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1. Introduction

This is the first of several papers which grew out of an attempt to
provide C(X, Y), the family of all continuous functions mapping a topolo-
gical space X into a topological space Y, with an algebraic structure. In
the event Y has an algebraic structure with which the topological structure
is compatible, pointwise operations can be defined on C(X, Y). Indeed, this
has been done and has proved extremely fruitful, especially in the case
of the ring C(X, R) of all continuous, real-valued functions defined on
X [3]. Now, one can provide C(X, Y) with an algebraic structure even in
the absence of an algebraic structure on Y. In fact, each continuous function
from Y into X determines, in a natural way, a semigroup structure for
C(X, Y). To see this, let f be any continuous function from Y into X and
for / and g in C(X, Y), define fg by

(/£)(*) = /(f(ff(*))) ^ ^ c h x in X.

In a similar manner, one can provide semigroup structures for other families
of functions on topological spaces, and this will also be done subsequently.

We note that if X = Y and f is the identity function on X, we obtain
the semigroup structure on C(X, X) which was studied in [6], [7], and [8].
Consequently, some of the results we obtain here generalize some of those
in the latter papers.

Any time an algebraic structure is imposed on C(X, Y), one would
want to know to what extent the algebraic structure determines the
topological structures of X and Y and conversely, to what extent the
topological structures of X and Y determine the algebraic structure imposed
on C(X, Y). We begin our investigation of this particular problem in this
paper by defining a class of semigroups and considering homomorphisms
from one such semigroup into another. We will be working with semigroups
of functions whose domains are contained in a given set X and whose
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ranges are contained in a given set Y. Initially, however, X and Y will not
have topologies. We will consider applications to semigroups of functions on
topological spaces in a later paper.

And now, a few words about some conventions which will be used.
If / is a function, the statement f(x) = y is equivalent to the statement
(x, y) ef and for two functions / and g, we define the composition fog by

(*) t°g= {(*. V) • fa. z) eg and (z, y) e f for some z).

This is the way composition is defined in [4]. In [1], however, xf is written
in place of f(x) and composition is defined by

/ o g = {(x, y) : (x, z) e / and (z, y)eg for some z).

Our choice of definitions is based on the fact that the results we obtain will
eventually be applied to families of functions on topological spaces and in
such cases it has been traditional to write operators to the left of the element
and define composition as in (*). Finally, for any function /, we define f"
(introduced in [3]) by

r = {{x,y):{y,x)ef}.

f", of course, is a function only in the event / is an injection. The symbol
/ - 1 is usually used for this but we prefer to reserve the latter symbol for
denoting an algebraic inverse.

2. ^-semigroups

Let X and Y denote two non-empty sets and let £f denote a set of
functions with domains contained in X and ranges contained in Y. For any
function /, we denote the domain of / by Q){j) and the range of / by 0t(j).
If S>(f) = 0, (or equivalently, ^( / ) == 0) then / = 0. We shall use the
letter e to denote the empty set when it is to be regarded as a function.
Let A be any subset of X and y a point of Y, then Av denotes the function
whose domain is A and which is defined by

Ay{z) = y for each x \n A.

We refer to such functions as constant functions. Now let f be a function
with the properties: ^(f) = Y, ®(\) Q X and fo\og belongs to Sf when
both / and g belong to y . Then £f is a semigroup if the product fg of /
and g is defined by

g in Sf.
DEFINITION (2.1). Sf is referred to as an ©-semigroup and is denoted

by @(Z, Y, f) if the following two conditions are satisfied.

(2.1.1) Sf is point-separating, i.e., for each pair xx and x% of distinct
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points of X there exists a function / in SP whose domain contains both xx

and x2 with the property that f(x1) =£f(x2).

(2.1.2) For each x in X and y in Y, there is a subset A of X containing
x such that Ay e Sf.

Let yx and y2
 De * w o points of Y. Then (2.1.2) implies that there is a

nonempty subset A of X containing f(t/2) such that Ay e <£" and a non-
empty subset B of X such that J5,t e Sf. Thus 4 n 5 V i = AVi o f o B¥i =
J5,te ^ and we see that (2.1.2) implies that for any two points yx and
y2 of Y there exists a nonempty subset B oi X such that both Z?¥ and
Bv belong to 5". This fact will be used several times in the proof of
Theorem (2.3).

