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Abstract

We extend classical density theorems of Borel and Dani–Shalom on lattices in semisimple,
respectively solvable algebraic groups over local fields to approximate lattices. Our proofs are based
on the observation that Zariski closures of approximate subgroups are close to algebraic subgroups.
Our main tools are stationary joinings between the hull dynamical systems of discrete approximate
subgroups and their Zariski closures.

2010 Mathematics Subject Classification: 22D40 (primary); 20P05, 20G25 (secondary)

1. Introduction

Borel’s density theorem [6] is a cornerstone of the theory of lattices in semisimple
algebraic groups over local fields, and can be stated as follows.

THEOREM 1 (Borel Density Theorem). Let k be a local field and let G be a
connected semisimple algebraic group over k. If G(k) does not have any compact
factors, then every lattice Γ < G(k) is Zariski-dense.

Here and in the sequel, G(k) is considered as a topological group with respect
to its natural Hausdorff group topology, which turns G(k) into a locally compact
second countable (lcsc) topological group. A similar density theorem for lattices
in solvable algebraic groups was established by Dani [8] (for k = R) and
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Shalom [18] (for general local fields). Recall that a solvable algebraic group G
over a field k is called k-split if every composition factor is isomorphic over k to
the additive or multiplicative group of k. For example, unipotent algebraic groups
over fields of characteristic 0 are k-split, but they need not be k-split in positive
characteristic (see Section 5.2).

THEOREM 2 (Dani–Shalom Density Theorem). Let k be a local field and let G
be a connected solvable algebraic group over k. If G is k-split, then every lattice
Γ < G(k) is Zariski-dense.

In this article, we generalize these density theorems to (certain) approximate
lattices. Approximate lattices are certain discrete approximate subgroups (in the
sense of Tao [20]) of locally compact groups. They were introduced in [2] as
generalizations of Meyer sets in abelian lcsc groups [14] and further studied
in [3–5, 12]. By definition, a uniform approximate lattice Λ ⊂ G is a discrete
approximate subgroup which is cocompact in the sense that G = ΛK for a
compact subset K ⊂ G. More generally, approximate lattices are defined by
the existence of nontrivial stationary measures on an associated hull dynamical
system, and strong approximate lattices are those approximate lattices, for which
the hull even admits an invariant measure (see Section 2 for precise definitions).
With this terminology understood, our main result can be stated as follows:

THEOREM 3 (Main theorem). Let k be a local field and let G be a connected
algebraic group over k. Assume that either G is semisimple and G(k) does not
have any compact factors, or that G is solvable and k-split. Then every strong
approximate lattice Λ ⊂ G(k) and every uniform approximate lattice Λ ⊂ G(k)
is Zariski-dense.

By definition, a subgroup Γ <G(k) is a uniform approximate lattice if and only
if it is a uniform lattice. We show in Section 2.4 below that a subgroup Γ < G(k)
is an approximate lattice if and only if it is a strong approximate lattice if and only
if it is a lattice. Thus our main theorem is indeed a proper generalization of the
classical density theorems.

As we discuss in Section 2.1, a symmetric subsetΛ of a locally compact group
G containing the identity is a uniform approximate lattice if and only if it a Delone
set (that is, cocompact and uniformly discrete) and if moreover Λ · Λ · Λ is
uniformly discrete; this in turn implies thatΛn is uniformly discrete for all n ∈ N.
In the abelian case, the latter property is known as long-range order (since it is a
nonlocal property) and is often used as the defining property of quasicrystals. We
emphasize that our Main Theorem does not hold for arbitrary Delone sets without
the assumption of long-range order (see Example 1 below).
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Our proof of the main theorem is inspired by Furstenberg’s proof of Borel
density [9], which can be sketched as follows: if Γ is a lattice in G = G(k) and
H denotes the Zariski closure of Γ in G, then the invariant probability measure
on G/Γ pushes forward to an invariant probability measure on G/H , which by
Chevalley’s theorem can be realized as a quasiprojective variety. Using recurrence
properties of unipotents on projective space with respect to the invariant measure
at hand one then deduces that G/H must be a point.

This approach does not apply directly to our more general setting for several
reasons: Firstly, the Zariski closure of an approximate latticeΛ⊂ G is not a group.
It is however, in a sense made precise in Theorem 17 below, close to an algebraic
subgroup H of G. We would thus like to connect a stationary measure on the hull
of Λ (which serves as a natural replacement for the homogeneous space G/Γ in
the group case) to a measure on G/H . Unlike the group case, we cannot embed
the hull of Λ into G/H , but we can use a stationary joining between the hull and
G/H to obtain a measure on G/H . A crucial difference to the group case will
be that the measure obtained on G/H will in general not be invariant, but only
stationary. To obtain the desired conclusion, we thus need to investigate further
properties of the measure in question. In this final step we also need information
concerning maximal algebraic subgroups of semisimple groups over local fields
as provided by Stuck [19].

This article is organized as follows. In Section 2, we recall the precise
definitions of strong and uniform approximate lattices. We use this opportunity
to establish a number of basic results concerning hull dynamical systems,
which will be used throughout the article. In Section 3, we show that Zariski
closures of approximate subgroups are again approximate subgroups, and that
such ‘algebraic’ approximate subgroups are close to algebraic subgroups. This
statement is made precise in Theorem 17, which is the main result of this section.
In Section 4, we use this result to deduce Borel density, first in the uniform case,
and then in the strong case. In Section 5, we derive Dani–Shalom density and
discuss various variants and refinements.

Appendix A contains some background concerning the existence of stationary
joinings. Appendix B generalizes the unimodularity theorem from [2] to the case
of groups which are not compactly generated; this is used in the proof of the main
theorem in the uniform case.

Throughout this article, we use the following convention: if k is a local field
and G is a linear algebraic group over k, then all topological terms (for example,
closure, compactness) concerning subsets of G := G(k) refer to the Hausdorff
topology on G and not to the Zariski topology, unless explicitly mentioned
otherwise.
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2. Approximate lattices and their hulls

2.1. Uniform approximate lattices. Let G be a group. Given subsets
A, B ⊂ G we denote by

AB := {ab ∈ G | a ∈ A, b ∈ B} and A−1
:= {a−1

∈ G | a ∈ A}

their product set, respectively set of inverses. We also define Ak
:= Ak−1 A for

k > 2. (For distinction we write A×k for the k-fold Cartesian product.)
We recall that if G is a group, then a subset Λ ⊂ G is called an approximate

subgroup if it is symmetric, contains the identity and satisfies Λ2
⊂ FΛ for a

finite subset F ⊂ G. Since Λ is symmetric, this implies Λ2
⊂ ΛF−1, and hence

we may choose a finite set FΛ such that Λ2
⊂ FΛΛ ∩ΛFΛ, and hence

Λk
⊂ F k−1

Λ Λ ∩ΛF k−1
Λ for all k > 2. (1)

If G is an lcsc group, then a subset P ⊂ G is called (left-)relatively dense if
there exists a compact subset K ⊂ G such that G = P K . It is called uniformly
discrete if e is not an accumulation point of P−1 P . An approximate subgroup
Λ⊂ G is called a uniform approximate lattice, if it is relatively dense and discrete.

