «3 , • * •)) ^ r 2 e -

Thus, 2 e U fio,Mfn* —> £• This completes the proof. 

COROLLARY. 5O,M ^ #w isomorphism of 2n,i onto 2n,ofor each n G iV. 

LEMMA 3.4. If r > 0 a ^ r + ^ < u then ^Tts%t,u,n does n°t map onto 

Proof. Let e — ((V, r + n, t), (r + n, r, t)) and let $ = e* A fir.w,». Then 
$ G [Ûr.*,«, Gr,«.n]. If J? = <j>r,s,t,u,n($') for some $ ' G [fi,,«fn,0,,«.„], then by 
Theorem 3.1, $ V fi,ftt„ = ($ ' A Ûr,«,n) V Q8tt,n = $ ' and this implies that 
$ = 0r,*f«,«tn($ V Q,,«,w) = (S V fi*,*,») A tor,u,n> Thus to prove the lemma, 
it is enough to show that $ ^ ($ V Œs,*,n) A fir.w.w 

Since e G $*, it is enough to show that e G ( ( f V Œs,*tW) A Œr.w,»)* = 
(«* H Q,iliB*) V O w * . Suppose that g G («* H S^,«*) 'v 0 W < 'Then 
there exist n , r2 G -F(co) such that 

((r, r + », /), n ) , (r2, (r + n, r, t)) G $* H Q,it.n* 

and (n, r2) G ^r)M,«*. 
Now ((r, r + w, /), ri) G $* = Te V Ûr,«,»* implies that there exist 

T8, r4 G F(co) such that ((r, f + » , / ) , r3) G re, (r3, r4) G Œr.ti.»* and 
(T4, ri) G r^. But ((r, r + n, t), r3) G Te implies that r3 = (r, r + n, t) or 
(r + n} r, /) in the case r -\- n 9^ t and that 

T3 = (r, r + n,r + n), (r -\- n, r + n, r) or (r + n, r, r -\- n) 

in the case r + n — t. In any case, since r + n < u and (r3, r4) G &r,u,n*, it 
follows that TZ = T4. Thus ((r, r + », ^), n ) G Te. A repetition of this argu
ment yields n = r2. Thus ((r, r + n, t), (r + n, r, t)) G ^s,z,w*. But this is a 
contradiction, since r < s. This completes the proof. 

3.4. Restriction of the mapping to Schwabauer classes. An equational 
class is called a Schwabauer class, or 5-class, if it can be defined by equations 
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of the form ((Ui)i(:N, (vt)ieN) where ut ^ vt for all i G N. Clearly, all the 
^r.s.n's are S-classes. The set of all 5-classes forms a distributive sublattice y 
of the lattice of equational classes of commutative semigroups (see [8]); this 
will be proved in Section 7. 

LEMMA 3.5. If r + n ^ /, then [&r,s,n, &r,t,n] Q y. 

Proof. Let $ G [tir,s,n,®r,t,n] where r + n ^ t. To prove that $ is an 
•S-class, it is enough to prove that every e G $* with e G iïr,t,n* is equivalent to 
an equation of the form ((Ui)if_Nj (fl*)«€#)> where ut S vt for all i G N. 

Assume that e G $* and that g G 0Ttttt*. Since $* C QriStn*, 

where w* 7̂  z>z implies that ^ , vt ^ r and »| (w* — #*). Since g G Or>ZjW* we may 
assume without loss of generality that ut < t for all i G N. But then, if 
ut > vt for some i, it follows that ut = vt + &n where & ^ 1 and vt ^ r. But 
then Ui^Vi + n^r + n^t and this is a contradiction. Thus ut ^ ^ for 
all i G iV. 

For/ < w, let 7 \ w = {{Ui)i^N G P(co)|^ < u for alii, u\ ^ /}. For T C 7 \ w 

and w è 1, let r ( » ) = { ( 0 * ) ^ , («i + n, u2, u3, . . .))!(#*) «av G ^ } - Then 
r(w) £ 0*,*,/, since if (Ui)ieN G 7\ t t , then wi ^ t; thus, 

((/), (* + n)) -> ((«1), («1 + w)) -> ((ut)iw, (ui + n, u2, «3, • • .))• 

LEMMA 3.6. S G [0r,s>n, ûr,t,J ^ ^^ S-class if and only if there exists T C rS)Z 

swc/z. //za/ S = r(w)* A &,•,*,«. 