In the following definition, K(<5(X, Y, f)) denotes the set of all constant
functions which belong to the ©-semigroup, <B(X, Y, f).

DEFINITION (2.2). A homomorphism <p from <B(X, Y, f) into <B{U, V, g)
is a X-homomorphism if the following conditions are satisfied.

(2.2.1). <p maps K{<S>{X, Y, f))-{e} into K{<g>{U, V, Q))-{e} and if e
belongs to <B(X, Y, f), then e also belongs to <B(U, V, g) and <p(e) = e.

(2.2.2) The image of <&(X, Y, f) is point-separating.

(2.2.3) If <p{Ay) = B, and <p{Cv) = Dv (A =£ 0 # C), then v = z.

(2.2.4) ®{<p{A,)) = &(<p(B,)) UA = B.

Concerning i£-homomorphisms, we have the following

THEOREM (2.3). Let <p be a K-homomorphism from <5(X, Y, f) into
<&(U, V, g). Then there exists a mapping 1} from 0t§) into 0t{<£) and, a mapping
t from Y into V such that for each f in <B(X, Y, f), the following diagram
commutes.

U Y

Moreover, if <p maps K(<B(X, Y, f)) injectively into K(<5(U,V,Q)),

then both f) ««d t arc injections and if <p maps K(<E> (X, Y, f)) onto K(<& (U, V, g)),
<Ae» t is a surjection onto V and i) is a surjection onto &(Q) which maps
2(f) n ^(f) onto @(q>{f)) n ^ ( g ) for each f in <&(X, Y, f). Finally, the pair
f) and t is unique in the sense that if lj* and t* are two mappings from &t(])
into ^(g) and Y into V respectively with the property that the resulting diagram
commutes when I) is replaced by f)* and t by t*, then \) = Ij* and t = t*.

PROOF. We will first define the function t. Let y in Y be given. Then
by (2.1.2), there exists a nonempty subset A of X such that J y e <B(X, Y, f).
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By (2.2.1), (p(Ay) = Bv where v e V and B is a nonempty subset of U.
Define t(y) = v. Note that t is single-valued because of (2.2.3) and also
observe that

(2.3.1) <p(Ay) = BUv).

Now let yx and y2 be two elements of Y with the property that
KVi) = f(y2)- We will show that g(t(^)) = g(t(y2)). Suppose g is any
function in the image of ®(X, Y, f) whose domain contains both g(t(ya))
and 0(t(y,)). Then 9(f) =g for some / in ®{X, Y, f) and if ffo) e9{f),
we have

(2-3.2) /(ffo)) = /(f(y,)).

By (2.1.2), there exists a nonempty subset A of X such that Ay and 4̂V

both belong to <5{X, Y, f). Then (2.3.2) implies

(2-3.3) 1

for each x in 3>{fAn) = @(fAu). Thus

(2.3.4) MVi = fA,t

which implies 9J(/)^(^W I) = <p(f)<p(A,t), i.e.,

(2-3.5) gBt,,,, = gBtw

where B is a nonempty subset of U. Since g ^ ^ ) ) and g(t(2/2)) both belong
to the domain of g, @{gBtlt >) == &>(gBnv)) = B. Then for any point u in
B, we have

This implies g(t(yx)) = g(t(y2)) since the image of <3(X, Y, f) is point-
separating. Thus we have shown that

(2.3.6) if f(yx) = f(y.) /or too points of Y, then g(t(^)) = fl(t(y,)).

Now we define a function ^ from ^(f) into ^(g). Let a; in ^(f) be
given. Choose ^ in Y such that \(y) — x and let

(2.3.7) \){x) = g(t(y)).

Because of (2.3.6), I) is a single-valued function. Observe that for any
point y in Y, (2.3.7) implies

(2.3.8) $(f(y)) = B(t(y)).

Now let x be any point of 3i{f) n ^(f). We will show that

(2.3.9) )
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Since x e^(f) , there is an element y in Y such that x = \{y). By (2.1.2),
there is a nonempty subset A of X such that Aflx) belongs to <B(X, Y, f).
It follows that

AAx) = ^/(f(j,)) = / o f o Ay = fAy.