We refer the reader to [2] for a thorough discussion of uniform approximate
lattices. To give an alternative characterization of uniform approximate lattices,
recall that a (left-)relatively dense and uniformly discrete subset of an lcsc group
G is also called a (left-)Delone set, and it is said to have long-range order if
Λn is uniformly discrete for all n ∈ N. As pointed out in [2, Proposition 2.9], a
symmetric subset of G containing the identity is a uniform approximate lattice if
and only if it is Delone and has long-range order; equivalently, it is Delone and
Λ3 is closed and discrete. The following example shows that the conclusion of
our main theorem may fail for Delone sets without long-range order.

EXAMPLE 1. It follows from [7, Proposition 3.C.3] and the metric characteri-
zation of Delone sets in lcsc groups [2, Proposition 2.2] that every lcsc group
contains a (left-) Delone set. Moreover, if G is an lcsc group and P < G is a
cocompact closed subgroup, then every Delone set in P is also a Delone set in G.

Now if G is a connected semisimple algebraic group over a local field k, and P
is any proper parabolic subgroup of G, then P := P(k) is a cocompact algebraic
subgroup of G := G(k). By the previous remark there exists a Delone setΛ ⊂ P;
any such Delone set Λ is also a Delone set in G, but its Zariski closure will be
contained in P . This shows that general Delone sets in connected semisimple
algebraic groups over local fields need not be Zariski-dense, not even in the
absence of compact factors.
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One of the main difficulties in the proof of our main theorem in the semisimple
case is indeed to show that a Delone set with long-range order cannot be contained
in a parabolic subgroup.

Note that a subgroup of G is a uniform approximate lattice if and only if
it is a uniform lattice. We now proceed towards the definition of nonuniform
approximate lattices, which generalize nonuniform lattices in a similar way.

2.2. The Chabauty–Fell topology. Given an lcsc space X we denote by C(X)
the collection of closed subsets of X with the Chabauty–Fell topology, that is, the
topology on C(X) generated by the basic open sets

UK = {A ∈ C(X) | A ∩ K = ∅} and U V
= {A ∈ C(X) | A ∩ V 6= ∅},

where K runs over all compact subsets of X and V runs over all open subsets
of X .

Under the present assumptions on X , the space C(X) is a compact metrizable
space (see for example, [17, Propositions 1.7 and 1.8]), and in particular its
topology is characterized by convergence of sequences in C(X). A sequence (Fi)

in C(X) converges if and only if the two following conditions are satisfied:

(CF1) For all x ∈ F there exist xi ∈ Fi such that (xi) converges to x .

(CF2) If xi ∈ Fi for all i ∈ N then every accumulation point of the sequence
(xi) is contained in F .

We derive two consequences: Firstly, if a G acts jointly continuously on X , then
it acts jointly continuously on C(X) by g . A := {ga | a ∈ A}. Secondly, taking
finite unions is continuous in the Chabauty–Fell topology:

COROLLARY 4. For every lcsc space X the map π : C(X)×k
→ C(X),

(F1, . . . , Fk) 7→ F1 ∪ · · · ∪ Fk is continuous.

Proof. Let ((F1,i , . . . , Fk,i))i>1 be a sequence in C(G)×k converging to
(E1, . . . , Ek), and abbreviate Fi := F1,i ∪ · · · ∪ Fk,i and E := E1 ∪ · · · ∪ Ek . We
have to show that Fi → E ; for this we check Conditions (CF1) and (CF2):

(CF1) If x ∈ E , then x ∈ E j for some j ∈ {1, . . . , k}. Since F j,i → E j there
thus exist xi ∈ F j,i ⊆ Fi such that xi → x .

(CF2) Let xi ∈ Fi and let x ∈ X be an accumulation point of (xi), say xni → X .
Passing to a further subsequence we may assume by the pigeon hole principle
that xni ∈ F j,ni for some j ∈ {1, . . . , k}. Since F j,i → E j it then follows that
x ∈ E j ⊂ E .
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2.3. Hulls of closed subsets. Let G be an lcsc group. We refer to a jointly
continuous action of G on a compact space Ω as a topological dynamical system
(TDS) and to a continuous G-equivariant map between TDSs as a factor map. If
G y Ω is a TDS, then so is the orbit closure of every element of Ω , and every
factor map maps an orbit closure of an element onto the orbit closure of its image.

By the results recalled in the previous subsection, the left action of an lcsc group
G on itself induces a TDS G y C(G), (g, A) 7→ g A, and more generally the
diagonal action of G on G×n induces a TDS G y C(G)×n , (g, (A1, . . . , An)) 7→

(g A1, . . . , g An). We are going to consider orbit closures in these TDSs.

DEFINITION 5. Let G be an lcsc group and let P, P1, . . . , Pn ∈ C(G).
(i) The (left-)hull of a closed subset P ⊂ G is defined as the orbit closure

ΩP := {g P | g ∈ G} ⊂ C(G).

(ii) The simultaneous (left-)hull of P1, . . . , Pn is

ΩP1,...,Pn := {(g P1, . . . , g Pn) | g ∈ G} ⊂ C(G)×n.

In the case of closed subgroup H < G, the hull is a compactification of G/H , but
it turns out to be the trivial compactification:

LEMMA 6 (Hulls of closed subgroups). If H < G is a closed subgroup, then
ΩH \ {∅} = G/H.

Proof. Let (gn) be a sequence in G such that gn H converges to some H ′ ∈ C(G)
and assume H ′ 6= ∅. Then there exists x ∈ H ′ and by (CF1) there exist hn ∈ H
such that gnhn → x . In Particular, there exists a compact set K such that kn :=

gnhn ∈ K and kn H = gn H → H ′. Passing to a subsequence we may assume that
kn converges to some k ∈ K , and by continuity of the G-action we deduce that
kn H → k H . Thus H ′ = k H ∈ G/H .

Note that if P1, . . . , Pn ∈ C(G), then the projection onto the i th factor yields a
continuous surjective G-factor map πi :ΩP1,...,Pn →ΩPi . If we set P := P1∪· · ·∪

PN , then by Lemma 4 we also have a continuous G-factor map π :ΩP1,...,Pn →ΩP

given by (Q1, . . . , Qn) 7→ Q1 ∪ · · · ∪ Qn .
We apply these factor maps to study relatively dense subsets of lcsc groups.

This is made possible by the observation that if P ∈ C(G), then ∅ ∈ ΩP if and
only if P is not relatively dense [2, Proposition 4.4]. We use the fact that every
TDS contains a minimal subset, that is, a subset which is the orbit closure of
each of its elements. Note that if a minimal system Z contains a fixpoint p, then
Z = {p}.
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LEMMA 7. Let P1, . . . , Pk ∈ C(G). If P := P1 ∪ · · · ∪ Pn is relatively dense then
there exists i ∈ {1, . . . , n} such that P−1

i Pi is relatively dense.

Proof. We choose a minimal subset Z of the joint hull ΩP1,...,Pn and an element
z ∈ Z . We then set Q := π(z) and Qi := πi(z), where πi : ΩP1,...,Pn → ΩPi and
π : ΩP1,...,Pn → ΩP are the factor maps defined above.

We first observe that z 6= (∅, . . . ,∅), since otherwise Q = ∅, contradicting the
assumption that P be relatively dense. There thus exists i ∈ {1, . . . , n} such that
Qi 6= ∅. Note that ∅ is a G-fixpoint in C(G). Since ΩQi = πi(Z) is minimal and
Qi 6= ∅, we thus deduce that ∅ 6∈ ΩQi , hence Qi is relatively dense in G. Let
K1 ⊂ G be a compact subset such that G = Qi K1.