Pr^o/. Clearly if $ = T(n)* A ^r,«f» for some TQ T8tS, then $ is an 
5-class. 

On the other hand, if $ is an 5-class there exists a set 2 of equations of the 
form ((Ui)iCNl (Vi)ieN) where ut ^ vt for all i G N such that ® = S*. It is 
enough to show that for each e ^ 2 with e G Œr,*,w* there exists e G TStt(n) 
such that {<?} VJ î2r>ïtW* <-> {ë} \J Qr,«,w*; for then 

« = {ê|e G 2 - Or.!.„*}* A tiT>t,n. 

Let g = ((uJw, O t W ) € 2 - Qr,if**. Since 2 Ç f Ç tor,***, there 
exists7 G iV with Uj ^ 5 and if ut < vu then «1^^ — vL. Since 0 $ fir,*,»*, ̂  < / 
for all i G iV. Thus e = ((Ui)ieNi (ut + &^)zw)> where we may assume 
without loss of generality that u\ ^ s. Let e — ({Ui)i(:N, (u\ + n, u2l Ua, . . .))• 
Then e G TStt(n). Now i ^ 1 for some 7 G N. Choose k G iV so that 
^^ + ^^^ ^ /. Then 

((«i)*€^t («* + kktn)ieN) G r^ 

((«i + kkin)içN, (ui + n + kfan, u2 + kk2n, u% + kkzn, . . . ) ) € Or,<>n* 

((wi + n + kkin, u2 + kk2n, Uz + ^^3w,. . .)> (^1 + w> ^2, W3, . . . ) ) € re . 

Thus {e} UQ r.«.„*->«. 
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On the other hand, if h G N is chosen so that uy + hn ^ /, then 

((Ui)ieN, (u\ + hn, u2, uz, . . .)) G r ^ 

((ui + hn, u2, Uz, . . .), (^1 + hn + kin, u2 + &2?z, ̂ 3 + kzn, . . . ) ) € fir.*,n* 

((^1 + Aw + feiw, w2 + k2n, Uz + &3 ,̂ • . .), (ut + kin)i(iN) G Te. 

Thus {ë} U f i r i ( / - > e. This completes the proof. 

COROLLARY 1. (f>r,s,t,u,n restricted to [Çls>t,n, ®s,u.n] ^ 7 is an isomorphism of 

Proof. It is an immediate consequence of the definition of 4>r,s,t,u,n that it 
maps 5-classes to 5-classes. We already know that (t>r,s,t,u,n 1S a lattice mono-
morphism; thus, it is enough to show that for every 5-class in [&r,t,n, ®r,u,n] 
there is an S-class in [tis,t,n, ®s,u,n] that maps onto it under 4>T,&,t,u,n-

Let $ G [&r,t,nt ®r,u,n] ^ 7- By the lemma, there exists T C 7\fM such that 
$ = r(w)* A ttr,u,n- But then r(w)* A ÇlS)Utn G [Q,f«,n, Q«,«,J ^ 7 and 
<i>r,s,t,u,n{T{n)* A &S)W>TC) = r ( » ) * A 12,)W>W A ttr,u,n = $ . This completes the 
proof. 

In view of Lemmas 3.4, 3.5, and the last corollary, 4>T,s,t,u,n maps onto 
[Çlfjt,n, Qr,u,n\ fc*r r > 0 if and only if r + n è w. For 1 < 5 ^ / < w, since 
^o,S)i1«(B = *o)i1«,a)nO<fi,,li(aiB and since 4>o,i, t,u,n is an isomorphism by 
Lemma 3.3, it follows that 4>o,s,t,u,n maps onto [Qo,«,n, ^0,MfW] if and only if 
n + 1 ^ w. 

Thus (j>r,s,t,u,n maps onto [&r>*,w> fir>tt>w] if and only if r = 0 and s = 1, or 
r = 0 and w + l ^ w , o r r > 0 and r + w §; «. 