This, in conjunction with (2.2.1) and (2.3.1) implies that for some nonempty
subset B of U,

Bt(f{x)) = <p(Anx)) = <p(fAv) = <p(J)HAv) = <P(f) ° 9 ° ct(v)

for some (necessarily nonempty) subset C of U. This, together with (2.3.8)
implies that for any point p in B,

t(f(x)) = Bi(nx))(p) =

Therefore, (2.3.9) is verified and it, together with (2.3.8) implies that the
diagram is commutative.

Now suppose <p maps K(<B(X, Y, f)) injectively into K(<5(U, V, g)).
Let y± and y2 be two distinct elements of Y. Then, by (2.1.2) there exists a
nonempty subset A of X such that Av and .4V both belong to <S>(X, Y, f).
Since ^V i ^ ^ ¥ i , c p ^ ) ^9>(^»,). Now <p{Ayj = 5 ^ and <p{AVt) = Cr>

for two nonempty subsets B and C of U and two points vx and va of F.
Since, by (2.2.4), B = C, we must have vx^vz. But this implies t is an
injection since t{y^) = vx and t(y2) = v2-

Now we show f) is an injection. Let xx and x2 be two distinct points of
M{\). Then there exists a function / in <&{X, Y, f) such that both xx and x2

belong to Sl{f) and /(a^) ^ f{x2). Choose yx and j / 2 such that f ^ ) = xx

and f(y2) = x2. By (2.1.2), there exists a nonempty subset 4 of Z such
that both AVi and AVt belong to @(X, Y, f). Then / o f o AVi = /^Vi and
/ o f o 4 ^ = / X , are elements of X(@(X, Y, f)) such that ^ ( / X t ) =
®{fAv,)==A a^d fAyi^fAy%. It follows from (2.2.4) and (2.3.1) that

<p(f) o g o Bt(Vi, = <p(f)BUvi) =

i)

. 9 °

where B is some nonempty subset of U. Moreover, it follows from (2.2.4)
and the fact that both fAH and jAy% belong to K(<B{X, Y, f)) that
&>(<p(fAVi)) =3>(<p(jAyt)). Thus, there must exist a point p in S ( ( / 4 ) )
such that

9>(/)(8(t(2/i))) = M / ) o g o BUyi))(p) *

Therefore, g(t(yi)) ^ g(t(y2)). Recall from (2.3.7) that
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and t){x2) = fl(t(y2))- Thus ^(xx) =£${x2) and we conclude that % is an
injection.

Now suppose <p maps K(<g>(X, Y, f)) onto K(<5(U, V, g)). For any v
in V, there exists a nonempty subset B oi U such that Bv belongs to
K(<g>(U, V, g)). Then there exists a constant function .4, such that <p{At) = Bv.
Thus, by (2.3.1), t(y) = v and we conclude t is a surjection onto V. Now
let any u in ^(g) be given. Then g(v) = u for some v in V and since t is a
surjection, t(y) — v for some y in Y. Using (2.3.8), we see that

Wv)) = 8(t(y)) = B(f) = «•

Therefore, t) is a surjection onto &!(Q).

Suppose now / is any element of <B(X, Y, f) and u belongs to
@((p(f)) n &(Q). Again Q(V) = u for some v in V and once more we use the
fact that t is a surjection to conclude that t(y) = v for some y in Y. Then
f(y)e^(f) . Suppose, however,

(2.3.10) f&) ##(/)•

Then there is a nonempty subset A of X such that At belongs to @(X, Y, f).
Now, fAy = c (the empty function) and thus, for some nonempty subset
B of U, (2.2.1) implies

(2.3.11) 9{f)BU,y = <P(f)<P(Ay) = <p{fA,) = 7(«) = «.

This imph'es g(t(j/)) $@(q>{f)) which is a contradiction since g(t(y)) = g(v) = u
which belongs to @{<p(f)). Therefore, statement (2.3.10) is not valid. That
is, f (y) e 3)(t) and since, appealing to (2.3.8), we have l)(f (y)) = g(t(y)) = u,
we conclude that *) maps @{f) n 3l{\) onto @{<p(f)) n ^P(g).