Since Qi ∈ ΩPi , we deduce from [2, Lemma 4.6] that Q−1
i Qi ⊂ P−1

i Pi , and
hence Q−1

i Qi ⊂ P−1
i Pi K0, where K0 is any compact identity neighbourhood in

G. We thus obtain
G ⊂ Q−1

i Qi K1 ⊂ P−1
i Pi K0 K1

which shows that P−1
i Pi is relatively dense in G.

2.4. Nonuniform approximate lattices. We now turn to the definition of
nonuniform approximate lattices. Let G be an lcsc group and let Γ < G be a
discrete subgroup. By Lemma 6, we have ΩΓ \ {∅} = G/Γ . Thus Γ is a lattice
in G if and only if there exists a G-invariant probability measure on ΩΓ \ {∅}.
Equivalently, if µ is any admissible probability measure on µ (that is, absolutely
continuous with respect to Haar measure and with support generating G as a
semigroup), then there exists a µ-stationary probability measure on ΩΓ \ {∅}.

DEFINITION 8. Let G be an lcsc group, let P ∈ C(G) and let Λ ⊂ G be a closed
and discrete approximate subgroup.

(i) A probability measure ν on ΩP is called nontrivial if ν({∅}) = 0.

(ii) Λ is called a strong approximate lattice if there exists a nontrivial G-
invariant probability measure ν on ΩΛ.

(iii) Λ is called an approximate lattice if for every admissible probability
measure µ on G there exists a nontrivial µ-stationary probability measure
ν on ΩΛ.

Concerning the relations between these definitions we remark: Every uniform
approximate lattice and every strong approximate lattice is an approximate lattice.
We do not currently know whether every approximate lattice is strong. If G is
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amenable, then every uniform approximate lattice is strong, and if G is nilpotent,
then every approximate lattice is both strong and uniform [2, Theorem 4.25].
A discrete subgroup Γ < G is a strong approximate lattice if and only if it
is an approximate lattice if and only if it is a lattice by the remark preceding
Definition 8.

2.5. Quasimonotone joining of hulls. Throughout this subsection let G be an
lcsc group and let P, Q ∈ C(G). We have surjective factor maps π1 :ΩP,Q →ΩP

and π2 : ΩP,Q → ΩQ . A triple (νP,Q, νP , νQ) of probability measures on ΩP,Q ,
ΩP andΩQ respectively is called a hull joining if (π1)∗νP,Q = νP and (π2)∗νP,Q =

νQ:
(ΩP,Q, νP,Q)

π1

ww

π2

''

(ΩP , νP) (ΩQ, νQ)

The hull joining is called invariant if νP,Q (and hence νP and νQ) is G-invariant;
it is called µ-stationary for an admissible probability measure µ on G if νP,Q is
µ-stationary, that is, µ ∗ νP,Q = νP,Q . An invariant or µ-stationary hull joining is
called ergodic if νP,Q (and hence νP and νQ) is G-ergodic.

If µ is an admissible probability measure on G, then by Lemma 31 in
Appendix A, every (ergodic)µ-stationary probability measure νP onΩP lifts to an
(ergodic) µ-stationary probability measure on ΩP,Q , hence is part of an (ergodic)
µ-stationary hull joining (νP,Q, νP , νQ). This construction works for arbitrary P,
Q ∈ C(G), but there are two caveats:

• It may happen that νQ = δ∅, even if νP is nontrivial.

• Even if νP is G-invariant, it will in general not be part of an invariant joining
(unless G is amenable).

To deal with the first point, we need to add some assumption on the relation
between P and Q. For example, nontriviality of νQ is guaranteed in the case of a
monotone joining, that is, if P ⊂ Q and hence P ′ ⊂ Q ′ for all (P ′, Q ′) ∈ ΩP,Q .
We need a slightly more general version of this result.

LEMMA 9 (Quasimonotone joinings). Let P, Q ∈ C(G) and assume that P ⊂
QF for some finite set F ⊂ G. Then P ′ ⊂ Q ′F for all (P ′, Q ′) ∈ ΩP,Q . In
particular, if Q ′ = ∅, then P ′ = ∅.

Proof. If (P ′, Q ′) ∈ ΩP,Q , then there exist gn ∈ G such that gn P → P ′ and
gn Q→ Q ′. It thus follows from (CF1) that every p ∈ P ′ is the limit of a sequence
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of the form (gn pn) with pn ∈ P . Since P ⊂ QF we can write pn = qn fn with
qn ∈ Q and fn ∈ F . Passing to a subsequence we may assume that ( fn = f )
is constant. It then follows from (CF2) that gn pn f −1 converges to an element
q ′ ∈ Q ′, and hence p′ = q ′ f ∈ Q ′F .

COROLLARY 10. Let P, Q ∈ C(G) and let (νP,Q, νP , νQ) be a µ-stationary hull
joining. If P ⊂ QF for some finite set F ⊂ G and if νP is nontrivial, then also
νQ is nontrivial.

Proof. Otherwise, supp(νP,Q) ⊂ (ΩP × {∅}) ∩ ΩP,Q , and then Lemma 9 would
imply that νP is the Dirac mass at the empty set.

To deal with the second point, we observe that if (νP,Q, νP , νQ) is aµ-stationary
hull joining and νP is nontrivial and G-invariant, then while νQ need not be
invariant, it can at least not satisfy certain strong negations of invariance. To make
this precise we recall the following definition.

DEFINITION 11. Let H y Ω be a TDS, µ an admissible probability measure
on H and let ν be a µ-stationary Borel probability measure on Ω . We denote by
P := µ×N the product measure on G×N.

(i) Given ξ = (ξn) ∈ G×N we say that ν has conditional measure νξ with respect
to ξ if

(ξ1 · · · ξn)∗ν −→ νξ

in the weak-∗-topology as n→∞.

(ii) ν is called µ-proximal if for P-almost every ξ ∈ G×N the conditional
measure µξ exists and is a point measure. In this case, (Ω, ν) is called a
µ-boundary.

In fact, it follows from the martingale convergence theorem that conditional
measures exist for P-almost every ξ ∈ G×N. Typical examples ofµ-boundaries are
given by generalized flag varieties: Let k be a local field and H be a semisimple
algebraic group over k such that H(k) has no compact factors. Then for every
parabolic subgroup P of H, and every admissible probability measure µ on H(k)
there exists a unique µ-stationary probability measure ν on (H/P)(k), and then
((H/P)(k), ν) is a µ-boundary [13, Theorem VI.3.7].

PROPOSITION 12. Assume that (νP,Q, νP , νQ) is an ergodic µ-stationary hull
joining and that P ⊂ QF for some finite set F ⊂ G. If νP is nontrivial and
G-invariant and νQ is µ-proximal, then there exists Q ′ ∈ ΩQ such that G = Q ′F.
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Proof. Since νQ is µ-proximal, it follows from [10, Proposition 3.1] that (in
the terminology of loc. cit.) the only µ-joining of (ΩP , νP) and (ΩQ, νQ) is the
product joining. In our terminology this means that (ΩP×Q, νP,Q) ∼= (ΩP ×ΩQ,

νP × νQ) as measurable G-spaces, hence in particular, the support of νP,Q would
be G × G invariant.