From this we see that the embedding of %n into 8w>o X / + in Section 2 does 
not preserve joins. Let n è 1 and let £ > w; then 0o,p,p,p+i,» does not map 
onto [Q,o,p,n, ûo,p+i,n]- Let $ G [Œo.p.n, fio,p+ifn] such that $ is not in the image 
of 4>o>P!p!P+i>n. Let $ ' — $lVjP,n- If the above-mentioned embedding preserved 
joins, then we would have 

But ÔO,T($),W($) = £o,<u($) = $ , SO.FC^'),»!^')
 =

 ^P,P.» A &o,p,re = tio,p,n and 
^o>P,w V $ = $ . Thus we would have ® = ($ V $') A Qo,P+],n and this would 
imply that $ is in the image of <f>o,P,p,p+i,n- Thus the embedding does not 
preserve joins. 

LEMMA 3.7. For all n ^ 1, both [Œo,i,w> ^0,2,J #?^ [^i,i,w, ^1,2,J flftf isomorphic 
to œ -\- 1, i.e., to a countable ascending chain with unit adjoined. 

Proof. The proof follows immediately from Lemmas 3.3, 3.5 and 3.6, and 
the fact that 

r l f2 = {(1^1, . . . 2 , 0 , 0 , . . ,)\m è i}. 

m 
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3.5. The relationship between 2n and 8OT. For n ^ m, %n and 2m are 
disjoint. S = UnçN%n ^ {E}. If n\m, we define a mapping /3w>m : 8W —> 8W as 
follows: for $ Ç Sm with F ($ ) = r and £/($) = s,/3„fTO($) = $ A S2r,,,n. 
Then for any /, w with $ Ç Q,tiUim we have that 

$ A û<,«,„ = ( S A Qr,,fW) A Qt,u,n = « A Qr,,,„ = / W $ ) . 

It follows from this that /?n>TO is a meet-homomorphism. Moreover, by the 
corollary to Theorem 3.1, if $ Ç 2m then $ = /3w,m($) V Œo,i,mï thus, j3WfOT 

is one-to-one. Thus, to show that j3njWl is a lattice monomorphism of 2m into 
8W, it suffices to show that it preserves joins. 

Let $i , $ 2 G 8W. We may assume without loss of generality that 
r = 7 (« i ) ^ 7(« 2 ) = 5. Let M = max{[/(ft) , Z7($2)}. Then 

(Ëi V $ 2 ) = ( $ 1 V $ 2 ) A Œs,WlW 

and 
ZWfl i ) V 0„iTO(«2) = (fii A flr>„fn) V (ffi2 A Û,.„,B). 

It follows from Lemma 3.2 that /3n,m($i) V Ai,ro(t2) = / ^ ( S i V $2) . 
Thus /3W>W is a lattice monomorphism of 2m into £w with the property that 

for each $ 6 8m, Pn,m(^) V Qo.i.m = $ . Moreover, &,m retains the skeleton; 
Pn,m(&r,s,m) = ^r,s,w. Clearly, if n\m and w|£ then fin>v = ft,iW o /3m,P. 

THEOREM 3.3. TTze mapping $-~» (/3I,JD($)($), £>($)) w aw embedding of 
2 — {E} as a meet subsemilattice into 81 X N+. 

Proof. Since ^ 1 ^ is one-to-one for each n Ç iV, the mapping in question is 
one-to-one. Since for non-trivial equational classes $1, ®2,D($i A $2) is the 
greatest common divisor of D($i) and J D ( $ 2 ) , it is enough to show that 

/3I.Z>(*IA*,)(«I A $2) = PI.D(*I)(®I) A jSi . ix*,)^) . 

If r, u G iV are chosen such that 

then 
0l.2>(*iA*2>($l A « 2 ) = « 1 A $ 2 A Or.u.1 

= («1 A Q r.Mii) A ( f 2 A Or f l l fi) 

= j8l.D(*:)(«x) A /3i i 2>(* 2 )($ 2) . 
This completes the proof. 

I t will be seen in the next section that this embedding does not preserve 
joins. 

Combining the results of this section with those of Section 2, we see that 2 
is isomorphic to a meet subsemilattice of Sj,o X I+ X N+ with a unit adjoined. 