And now let us show that the mappings \) and t are unique. Let Ij*
and t* be two mappings from 31 (\) into ^(g) and Y into V respectively
such that the resulting diagram commutes when Ij is replaced by fy* and t
by t*. Choose any point y in Y and any point x in ^P(f). Then there exists
a subset A of X containing x such that Av belongs to <5(X, Y, f). Then from
the diagram,

and from the diagram which results from replacing ^ by Ij* and t by t*.
we obtain

But <p(Ay) is a constant function and thus

Therefore, % ) = t % ) .
Now, concerning the point x in ^(f), we have f(z) — x for some z

in Y. Therefore,
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and
$•(*) = $*(f(*)) = 8(t*(z)).

Thus l)(x) = \)*(x) since t(z) = t*(z). This completes the proof of the
theorem.

It is not difficult to find examples of homomorphisms which are not
If-homomorphisms. Recall that for a topological space X, we are using
the symbol C (X, X) to denote the semigroup of all continuous functions
mapping X into X under the binary operation of composition. Note that
such a semigroup is a ©-semigroup. Now let X be a space with a proper
subset Y which is both open and closed. Define a mapping from C(Y, Y)
into C{X,X) by

<p{f){y) = f(y) for yinY a n d
<p{f)(y) = y for y i n X — Y .

Then q> is a homomorphism but not a i£-homomorphism since (2.2.1) is
violated, i.e., the constant functions of C(Y, Y) are not mapped into the con-
stant functions of C (X, X).

DEFINITION (2.3). A ©-semigroup @(X, Y, f) is referred to as an ©*-
semigroup and is denoted by ©*(X, Y, f) if f is a surjection onto X.

We intend to consider isomorphisms between ©""-semigroups but it
will be convenient to prove some lemmas first.

LEMMA (2.4). Let g be an element of a @*-semigroup <£>*(X, Y, f). Then
g is a constant function if and only if ghg = g or e for each h in <&*(X, Y, f).

PROOF. First suppose g is a constant function. Then g =..4y for some
subset A of X and some point y in Y. Let h be any function in ©*(X, Y, f).
Then AyhAv = Avo f o ho f o Ay = Ay if \{h{\{y))) is an element of A
and e otherwise.

Now suppose g is not a constant function and let x be any point in
the domain of g. Since f is a surjection, there exists a point y in Y such that
f(y) = x. By condition (2.1.2), there exists a subset A of X containing
f(g(x)) such that Ay belongs to ©*(X, Y, f). Then xe9(gAvg) which
implies g-4vg # e. On the other hand, gAyg is a constant function and
therefore cannot be equal to g. This completes the proof.

LEMMA (2.5). Let Aa and By be two constant functions ( ^ e) of an ©*-
semigroup <S>*(X, Y, f). Then x — y if and only if there exists a constant
function C, in <S*(X, Y, f) such that AxCzBy = By.

PROOF. Suppose x = y and choose z such that f(z) eA. Then there
exists a subset C of X containing f(y) such that Cx belongs to ©*(X, Y, f).
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Since f(*) eA and f(y) eC, it follows that 9{AaC,Bv) = B. Moreover,
for any p in B,

(AxCzBy)(p) = Ax(^Cz(UBy(p))))) = x = y.

Thus AxCzBy = By.
On the other hand, suppose x ^ y. Then for any Cz, CzBy = Bz or e.

This implies that AxCzBy = Bx or e which, in either event, is not equal
to By.

LEMMA (2.6). For f and g in <5*{X, Y, f), 9 if) = 9ig) if and only
if for each constant function Ax in (&*(X, Y, f), the following two statements
are equivalent.

(2.6.1) BJAX = Ax for some By in <B*(X, Y, f).

(2.6.2) CzgAx = Ax for some Cz in <5*{X, Y, f).