Now since νP is nontrivial, we can find P ′ ∈ supp(νP) such that P ′ 6= ∅. There
then exists Q ′ ∈ supp(νQ) such that (P ′, Q ′) ∈ supp(νP,Q) and hence G × G
invariance of the latter set implies that (g P ′, Q ′) ∈ supp(νP,Q) for all g ∈ G. By
Lemma 9 we thus have g P ′ ⊂ Q ′F for all g ∈ G and thus Q ′F = G.

2.6. Commensurability invariance of approximate lattices. Given a group
G we say that two subsets A, B ⊂ G are commensurable if there exist finite
subset F1, F2 ⊂ G such that A ⊂ B F1 and B ⊂ AF2. Commensurability defines
an equivalence relation on subsets of G, and as a first application of stationary
hull joinings we show that the class of approximate lattices is invariant under
commensurability.

LEMMA 13. Let Λ be an approximate lattice in an lcsc group G. If Λ′ ⊂
G is a discrete approximate subgroup and Λ ⊂ Λ′F for some finite subset
F ⊂ G, then also Λ′ is an approximate lattice. In particular, this is the case
if Λ′ is commensurable to Λ.

Proof. Since Λ is an approximate lattice, there exists a nontrivial µ-stationary
probability measure νΛ on ΩΛ for every admissible probability measure µ on
G, and hence a stationary hull joining (νΛ,Λ′, νΛ, νΛ′) between ΩΛ and ΩΛ′ . By
Corollary 10, the measure νΛ′ is nontrivial, henceΛ′ is an approximate lattice.

If G is amenable, then invariant hull joining always exist, hence we deduce:

COROLLARY 14. Let Λ be a strong approximate lattice in an amenable lcsc
group G. If Λ′ ⊂ G is a discrete approximate subgroup and Λ ⊂ Λ′F for some
finite subset F ⊂ G, then Λ′ is a strong approximate lattice. In particular, this is
the case if Λ′ is commensurable to Λ.

3. Algebraic approximate subgroups

In this section, we are going to study Zariski closures of approximate subgroups
of linear algebraic groups. Throughout this section, we fix a field k and a linear
algebraic group G defined over k and denote by G := G(k) its group of k-points.
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We equip G with its Zariski topology and given a subset A ⊂ G we denote by A
Z

its Zariski closure in G.

3.1. Zariski closures of approximate subgroups. We first observe that
approximate subgroups are preserved under Zariski closure:

LEMMA 15 (Zariski closures of approximate subgroups). If Λ ⊂ G is an
approximate subgroup, then its Zariski closure Λ

Z
⊂ G is an approximate

subgroup as well.

Note that if we equip G and G×G = (G×G)(k) with their respective Zariski
topologies then inversion and multiplication are continuous. Since the Zariski
topology on G × G is finer than the product topology, G is not a topological
group with respect to the Zariski topology. It is however a (non-Hausdorff)
semitopological group in the sense that multiplication is separately continuous.
Thus Lemma 15 is a special case of the following general result:

PROPOSITION 16. Let G be a semitopological group (not necessarily Hausdorff).
Then the closure of an approximate subgroup of G is again an approximate
subgroup.

Proof. Let FΛ be as in (1) and let H be the closure of Λ in G. Enumerate FΛ =
{g1, . . . , gN } and let λ ∈ Λ. Then using the fact that left and right multiplication
by an element of G is a homeomorphism we obtain

λH = λΛ = λΛ ⊂ Λ2 ⊂ ΛFΛ =
N⋃

i=1

Λgi ⊂

N⋃
i=1

Λgi =

N⋃
i=1

Λgi = H FΛ

and hence ΛH ⊂ H FΛ. Since the right-hand side is closed as a finite union of
closed set we deduce that for every h ∈ H ,

Hh = Λh = Λh ⊂ ΛH ⊂ H FΛ,

which shows that H 2
⊂ H FΛ and finishes the proof.

3.2. Algebraic approximate subgroups are almost subgroups. The
following is the main result of this section:

THEOREM 17 (Algebraic approximate subgroups are almost subgroups). Let k be
a field and G be a linear algebraic group over k. If Λ ⊂ G(k) is an approximate
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subgroup, then there exists a connected k-algebraic subgroup H of G, an element
g ∈ NG(k)(H(k)) and a finite subset F ⊂ G(k) such that

gH(k) ⊂ ΛZ
⊂ FH(k) ∩H(k)F. (2)

For the proof we recall that a topological space is called irreducible if it is
nonempty and it is not the union of two proper closed subsets. We call a (not
necessarily Zariski-closed) subset of G := G(k) irreducible, if it is irreducible
with respect to the restriction of the Zariski topology from G. We need the
following lemma, which will be proved in the next subsection.

LEMMA 18. Let A, B ⊂ G be irreducible subsets. Then A−1 B is irreducible as
well.

Proof of Theorem 17. In view of Lemma 15 we can replace Λ by its Zariski
closure and thereby assume that Λ is Zariski-closed. Let FΛ = {g1, . . . , gN } be
as in (1) and let Λ0, . . . , Λm be the irreducible components of Λ, where Λ0 is
an irreducible component of maximal dimension. We claim that if λ0 ∈ Λ0, then
H := λ−1

0 Λ0 is a subgroup of G(k). Since e ∈ H we have H ⊂ H−1 H , and it
remains to show H−1 H ⊂ H . We have

H−1 H = Λ−1
0 Λ0 ⊂ Λ

2
⊂

N⋃
i=1

giΛ =

N⋃
i=1

m⋃
j=0

giΛ j .

Now H is irreducible, sinceΛ0 is irreducible, and hence also H−1 H is irreducible
by Lemma 18. There thus exists i ∈ {1, . . . , n} and an irreducible component Λ j

of Λ such that
giΛ j ⊃ H−1 H ⊃ H, (3)

where we have used that e ∈ H−1. Since giΛ j is Zariski-closed we also have

H−1 H
Z
⊂ giΛ j . Since Λ0 was an irreducible component of maximal dimension,

we have

dim giΛ j = dimΛ j 6 dimΛ0 = dim H 6 dim H−1 H
Z
6 dim giΛ j .

We deduce that dim H = dim H−1 H
Z
, and since H ⊂ H−1 H and the latter is

irreducible we have H = H−1 H , hence the claim is proved.
We deduce that H is an irreducible Zariski-closed subgroup of G, and hence

H = H(k), where H is the connected k-algebraic subgroup of G defined by the
vanishing ideal of H . With g := λ0 we then have gH(k) = gH = Λ0 ⊂ Λ.
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Next we show that finitely many left cosets of H , or equivalently Λ0, cover Λ.
This will then imply that also finitely many right cosets of H cover Λ by
symmetry of H and Λ. Assume otherwise; then the set {λΛ0 | λ ∈ Λ} would
be infinite, hence we could find a sequence (λn) in Λ such that λiΛ0 6= λ jΛ0 for
all i 6= j . Since Λ0 is a coset of a group we thus have a disjoint union

∞⊔
n=1

λnΛ0 ⊂ Λ
2
⊂

N⋃
i=1

giΛ ⊂

N⋃
i=1

m⋃
j=0

giΛ j

By the pigeonhole principle, one of the irreducible sets giΛ j would thus be a
disjoint union of infinitely many irreducible subsets of the form λnΛ0. Since
dim λnΛ0 > dim giΛ j , this is a contradiction. We have thus established (2), and
it remains only to show that g ∈ NG(H).