THEOREM 3.4. For equational classes $1, $2, $1 Ç̂  $2 if and only if 
£($1) W 2 ) , 7(fli) ^ 7(«2) and 
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Proof. If S i C « 2 then Z ? ( « O p ( « 2 ) , 7 ( « i ) ^ 7 ( « 2 ) and L T ^ ) ^ £ / ( f 2 ) ; 
thus , 

= $ 1 A fio, 17(^2).1 — ^ 2 A £Vt/($2), l 

Conversely, i f - D ( « i ) | D ( « 2 ) , 7 ( « i ) ^ V ( « 2 ) and 

£l,Z>(Jh) ( V r ( $ l ) , D ( $ l ) ( $ l ) ) — /5l ,Z)(^2)(^0,T(^2),U(^2)(®2)) 

then 

£ Pl,D(8i)(ào,V(Sti),D(Sèi)(®l)) V ^F(^2),T(^2),Z>(^2) 

£ #1,Z>($2) (^O.F(^2),-D(^2) ( $ 2 ) ) V ^F(^2),F(^2),D(^2) 

= «2» 

This completes the proof. 

3.6. Another mapping between intervals of the lattice. For r S s < t 
and n\m, n 9^ m, let ctr,Stt,n,m be the restriction of PntM to ft2r,s,ro, Qr.M»]» T h e n 
<Xr,s,t,n,m is a latt ice monomorphism of [O r i S ) W , l ] r j ? )J into [iïr,s,n,®T,t,n]- W e 
will investigate for which values of r, s, t, », m, ar,s,t,n,m actual ly maps onto 
the whole interval [iïr,s,nj 12r>ZiJ. 

L E M M A 3.8. If r > 0 and r + n < t, then <xTiS)ttn!m does not map onto 

l^r,s,nf ^ ' r , t,n\' 

Proof. Le t e = ((r, r + », s), (r + », r, 6-)) and let S = e* A Œr.ï.n- Then 

$ G t^r.s.w» ^r,«,re]- If « is in the image of 
°^r,s,t,n,mt t h e n « — Oir s,t,n,m ( « ' ) for 

some $ ' Ç [^r,s,m, ^rsr,m] and then by Theorem 3.1, $ V tor,s,m = $ ' ; thus , 
« = «r(S)f,w,m(« V tir,s,m) = ( $ V ^r,s,m) A Œr,*,w. T h u s it is enough to show 
tha t $ 5* ( $ V fir>,tTO) A Qr,,f„. Clearly 0 G $*. W e will show t h a t 
e ? ( ( f l V Qri,fJII) A 0 f f < i n)*. 

Assume t h a t e G ( ( « V S2r,5.w) A Ûf.i.»)* = ( « * H 0r>s,m*) V Or,*.»*. T h e n 
there exist n , r2 6 -F(w) such t h a t 

((r, r + », 5), n ) , (r2, (r + », r, s)) G $ * H Œr,s,TO* and ( n , r2) G fi,,*,»*-
Bu t ((r, r + », 5), n ) G $ * implies t h a t there exists r3, r4 G ^(w) such t h a t 
( 0 , r + », s), r 3 ) , (TI, T 4 ) G r e , (r3, r4) G Qr,«,n*. Since ((r, f + », 5), r3) G Te, 
it follows tha t , if r + n 7e s and r 9^ s then r3 = (r, r + », 5) or (r + », r, s), 
iî r = s then r3 = (V, r + n, r), (r + », r, r) or (r, r, r + ») and if r + » = s 
then r3 = (r, r + n, r + » ) , (r + n, r, r + » ) or (r + ny r + w, r ) . In any 
case, since r + n < t and s < t and (r3, r 4) G Or>ifW*, i t follows t h a t (r3, r 4 ) is 
trivial. T h u s ((r, r + », 5), n ) G Te. Bu t then the same a rgument yields 
T\ = r2. Bu t this implies t h a t 

((r, r + », s ) , (r + », f, 5)) G $ * H S2r,,,w* Ç Qfi,tlIl* 

and this is a contradiction. This completes the proof. 
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LEMMA 3.9. <xr>s>f)W>m restricted to [tir,s,m, &r,t,w\ P 7 is an isomorphism of 
[&r,s,m, ®r,t,m] H J OfltO [tiT,S,n, ^r,t,n] H 7 . 