PROOF. Suppose Si if) = 3>{g) and let Ax be given. Furthermore,
suppose BJAX = Ax for some By. If A = 0 , it is evident that BygAx = Ax.
If A # 0, then \{x) e 9 if) and thus f (x) e &>ig). Then some subset C of X
contains f(g(f(z))) and Cx belongs to©*(X, Y,f). It follows that CtgAx = Ax.
Thus, (2.6.1) implies (2.6.2) and one proves the reverse implication in a
similar manner.

Now we prove sufficiency. Suppose @{j) ^2${g). There will be no loss
in generality in assuming there exists a point x in 3i{f)—3){g). Choose y
such that f(«/) =x. Then there exists a subset A of X containing f(/(#))
such that Ay belongs to <B*(X, Y, f). It follows that AyfAy = A,. How-
ever, gAy — e since f (y) = x$ 3i{g). Thus, BzgAy = e ^ Ay for each Bt

in K(<B*(X, Y, f)). This completes the proof.
Now we are in a position to characterize isomorphisms between ©*-

semigroups.

THEOREM (2.7). A bijection <p from a ©*-semigroup <&*(X, Y, f) onto
a ©*-semigroup ©* (U, V, g) is an isomorphism if and only if there exist
bijections I) and t from X onto U and Y onto V respectively such that for each
/ in <£>*(X, Y, f), f) maps 2>(j) bijectively onto 3(<p(f)) and the following
diagram commutes.

9 if) f " f

'I 'I
Moreover, the functions f) and t are unique in the sense that if Ij* and t* are
two mappings from X into U and Y into V respectively with the property
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that the resulting diagram commutes when \) is replaced by i)* and t by t*
then f) = I)* and t = t*.

We point out that if one takes X = Y, U = V and f and g to be identity
functions, one obtains Theorem (2.4) of [7].

PROOF. Suppose that for each / in <&i*(X, Y, f), f) maps 3)(f) bijectively
onto @>(<p{f)) and that the diagram commutes. Then <p{f) = t o / o f)*~ for
each / and for any two functions / and g of <5*(X, Y, f), it follows that

<P(f)<P(g) = <P(f) ° 9 ° <P(g) = (t O / b $-) O g O (t O g O Ij-) =
(t o / o r ) o (a o t) o (g o r ) = (t o / o v ) o ($ o f) o (g o r ) =
t o / o f ogofT = to (fg) of)4" =<p(fg).

Thus <p is an isomorphism.
Now suppose q> is any isomorphism from ©*(.X", Y, f) onto (3*(J7, F, g).

We will show that if e belongs to &*{X, Y, f), then e also belongs to
©*(£/, V, g) and 95(0) = e. This, together with Lemma (2.4), will imply that q>
maps K(<&*{X, Y, f)) bijectively onto /?(©*(£/, F, g)) and hence that condi-
tion (2.2.1) is satisfied. Suppose, then, ee<B*{X, Y, f). Then <5*{X, Y, f)
contains more than one element since otherwise it would not be a ©*-semi-
group. Thus <3* (U, V, g) contains more than one element and, in addition, has
a zero <p{e). Suppose q>(e) ^e. Then some point u belongs to @(q>{e)). Choose
v in F different from <p{e){u). This can be done since otherwise, (2.1.1)
implies that U also has only one point which in turn implies <B*(U, V, f)
consists of two elements. This results in a contradiction since <p(e) would
not be the zero. Now there is a subset A of U containing (${<p(e)(u)) such
that Av belongs to ©*([/, F,g). Then (A.(<p(e))(u) = Av(Q(<p(e)(u))) =
v ^ q>(e)(u). Thus Avcp(e) ^ q>(e) which is a contradiction since <p(e) is
the zero of <&*(U, V, g). Thus <p(e) = e and (2.2.1) is satisfied. (2.2.2) is
satisfied since the image of <3*(X, Y, f) is a ©*-semigroup. Lemma (2.5)
implies that condition (2.2.3) is satisfied. Finally, condition (2.2.4) follows
from Lemma (2.6) and we conclude that <p is a if-homomorphism which
maps K(<S>*(X, Y, f)) bijectively onto K(<5*(U, V, g)). The proof now follows
from Theorem (2.3) and the fact that St\\) = X and 3t{%) = U.