Let FΛ be finite such that Λ2
⊂ ΛFΛ and let F as in (2). Then

gHg−1
= gH(gH)−1

⊂ ΛΛ−1
= Λ2

⊂ ΛFΛ ⊂ H F FΛ.

Since gHg−1 is irreducible and the irreducible components of H F FΛ are the left-
H -cosets in H F FΛ, we must have gHg−1

⊂ H f for some f ∈ F FΛ. Since e ∈
gHg−1 this forces f ∈ H−1 and thus gHg−1

= H , that is, g normalizes H .

3.3. Product sets of irreducible sets are irreducible. This subsection is
devoted to the proof of Lemma 18. We keep the notation of the previous
subsection. In particular, k denotes a field, G a linear algebraic group defined
over k and G := G(k).

To show Lemma 18 we first observe that the image of an irreducible topological
space under a continuous map is irreducible, and that the map q : G × G → G
given by q(a, b) := a−1b is continuous, if G and G × G = (G × G)(k) are
equipped with their respective Zariski topology. Since A−1 B = q(A × B) it thus
suffices to show that if A and B are irreducible subsets of G, then A × B is
irreducible in G × G. We can choose a representation ρ : G → GLn defined
over k and thereby consider G as a subset of kn2 . It then suffices to establish the
following (see [11, Exercise 3.15 (a)]):

LEMMA 19. Let X be an irreducible subset of kn , and let Y be an irreducible
subset of km . Then X × Y is irreducible in kn+m .

Proof. Let Z1 and Z2 be closed subsets of kn+m , with corresponding vanishing
ideals IZ1 and IZ2 in k[T1, . . . , Tn+m]. Assume that X × Y is contained in Z1 ∪ Z2.
We have to show that either X ×Y ⊂ Z1 or X ×Y ⊂ Z2. For i ∈ {1, 2} we denote
X i = {x ∈ X | {x} × Y ⊂ Z i}.
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We first claim that X ⊂ X1 ∪ X2. Indeed, {x} × Y is the image of Y under the
Zariski continuous map km

→ kn+m given by b 7→ (x, b), hence an irreducible
subset of kn+m , and thus of Z1 ∪ Z2. We deduce that for all x ∈ X we have either
{x} × Y ⊂ Z1 or {x} × Y ⊂ Z2, which proves the first claim.

Secondly, we claim that X1 is closed in kn . Given b ∈ km and f ∈ k[T1, . . . ,

Tn+m], we define fb ∈ k[T1, . . . , Tn] by fb(T1, . . . , Tn) := f (T1, . . . , Tn, b1, . . . ,

bm). Now for every x ∈ X we have {x} × Y ⊂ Z1 if and only if f (x, y) = 0 for
all f ∈ IZ1 and all y ∈ Y , and hence

X1 = {x ∈ X | fy(x) = 0 for all y ∈ Y and for all f ∈ IZ1}

is closed. This proves the second claim, and the same argument shows that X2 is
closed in kn .

We have written X = X1 ∪ X2 as the union of two proper closed subsets. Since
X is irreducible this implies that either X ⊂ X1 or X ⊂ X2. Consequently we
have either X × Y ⊂ Z1 or X × Y ⊂ Z2, which finishes the proof.

This finishes the proof of Lemma 18.

4. Proof of Borel density

4.1. General setting. Throughout this section k denotes a local field, G is a
connected linear algebraic group defined over k and Λ denotes an approximate
subgroup of G := G(k). By Theorem 17 there exists an algebraic subgroup H of
G, an element g ∈ G and a finite subset F ⊂ G such that

gH(k) ⊂ ΛZ
⊂ FH(k) ∩H(k)F.

We abbreviate H := H(k) enumerate F = {g1, . . . , gN } so that

Λ ⊂ Λ
Z
⊂

n⋃
j=1

g j H and Λ ⊂ Λ
Z
⊂

n⋃
j=1

Hg j . (4)

We then have to show that H = G. The argument for this will be different in
the uniform case (where we use relative denseness of Λ) and in the strong case
(where we use a joining argument between the hulls of Λ and H ).

4.2. The uniform case. We consider the general setting (and notation) of
Section 4.1. In addition we are going to assume that Λ ⊂ G is a uniform
approximate lattice. From this assumption and (4) one immediately deduces:
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LEMMA 20. If Λ is a uniform approximate lattice, then H is cocompact in G.

Proof. Since Λ is relatively dense, so is its superset g1 H ∪ · · · ∪ gn H . It thus
follows from Lemma 7 that there exists j ∈ {1, . . . , n} such that (g j H)−1g j H =
H−1 H = H is relatively dense, that is, cocompact.

There is also a more subtle consequence of (4) and the assumption that Λ be
uniform. Namely, let Λ j := Λ ∩ g j H so that Λ = Λ1 ∪ · · · ∪ ΛN . Since Λ is
relatively dense in G, Lemma 7 implies that there exists j ∈ {1, . . . , N } such that
∆ j := Λ

−1
j Λ j is relatively dense in G. Note that

∆ j = (Λ ∩ g j H)−1(Λ ∩ gH j) ⊂ Λ
2
∩ H ⊂ Λ2.

In particular, ∆ j is a symmetric subset of the uniform approximate lattice Λ2

which contains the identity and is relatively dense in G. It thus follows from
[2, Corollary 2.10], that ∆ j is a uniform approximate lattice in G itself. Since
∆ j ⊂ H we deduce:

LEMMA 21. It Λ is a uniform approximate lattice, then H contains a uniform
approximate lattice.

In [2, Theorem 5.8], it was established that if a compactly generated lcsc group
contains a uniform approximate lattice, then it is unimodular. In Theorem 32
in Appendix B, we show that this also holds without the assumption of
compact generation. This then implies that H is unimodular, in addition to
being cocompact. We have established:

THEOREM 22. Let k be a local field and G be a connected affine algebraic group
defined over k. Assume that G does not contain any proper algebraic subgroup
H such that H(k) is unimodular and cocompact in G(k). Then every uniform
approximate lattice in G(k) is Zariski-dense.

Proof. In view of Lemma 20, Lemma 21 and Theorem 32, the assumption forces
H = G, hence Λ is Zariski-dense.

COROLLARY 23 (Borel density, uniform case). Let k be a local field, G be
a connected semisimple algebraic group and assume that G := G(k) has no
compact factors. Then every uniform approximate lattice in G is Zariski-dense.

Proof. It only remains to check that the assumptions of Theorem 22 are satisfied
in this case. This follows from [19, Corollary 2.3].
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4.3. The nonuniform case. We consider the general setting (and notation) of
Section 4.1, but assume in addition thatΛ ⊂ G is a strong approximate lattice. We
also fix a left-Haar measure mG and an admissible probability measure µ = ρmG

on G. We assume that µ is symmetric and that ρ ∈ L1(G) ∩ L∞(G). From the
results of Section 2.5, we then deduce:

LEMMA 24. If H 6= G, then there exists a µ-stationary ergodic probability
measure ν on G/H which is not µ-proximal.