Proof. It is clear from the définition of ar,s,t,n,m that it maps ^-classes to 
5-classes. Thus it is enough to show that for every $ Ç [&T,s,n, &r,t,n] P 7 there 
exists $ ' e [Vr,s,m, ^r,t,m] P 7 such that « = aM,{(B(B,(S'). 

Let $ G [fir,*,»» ^r,«,J P 7- By Lemma 3.6 there exists T Q TSjt such that 
$ = r ( » ) * A Ûrf*,n. Since w|m, r (m)* A fir,«,n = r ( « ) * A Ûr,«fn. Thus 
$ = T(m)* A 0M)ffl A firft,„ = ar,Stt.nim{T(m)* A &r,t,m) and this completes 
the proof. 

COROLLARY. If r + n ^ / //zew (xTt8tt,n,m maps onto [0r>s>n, fifff(7J. 

Proof. The proof follows from the lemma, and Lemma 3.5. 

Since ao,s,*,n,ro ° $0,1,s,*,™ = #0,1,5,*,w oaipjitfWiW and since 0o,i,s,«,re and 
<l>o,i,s,t,m are isomorphisms, it follows that a0,s,z,w,m maps onto ft2o,*,w, fio,f,«] if 
and only if ait8tt,n,m maps onto p2ifS>TO, fii,«,w]. From the above results we have 
that aTt8ittn,m maps onto [ttr,s,n, &r,t,n] for r > 0 if and only if r + n ^ /. Thus 
«r,s,f,w,m maps onto ft2r>s,n, Or>ïiW] if and only if r = 0 and ? z + l ^ / o r r > 0 
and r + w è .̂ 

It follows from this that the embedding of 8 — {£} into Si X N+ described 
in the last section does not preserve joins: let $ i 6 8] such that $ i (? image of 
j8i>w and let $ 2 = fio.i.n- Then 

£i.i($i) V 0i.n(#2) = « i V (O0>i.« A Oo.i.i) = « i V Qo.i.i = «i , 

but Si 5* j8i,„(Si V $2) since Si g image of 0 M . 

3.7. The sublattice of Schwabauer classes. It has already been mentioned 
that 7, the set of all 5-classes, forms a distributive sublattice of ?. In this 
section, this and the fact that 7 is a maximal modular sublattice will be proved. 
We first give the following characterization of 5-classes: 

LEMMA 3.10. S G [&r,s,n, ®T,t,n] is an S-class if and only if it satisfies: (1) for 
all u with r < u ^ s, $ is in the image of </>r,s,t,u,n and (2) for all m > n with 
n\m, S is in the image of ar,8,t,n,m-

Proof. If S £ [fir.,.n, Ûr.i,»] H 7 then (1) and (2) follow from Lemma 3.6, 
Corollary 1 and Lemma 3.9, respectively. 

On the other hand, if S satisfies (1) and (2), then choose m > n such that 
r + m ^ /andw|m. Then by (2), S = $ ' A Qr.«,n for some $ ' £ [Qr,,im, Or,«,TO]. 
By Lemma 3.5, $ ' is an 5-class. Thus S is an S-class and this completes the 
proof. 

Let yn = {S G y\D($t) = n} = %n C\ y. Then the yn are pairwise disjoint 
and 7 = Uncisr 7^ ^ {-£}• Moreover, from Lemma 3.9, $nm restricted to ym is 
an isomorphism of ym onto yn. This implies that the mapping 

S~» (|8ifDc*)(«)f£(fl)) 
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is a meet monomorphism of 7 — [E] onto 71 X N+. B u t a mapping from one 
latt ice to another t h a t is one-to-one, onto , and meet preserving is also join 
preserving, i.e., i t is a lat t ice isomorphism. 

I t follows t h a t 7 is lat t ice isomorphic with 71 X N+ with a uni t adjoined. 

L E M M A 3.11. [Œo,i,i, ®o,t,i] r\ 7 is distributive for all t ^ 1. 