Note that in the first portion of the proof the fact that both f and g
are surjections was not used. The theorem, however, cannot be proven if f
and g are assumed merely to be mappings into Y and F respectively or
equivalently, if the two semigroups involved are only assumed to be <5-
semigroups. Let us consider the following example: let X be any set with
more than two elements and choose x0 in X. Define a function f mapping
X into X by

f(x) = x0 for each x in X.

Let <B(X, X, f) denote the ©-semigroup of all functions / with @>\j) = X
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and 3HJ) Q X. Let * be the identity function on X and choose two non-
constant functions k and I different from * with the properties k(x0) = l(x0)
and k(x1) ^ l(xj) for some xx in X. Define a bijection q> on ©(A", X, f) by

<p(f) = / for k # / ^ /,
<p(k) = I a n d <p{l) = A.

Notice that for any function / in ©(X, X, f), <p{f)(x0) = f{x0). Then for
any /, g in @(X. X, f),

= Xf(x0) = -X"v(/)(«,) = <P(f)<P{g)-

Thus, 99 is an isomorphism. Now suppose f) and t are bijections on X such
that the diagram commutes (in this case, of course, X = Y = U = V).
Then for any x in X,

t(z) = t(X.(x)) = fp{X.){l)(x)) = X.(1j(x)) = x

and for the point x1,

x ( ( ^ )
But then,

k{xx) =

which is a contradiction. Therefore, no such bijections f) and t of X exist.
The isomorphism <p is a .K-homomorphism which maps i*C(©(A', X, f))
bijectively onto itself, however, and Theorem (2.3) implies that there does
exist a bijection Ij from ^(f) onto 0t{\) and a bijection t from X onto X
such that the following diagram commutes.

•1 '1 . 4
In this particular case, f)(a;0) = a;0 and t(ar) = a; for each a; in X. To show
that commutativity of the diagram above is not sufficient to insure that
q> be an isomorphism, we give an example of a bijection q> of <B(X, X, f)
which is not an isomorphism but for which the diagram commutes (where
f) and t are defined as above). Choose a nonconstant function k and let
y = k(x0). Define a bijection <p on <5(X, X, f) by

<p(f) =f for k^f^Xy,
q>{k) = Xv ana! <p(Xy) = k.

Note that for any / in <5{X, X, f), <p(f)(x0) = /(*„). It follows from this
that the diagram commutes. However, q> is not an isomorphism since
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<p{Xyk) = <p{Xw) = k
while

<p{Xy)<p{k)=kXy = Xv.

In concluding this section, we make one more observation. A ©-
semigroup ©(X, Y, f) can be partially ordered in a very natural way.
We define / 5S g if g is an extension of /, i.e., if / Qg. With this ordering,
©(X, Y, f) is a partially ordered semigroup ([2]), page 153) since / 5S g
implies fh ^ gh and hf ^ hg for every h in <B(X, Y, f). It follows from
Theorem (2.7) that every semigroup isomorphism from ©*(X, Y, f) onto
©*(t7, F, g) is also an order isomorphism.

3. Applications of theorem (2.7) to some special @*-semigroups

Suppose X is a nonempty set, Y is a set with more than one element
and f is a surjection from Y onto X. Then the semigroup of all functions /
with 2{f) = X and &>(j)QY is a ©""-semigroup and will be denoted by
<&%(X, Y, f). Therefore, with each function f from Y into X, it is possible
to associate a ©""-semigroup, namely, @*(^(f), Y, f). We first direct our
efforts toward answering the question, "Precisely when do two functions
f and Q give rise to isomorphic semigroups?" For each y in Y, we let
y\= {z e Y : f (z) = f (t/)} and 3)f = {y^ : y e Y}. Then 2)f is a decomposition
of Y into a family of nonempty, mutually disjoint subsets and will be
referred to as the decomposition of Y which is induced by f. We find that
one can tell if the semigroups associated with f and g are isomorphic merely
by looking at the decompositions of Y which are induced by f and g. We
state this more precisely as

THEOREM (3.1). The semigroups ©J(#(f), Y, f) and ©?(^(g), Y, g)
are isomorphic if and only if there is a one-to-one correspondence between the
sets of 3)f and ®9 such that corresponding sets have the same cardinality.