Proof. Since Λ is a strong approximate lattice, we can choose a nontrivial
G-invariant ergodic probability measure on ΩΛ. Applying Lemma 31 to the
canonical projection ΩΛ,H → ΩΛ we conclude (as in Section 2.5) that this
measure lifts to a µ-stationary ergodic probability measure on ΩΛ,H , which then
in turn pushes forward to a µ-stationary ergodic probability measure ν on ΩH .
Since Λ ⊂ H F we deduce from Corollary 10 that ν is nontrivial, hence it is
supported on the orbit G/H ⊂ΩH by Lemma 6. To see that ν is not µ-proximal it
suffices to show by Proposition 12 that if H ′ ∈ΩH , then H ′F ( G, that is, that H ′

has infinite index in G. Since G is connected and H is a proper algebraic subgroup
of G we have dim H < dim G, and hence H has infinite index in G. This implies
that every H ′ ∈ ΩH also has infinite index in G, since ΩH ⊂ G/H ∪ {∅}.

We thus have to investigate, which homogeneous spaces of the form G/H
admit nonproximal stationary probability measures. Note that since G contains
a strong approximate lattice, it is automatically unimodular by [2, Theorem 5.8].

LEMMA 25. Assume that G/H admits a µ-stationary probability measure ν.
Then ν is actually the unique µ-stationary probability measure on G/H, and
if H is unimodular, then ν is G-invariant, and hence H has finite covolume.

Proof. Every µ-stationary probability measure on G/H is G-quasi-invariant. If
there was more than one µ-stationary µ-probability measure on G/H , then there
would be two different ergodic such measures, and these would then be mutually
singular. This would contradict the fact that the quotient G/H admits a unique
G-invariant measure class.

Now assume that H is unimodular, and denote by η the unique G-invariant
Radon measure on G/H . We are going to show that η(G/H) < ∞; this will
finish the proof, since ν will then be a multiple of η by the uniqueness statement.

Since ν and η both represent the unique G-invariant measure class on G/H we
can write ν = uη for some nonnegative η-integrable Borel function u on G/H .
Since ν is µ-stationary and µ = ρmG is symmetric we deduce that

ρ ∗ u = u.
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Moreover, since ρ ∈ L∞(G) we have, by Hölder’s inequality,

‖u‖∞ = ‖ρ ∗ u‖∞ 6 ‖ρ‖∞‖u‖1 <∞.

In particular, u ∈ L1(η) ∩ L∞(η) ⊂ L2(η) and u is continuous. Since µ ∗ u =
µ̌ ∗ u = u and η is G-invariant we have∫

G/H

∫
G

∣∣u(gx)− u(x)
∣∣2 dµ(g) dη(x)

=

∫
G/H

∫
G

u(gx)2dµ(g) dη(x)− 2
∫

G/H

∫
G

u(gx) dµ(g) u(x) dη(x)+
∫

G/H
u(x)2dη(x)

=

∫
G

∫
G/H

u(gx)2dη(x) dµ(g)− 2
∫

G/H
(ρ ∗ u)(x)u(x) dη(x)+

∫
G/H

u(x)2dη(x)

=

∫
G

∫
G/H

u(x)2dη(x) dµ(g)− 2
∫

G/H
u(x)u(x) dη(x)+

∫
G/H

u(x)2dη(x) = 0.

We conclude that u (as an element in L2) is invariant under µ-a.e. g ∈ G. Since
the support of µ generates G, u is G-invariant and thus constant. We thus have
ν = λη for some λ > 0 and hence η(G/H) = λ−1ν(G/H) = λ−1 < ∞. This
finishes the proof.

COROLLARY 26. Let k be a local field, G be a connected algebraic group over k
and assume that every Zariski-closed proper subgroup of G(k) is contained in a
closed subgroup M < G satisfying one of the following three properties:

(i) M is unimodular of infinite covolume in G.

(ii) G/M admits a unique µ-stationary measure which is µ-proximal.

(iii) G/M does not admit a µ-stationary probability measure.

Then every strong approximate lattice in G(k) is Zariski-dense.

Proof. In the notation of Section 4.1, we have to show that H = G. Assume
otherwise, and let M < G be a subgroup containing H as in the corollary. By
Lemma 24 there exists a µ-stationary measure ν on G/H , and we denote by ν1

its push-forward to G/M . Since ν is µ-stationary, but not µ-proximal the same
holds for ν1, and hence (ii) and (iii) cannot hold. This forces M to be unimodular
of infinite covolume, which contradicts Lemma 25.

We conclude:

THEOREM 27 (Borel density for strong approximate lattices). Let k be a local
field and let G be a connected semisimple algebraic group over k. If G := G(k)
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does not have any compact factors, then every strong approximate lattice Λ ⊂ G
is Zariski-dense.

Proof. We have to check that the conditions of Corollary 26 are satisfied. By
[19, Lemma 2.2] every Zariski-closed subgroup of G is contained in either
a parabolic subgroup P of G or in an algebraic subgroup M whose identity
component M0 is reductive with anisotropic centre over k. In the first case, G/P
admits a unique µ-stationary measure which is µ-proximal [13, Theorem VI.3.7].
In the second case, M is unimodular, since M0 is reductive and [M : M0

] is finite.
In this case, it then has infinite covolume in G by [19, Corollary 2.3]. Now the
theorem follows from Corollary 26.

5. Variants and refinements

5.1. Dani–Shalom density. Let G be a connected affine algebraic group
defined over a local field k. In this subsection, we assume that G = G(k) is
amenable. In particular, this is the case if G is solvable.

THEOREM 28 (Dani–Shalom density for strong approximate lattices). Assume
that G does not contain any proper normal cocompact algebraic subgroup. Then
every strong approximate lattice and every uniform approximate lattice in G is
Zariski-dense.

Proof. Since G is amenable, every uniform approximate lattice in G is strong,
hence we assume that Λ ⊂ G is a strong approximate lattice. We then define H
as in Section 4.1. There then exists a finite set F such that Λ ⊂ H F . Since Λ is a
strong approximate lattice, there exists a G-invariant ergodic probability measure
νΛ on ΩΛ. Since G is amenable, this measure is part of a G-invariant ergodic
hull joining (νΛ,H , νΛ, νH ) between ΩΛ and ΩH , and the invariant probability
measure νH is nontrivial by Lemma 10, hence supported on the orbit G/H ⊂ ΩH

by Lemma 6. In particular, νH has full support on G/H .
Now supp(νH ) = G/H is a subset of (G/H)(k), and since G acts algebraically

on G/H, it follows from [18, Theorem 1.1] (which generalizes [8, Corollary 2.6])
that this support consists entirely of G-fixpoints. This forces H = G and finishes
the proof.

REMARK 29. Solvable algebraic groups over local fields k whose k points
do not admit any proper normal algebraic cocompact subgroups are called k-
discompact and have been characterized by Shalom in [18, Theorem 3.6]. They
are precisely the k-algebraic solvable group which are k-split in the sense that

https://doi.org/10.1017/fms.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.39


Borel density for approximate lattices 19

every composition factor is isomorphic to either the additive or multiplicative
group over k.

Taken together, Theorems 22, 27, 28 and Remark 29 now yield our Main
Theorem from the introduction.

5.2. The case of unipotent groups. Theorem 28 applies in particular to
unipotent algebraic groups. Over local fields k of positive characteristic there do
exist nonsplit unipotent groups.

EXAMPLE 2 (Rosenlicht). Let p be a prime, k := Fp((t)) and consider the
algebraic subgroup of the additive group of k2 whose k-points are given by

{(x, y) ∈ k2
| y p
= t x p

− x}.

One checks that its group of k-points is actually infinite and contained in
(Fp[[t]])2, hence it is an example of a compact unipotent group. Every finite
subset of this group is thus a uniform approximate lattice, which is not Zariski-
dense.