Proof. For T C! TitU define T to be the set of those sequences {Ui)^N 6 T\tt 

such t h a t ((Ui)ieN, («1 + 1, u2} uh . . . ) ) € r ( r ( l ) Ufi0 ,*,i*). Then (ut)i€N G f 
if and only if there exists (vi)ieN Ç T such t h a t 

{ (Vi)iÇN, fa + 1, ^2, »8, • • •)} ^ Û0./.1* - » ((uJw («1 + 1, «2, «8, • • •))• 

T h u s the set of all T Ç 7\ ? j such t h a t 7" = T is closed under unions and inter
sections. Moreover, if 7 \ , T2 C 7 \ f and T\ = 7 \ , T2 = T2 then 

(ri(i)* A Q0llii) A (r2(i)* A o0il.i) = (̂ 1 u r2)(i)* A QM.I 

and 

(^(l)* A Qo.i.i) v (r2(i)* A oMfi) = (Txr\ r2)(i)* A Q0.,.I. 

Since for each $ G [120,i,i, ^o,*,i] ^ 7 there exists J1 ÇZ 7 ^ such t h a t T = T 
and $ = T ( l ) * A ŒO.M, i t follows t ha t [fio.i.i, Œo,*,i] Pi 7 is isomorphic to a 
sublat t ice of the power set of T\tt and hence is dis tr ibut ive. 

COROLLARY. 71 >0 = 81 ,o ^ 7 is distributive. 

Proof. This follows immediately from the lemma and the fact t h a t 

{[O0,i,i, Œot*,i] ^ 7 ^ = 1} forms an ascending chain and 

Ti.o = U ^ i PVi . i , Qo.i.i] P 7-

Since for p < q, ôP,q,i maps 5-classes to 5-classes, it follows t h a t the mapping 
$ ~» ( 5 O , F ( $ ) , I ( $ ) > ^ ( $ ) ) is a meet monomorphism of 71 into 73,0 X / + . 
Moreover, this mapping preserves joins: let 

« 1 , ^2 e 71, F ( « i ) = p, V($t2) = ff. 

W e m a y assume wi thout loss of generali ty t ha t p ^ q. Le t 

« = m a x { £ / ( £ i ) , *7(« 2)} . 
Then 

<5O,*M($I) V 5o,ffpi(^2) V G ^ . i = 5 O , I M ( $ I ) V QPtPtl V ô0><?fi(S2) V ^ t ( ? t i 

= «1 V $ 2 . 

B u t S 2 2 ^ff.ff.iî thus , ô0fç,i(ifî2) 2 Œo.ff.i and thus 

« O J M ( « I ) V 5oitf.i(«2) € [Ûo.ff.i, Ûo.«,i] H 7. 

I t follows from Corollary 1 of L e m m a 3.6 t h a t there exists 

St £ [Qg,q.i, Qtt,v.i] H 7 with ôo i ff.i(«) = <5o,iu($i) V ô o . g . i ^ ) . 
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But then ^ V $2 = V * M ( $ I ) V ô0,ff,i(f 2) V Qq,a,i = 50,ffii($) V Qff,«,i = S. 
Thusô0lJ,.i(«i) V ôo,,,i(«2) = ô<u.i($i V « 2 ) . 

It follows that 71 is lattice isomorphic to a sublattice of YI>0 X / + . But 
71 j0 is distributive; thus, 71 is also distributive. 

Thus, since 7 is isomorphic to 71 X N+ with a unit adjoined, we can state 
the following: 

THEOREM 3.5. 7 is distributive. 

THEOREM 3.6. 7 is maximal modular. 

Proof. Let $ be any equational class not in 7, $ G [Œr,s>w, r̂,*,»]> say. Choose 
m such that n\m and r + m Èè £. Then S is not in the image of aTf3tttfltm and 
thus $ ^ ($ V fir,*,*») A Qr,«,n. But this implies that the sublattice of S 
generated by 7 U {$} is not modular. Thus 7 is a maximal modular sublattice. 

One might well ask whether the set of maximal distributive sublattices of 8 
coincides with the set of maximal modular sublattices of 8; this is the case if 
and only if every modular sublattice of ? is distributive. However, by a result 
of [1], S has a sublattice isomorphic to the partition lattice on a three-element 
set; this lattice is the five-element modular, non-distributive lattice. 
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