Before proving the theorem, it will be convenient to first prove a lemma.

LEMMA (3.2). Suppose f maps Y onto X, g maps Y onto Z and t is a
Injection from Y onto Y. Then there exists a bijection f) from X onto Z such
that I) o f = g o t if and only if t[yj] e 3)g for each y^ in ®f.

PROOF. Suppose first that t[yj] e® g for each yj in 3)f. We define a
function 1) from X onto Z by

$(f&)) = B(t(y)) for each y in Y.

Suppose f(j>) = f(y). Then vey j and t(v) et[yj]. This implies $(t{v)) =
g(%)) since t [ t / f ]e$ 8 . Thus, $(f(w)) = ^(f(y)). that is, % is a (single-
valued) function. Since f and g are surjections onto X and Z respectively
and t is a bijection from Y onto Y, it follows that 3>{$) = X and 0t§) = Z.
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Now suppose x1 and x2 are two distinct points of X. Choose y1 and y.2 in Y
such that f (y^ — xt and f (y2) = x2. Evidently, yt $ («/2)f • Due to the fact
that t is a bijection and that t[y(] e ®g for each y^ in ®f, it follows that
t(y}) t (t(y,))B. Thus Q{t(yi)) #8(t(y,)) which impUes ^{xx) ^{x2). Thus
I) is a bijection from X onto Z.

Now suppose there exists a bijection i) from X onto Z such that
Ij o f = g o t. We will show that i\_y\\ = (t(«/))g for each y% e 2)f. Suppose
p ey f . Then f(£) = f(y) and thus $(f(£)) = $(f(y)). Therefore, 8 ( t # ) ) =
g(t(«/)). That is to say, t(/>) e (t(?/))g. Now let ^ be any element of (t(«/))g.
Then t(v) = q for some w in Y. Suppose v $ j/f. Then f (v) ^ \{y) and there-
fore $(f(»)) ^ ( f ( y ) ) . This impUes B(t(»)) ^q{t(y)), i.e., q$ (t(y))B which
is a contradiction. Thus w ej/j'and we conclude t[yf] = (t(?/))g.

Now we are in a position to prove Theorem (3.1). First suppose there
exists a one-to-one correspondence between the sets of ®j and S)g such
that corresponding sets have the same cardinality. It follows that there
exists a bijection t from Y onto Y such that t[yf] e ®g for each y^ e 5)f.
Then according to Lemma (3.2) there exists a bijection f) from ^(f) onto
^(g) such that t) o f = g o t. It follows from Theorem (2.7) that the mapping
<p from ©?(*(f), y , f) onto ® J ( * ( B ) , Y, g) defined by f(f) = t o f o f)*"
is an isomorphism.

On the other hand, if cp is any isomorphism from ©*(^(f), Y, f) onto
Y, g), Theorem (2.7) implies that there exists a bijection I) from

onto @{%) and a bijection t from Y onto Y" such that t) o f = g o t.
Lemma (3.2) implies t[yj] e S)g for each yj in ®f and therefore yj -> (t(y))g =
t[yf] is a one-to-one correspondence between the sets of ©j and those of
S)g with the property that corresponding sets have the same cardinality.

Next, we use Theorem (2.7) to determine the automorphism group of
©*(£?(f)> Y, f). For any decomposition 2) of a set Y, we let G{%) denote
the group of all bijections / from Y onto Y with the property f[A] e 5) for
each A in 2) where the binary operation is that of composition.