The natural context of this example is that of k-wound unipotent groups. A
unipotent algebraic group G defined over a field k is called k-wound if every k-
morphism from the additive group of k to G is constant. Over a local field this
is equivalent to compactness of G(k) [16, Section VI, 1, Théorème]. If k is of
characteristic 0, then every k-wound unipotent groups is trivial [15, Corollary
14.55], but Rosenlicht’s example shows that nontrivial examples exist in positive
characteristic. In general, if G is any unipotent algebraic group over an arbitrary
field k, then there exists a unique k-split unipotent normal subgroup Gs of G,
such that the quotient group G/Gs is k-wound [21, page 733, 4.2, Theorem]. In
characteristic 0 we thus have G = Gs , hence we deduce:

EXAMPLE 3. Let k be a local field of characteristic 0 and let G be a unipotent
algebraic group over k. Then every strong approximate lattice and every uniform
approximate lattice in G(k) is Zariski-dense.

We do not know whether Theorem 28 holds for approximate lattices which are
not strong. However, the following example shows that it does not hold for weak
approximate lattices. Here, a discrete approximate subgroup Λ of an lcsc group
G is called a weak approximate lattice if its hull admits a nontrivial µ-stationary
probability measure for some admissible probability measure µ on G.
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EXAMPLE 4. Consider the algebraic group G := GL1 n A1 over R so that G =
G(R) = R× n R is the (ax + b)-group. By [2, Section 5.4] the subgroup Λ :=
{1} n Z is a weak approximate lattice in G, but its Zariski closure is given by
{1}nR. Thus weak approximate lattices in the (ax+b)-group need not be Zariski-
dense, despite the fact that G is solvable without cocompact algebraic subgroups.

5.3. Thin approximate subgroups of abelian groups. If G is an algebraic
group over a local field k, then an approximate subgroup Λ ⊂ G is called thin
if it is Zariski-dense, but not an approximate lattice. In the case where Λ is an
actual subgroup one recovers the notion of a thin subgroup. It is well known that
nilpotent algebraic groups over R do not admit thin subgroups. On the contrary
we show:

PROPOSITION 30. The additive group R2 admits thin approximate subgroups.

Proof. We set

Γ =
{
(m + n

√
2,m − n

√
2) | m, n ∈ Z} and S = R× [−1, 1].

It is easy to check that Λ := Γ ∩ S is an infinite approximate subgroup, but
not a uniform approximate lattice, hence not an approximate lattice at all by
[2, Corollary 4.19]. It remains to show that Λ is Zariski-dense. Otherwise, by
Theorem 17,Λ would be contained in a finite union of translates of a fixed proper
algebraic subgroup of G. SinceΛ is infinite, H would have to be nontrivial, hence
a line. This implies that either H ⊂ S or that H ∩S is compact. In the second case,
S ∩Λ would have to be contained in a compact subset of G; since Γ is discrete,
this implies that Λ is finite, a contradiction. Thus H ⊂ S, and thus all points of
Λ lie on a finite union of lines which are parallel to the line R × {0}. Then there
exist α1, . . . , αN ∈ [−1, 1] such that

Λ ⊂

N⋃
k=1

{
(m + n

√
2,m − n

√
2) | m − n

√
2 = αk

}
.

Thus the second coordinate of elements of Λ can take only finitely many values,
but since the first coordinate is just the Galois conjugate of the second coordinate
we deduce that Λ is actually finite, which is a contradiction.

Appendix A. Lifting stationary measures

The purpose of this appendix is to record a proof of the following fact
from measure theory, to be used in Section 2.5. Given an lcsc group G and a
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compact G-space Ω and an admissible probability measure µ on G, we denote
by Probµ(Ω) ⊂ Prob(Ω) the compact convex sets of µ-stationary, respectively
arbitrary probability measures on Ω .

LEMMA 31. Let X and Y be compact G-spaces, and suppose that there
exists a continuous surjective G-map π : X → Y . Then the induced map
π∗ : Probµ(X) → Probµ(Y ) is surjective as well, and maps ergodic measures
surjectively onto ergodic measures.

Proof. We first show surjectivity of the map π∗ : Prob(X)→ Prob(Y ). Thus let
η ∈ Prob(Y ) and define η′ : π∗(C(Y ))→ R by η′(π∗( f )) := η( f ), which is well
defined since π is surjective and thus π∗ : C(Y ) → C(X) is injective. We have
‖η′‖ 6 ‖η‖ = 1 and since η′(1) = 1 we deduce that ‖η′‖ = 1. By Hahn–Banach
we can thus extend η′ to a continuous linear functional η′′ of norm 1 on all of
C(X), and by construction π∗η′′ = η. It thus remains to show only that η′′ is a
positive linear functional on C(X). Thus let f ∈ C(X) be nonnegative so that
‖ f ‖∞ > ‖ f ‖∞ − f > 0. Since ‖η′′‖ = 1 and η′′(1) = 1 we have

‖ f ‖∞ > ‖ f ‖∞ − f > |η′′(‖ f ‖∞ − f )| > η′′(‖ f ‖∞ − f ) = ‖ f ‖∞ − η′′( f ),

and hence η′′( f ) > 0. This shows that η′′ is positive, and hence π∗ : Prob(X)→
Prob(Y ) is surjective. Given η ∈ Prob(Y ) we now defined weak-∗-compact
convex sets by

F(η) := {ν ∈ Prob(X) | π∗ν = η} and Fµ(η) := {ν ∈ Probµ(X) | π∗ν = η}.

We have just seen that F(η) is nonempty for every η ∈ Prob(Y ), and if η is
moreover µ-stationary, then it is invariant under convolution by µ, since π is
G-equivariant and thus for all ν ∈ F(η) we have

π∗(µ ∗ ν) = µ ∗ (π∗ν) = µ ∗ η = η.

It then follows from the Markov–Kakutani fixpoint theorem that Fµ(η) is also
nonempty. This shows that π∗ : Probµ(X)→ Probµ(Y ) is surjective.

For the second statement we first recall from [1, Corollary 2.7] that the
ergodic µ-stationary probability measures are precisely the extremal points of the
convex compact set of all µ-stationary probability measures. Assume now that
η ∈ Probµ(Y ) is ergodic and let ν be an extremal point of Fµ(η), which exists by
the Krein–Milman theorem since Fµ(η) 6= ∅. We claim that ν is ergodic, that is,
an extremal point of Probµ(X). Otherwise we could write ν as ν = α1ν1 + α2ν2

for some α1, α2 ∈ (0, 1) with α1 + α2 = 1 and ν1, ν2 ∈ Probµ(X). But then

η = π∗ν = α1π∗ν1 + α2π∗ν2,

https://doi.org/10.1017/fms.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.39


M. Björklund, T. Hartnick and T. Stulemeijer 22

and hence ergodicity of η forces π∗ν1 = π∗ν2 = η and hence ν1, ν2 ∈ Fµ(η). This
contradicts extremality of ν in Fµ(η), and hence ν must have been ergodic.

Appendix B. The unimodularity theorem revisited

The following theorem is used in the proof of Borel density in the uniform case:

THEOREM 32 (Unimodularity theorem, refined version). Let G be an lcsc group
which contains a uniform approximate lattice Λ. Then G is unimodular.