THEOREM (3.3). The automorphism group of ©*(^(f), Y, f) is isomor-
phic to

PROOF. Let 21 denote the automorphism group of <3*(^(f), Y, f) and
let q> be an element of 91. According to Theorem (2.7) there exists a bijection
f) on 32(\) and a bijection t on Y such that <p(f) = t o / o ^ and i) o f = f o t.
By Lemma (3.2), t is an element of G(2)j). Since t is uniquely determined
by <p, we can define a mapping 0 from 21 into G(S)f) by &(q>) = t. One
verifies in a straightforward manner that 0 is a homomorphism. Further-
more, if t is any element of G(2)f), Lemma (3.2) implies the existence of a
bijection t) such that Ij o f = f o t. Then according to Theorem (2.7), the
mapping from @*(^(f), Y, f) onto itself which is defined by <p(/) = t o / o f)*~
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is an automorphism. Thus 0{<p) = t and we see that 0 is an epimorphism.
To conclude the proof, we need only show that the kernel of 0 is the identity
automorphism. Suppose, then, 0(q>) = i, the identity mapping of G(2>f).
Again, we use Theorem (2.7) to conclude that there exists a bijection f)
from &(\) onto M{\) such that Ij o f = f o t and <p(f) = to /o{ |*- for each
/ in ©*(^(f), Y, f). Hence, I) o f = f. For any x in 3i(\), there exists a y in Y
such that f(y) = x. Then Jj(a;) = f)(f (y)) = f (y) = a; and I) is the identity
mapping on ^(f). Therefore, 9? is the identity automorphism and 0 is an
isomorphism.

Now suppose X = Y and f is equal to the identity mapping i on Y.
Then ©?(#(f), Y, f) = @£(Y, Y, i) is the semigroup of all functions
mapping Y into Y under the binary operation of composition. This semi-
group is discussed in some detail in both [1] and [4], though, as we mentioned
previously, composition is defined by / og — {(x, y) : (x, z) ef and (z, y) eg
for some 2} in the former.

It follows from Theorem (2.7) that for any automorphism <p from
@*(Y, Y, t) onto <S*(Y, Y, i), there exists a bijection f) from Y onto Y such
that q>(f) = Ij o / o I)*" for each / in <5*(Y, Y, t). Moreover, I) and f)*~ are
elements of ©*(Y, Y, t") and, in fact, Ij*~ = Ij-1, i.e., I)4" is the algebraic
inverse of 1). Therefore we have the following well-known result (I. Schreier
[10], A. I. Malcev [9] and E. S. Ljapin [5] have all given proofs of this
result).

COROLLARY (3.4). Every automorphism of <5*(Y, Y, i) is an inner
automorphism.

Now suppose we apply Theorem (3.3) to ©*(Y, Y, *). In the case of
the mapping i, G(®4) is simply the group of all bijections on Y. Therefore,
we have

COROLLARY (3.5). The automorphism group of <5*(Y, Y, i) is isomorphic
to the group of all bijections on Y.

Let us consider one more family of semigroups. Again, f denotes a
function from Y into X. The family of all functions / with 2>{f) Q@{\)
and m(f) Q Y is a <S*-semigroup and is denoted by <5*(^(f), Y, f). The
proofs of both Theorem (3.1) and Theorem (3.3) carry over completely
intact to give the following two results.

THEOREM (3.6). For two functions f and Q from Y into X, ©J(^(f), Y, f)
and @*(^(g), Y, g) are isomorphic if and only if there is a one-to-one cor-
respondence between the sets of ®f and 2)g such that corresponding sets have
the same cardinality.

THEOREM (3.7). The automorphism group of @*(^(f), Y, f) is isomorphic
(S>)to
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Finally, let us note that if we take X = Y and f = i, ©J(Y, Y, i) is the
semigroup of all functions / such that @(f)QY and &\j)QY. This semi-
group is discussed in [4]. We invoke Theorems (2.7) and (3.7) to obtain
the following analogues of Corollaries (3.4) and (3.5).

COROLLARY (3.8). Every automorphism of <3£(Y, Y, i) is an inner
automorphism.

COROLLARY (3.9). The automorphism group of ©J(y, Y, i) is isomorphic
to the group of all bisections on Y.

Note added in proof. The proof of (2.3.6) was based on the fact that
f(y1)e^(/). We wish to thank G. B. Preston for pointing out that a
verification of this fact was omitted and we take this opportunity to
correct the situation. By (2.1.2), there exists a nonempty subset A of X
such that AVie®(X,Y,\). Then <p(fAVi) = <p{f)<p{Ayi) = gBt(Vi) for some
nonempty subset B of U. Now, gBtiVj) ¥" e since g ^ ^ ) ) £@{g) and it
follows from (2.2.1) that fAVi =£ e. This'implies f(yx) e2>{f).
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