Under the additional assumption that G be compactly generated, this theorem
was established in [2, Theorem 5.8]. We revisit the proof to establish the above
stronger version; we use this opportunity to correct a few inequalities in the
original proof. The following lemma replaces [2, Lemma 5.10]. Here, mG denotes
a fixed choice of left-Haar measure on G and ∆G denotes the modular function
of G.

LEMMA 33. Assume that G is a nonunimodular lcsc group. Then there exists
ρ ∈ C(G) with the following properties:

(i) ρ(g) > 0 for all g ∈ G (hence in particular supp(ρ) = G).

(ii)
∫

G ρ(t) dmG(t) = 1.

(iii)
∫

G ρ(t)∆G(t) dmG(t) > 1.

We use following simple observation, which we leave as an exercise:

LEMMA 34. Let S be a countable set. Then for every function b : S → [0,∞)
there exists a : S→ (0,∞) such that∑

s∈S

a(s) = 1 and
∑
s∈S

a(s)b(s) <∞.

Proof of Lemma 33. We first construct a function ρ0 ∈ C(G) which satisfies (i),
(ii) and

(iii′) γ :=
∫

G ρ0(s)∆G(s) dmG(s) <∞.

To construct ρ0 we pick a countable dense subset S ⊂ G (which exists since
G is second countable) and define b : S → [0,∞) by b(s) := ∆G(s)−1. Using
Lemma 34 we then choose a function a : S→ [0,∞) such that∑

s∈S

a(s) = 1 and
∑
s∈S

a(s)∆G(s)−1 <∞. (B.1)
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Next we pick a compactly supported function ϕ ∈ Cc(G)with ϕ > 0 and ‖ϕ‖1 = 1
and set

ρ0(t) :=
∑
s∈S

a(s)ϕ(st).

We check that ρ0(t) satisfies (i), (ii) and (iii′): Property (i) is immediate, since S
is dense in G and ϕ is positive on a nonempty open set, and (ii) follows from∫

G
ρ0(t) dmG(t) =

∑
s∈S

a(s)
∫

G
ϕ(st) dmG(t)

=

∑
s∈S

a(s)
∫

G
ϕ(t) dmG(t) =

∑
s∈S

a(s) = 1.

Finally, (iii′) follows from the fact that∫
G
ρ(t)∆G(t) dmG(t) =

∑
s∈S

a(s)
∫

G
ϕ(st)∆G(t) dmG(t)

=

∑
s∈S

a(s)∆(s)−1
∫

G
ϕ(t)∆G(t) dmG(t).

Since ϕ is compactly supported, the integral
∫

G ϕ(t)∆G(t) dmG(t) converges, and
thus the sum is finite by (B.1). We have thus constructed ρ0 satisfying (i), (ii) and
(iii′).

Now we choose a > 0 such that aγ > 1/2; since ∆G is unbounded we then
find s ∈ G such that (1− a)γ∆(s)−1 > 1/2. We claim that

ρ(t) := aρ0(t)+ (1− a)ρ0(st)

satisfies (i)–(iii). Here, (i) and (ii) are immediate from the corresponding
properties of ρ0 and left invariance of mG . Concerning (iii) we observe that, using
left invariance of mG and the fact that ∆G is a homomorphism,∫

G
ρ(t)δ(t) dmG(t) = aγ + (1− a)

∫
G
ρ0(t)∆G(s−1t) dmG(t)

= aγ + (1− a)γ∆G(s)−1 > 1/2+ 1/2 = 1.

This establishes (iii) and finishes the proof.

Towards the proof of Theorem 32 we now assume for contradiction that G
contains a uniform approximate lattice Λ, but is nonunimodular. We then choose
ρ as in Lemma 33 and define an admissible probability measure µ on G by

µ := ρmG .
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By the Markov–Kakutani fixpoint theorem there then exists a µ-stationary
probability measure ν on ΩΛ. Since Λ is relatively dense we have ∅ 6∈ ΩΛ, and
since Λ is uniformly discrete, every element of ΩΛ is uniformly discrete and
hence G 6∈ ΩΛ. This shows that ν is nontrivial.

As explained in [2, Section 5.1] we have a well-defined continuous
periodization map

P : Cc(G)→ C(ΩΛ), P f (Λ′) =
∑
x∈Λ′

f (x).

In particular we can define a Radon measure on G by η( f ) := ν(P f ).

LEMMA 35. There exists u ∈ L1
loc(G,mG) such that η = u mG .

Proof. Since [mG] is the unique G-invariant measure class on G, it suffices to
show that η is G-quasi-invariant. This will follows from the fact that ν is µ-
stationary and hence G-quasi-invariant. To see this, let K ⊂ G be a compact
subset of positive measure with characteristic function 1K . There then exists a
compact set L ⊃ K and functions fn ∈ Cc(G) supported in L such that fn > 1K

and lim inf fn = 1K . Then lim η( fn) = η(K ) > 0, and hence for all sufficiently
large n we have

ν(P( fn)) = η( fn) > 0.

Since P is G-equivariant, ν is G-quasi-invariant and ν(P( fn)) > 0 for all
sufficiently large n, we have for all g ∈ G,

η(gK )= lim η(g . fn)= lim ν(P(g . fn))= lim ν(g .P( fn))= lim g∗ν(P( fn)) > 0.

Since G is σ -compact, this proves that η is G-quasi-invariant.

It turns out that the density u is µ-stationary in the following sense; this
statement includes in particular the fact that the convolution of µ with u
converges.

LEMMA 36. For mG-almost every x ∈ G we have

u(x) =
∫

G
ρ(s)u(s−1x) dmG(s) =

∫
G

u(s−1x) dµ(s) <∞.

Proof. Since ν is µ-stationary and P is G-equivariant we have for every f ∈
Cc(G).

η( f ) = ν(P f ) = µ ∗ ν(P f ) =
∫

G
ν(g−1 .P f ) dµ(g)
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=

∫
G
ν(P(g−1 . f )) dµ(g) =

∫
G
η(g−1 . f ) dµ(g).

Since η = u mG we deduce from left invariant of mG that

mG( f · u) = η( f ) =
∫

G
mG((g−1 . f ) · u) dµ(g) =

∫
G

mG( f · (g . u)) dµ(g).

If f > 0, then we can apply Fubini to obtain∫
G

f (x)u(x) dmG(x) =
∫

G
mG( f · (g . u))dµ(g)

=

∫
G

(∫
G

f (x)u(g−1x) dmG(x)
)

dµ(g)

=

∫
G

f (x)
(∫

G
u(g−1x) dµ(g)

)
dmG(x).

If f ∈ Cc(G) is arbitrary, then we can write f = f+ − f− with f+, f− > 0 and
apply this formula to f+ and f−. The lemma follows.

COROLLARY 37. There exists a lower-semicontinuous positive function v : G→
(0,∞) such that u(x) = v(x) for mG-almost all x ∈ G.

Proof. Let ρn be an increasing sequence in Cc(G) with ρn ↗ ρ. By monotone
convergence and Lemma 36 we then have for almost all x ∈ G,

u(x) = v(x) :=
∫

G
ρ(s)u(s−1x) dmG(s) = sup

∫
G
ρn(s)u(s−1x) dmG(s).

The integrals on the right-hand side define continuous functions (as convolutions
with ρn ∈ Cc(G)), hence v is lower-semicontinuous as the supremum of
continuous functions. We claim that the function v is strictly positive. Indeed,
assume for contradiction that for some x0 ∈ G we would have

v(x0) =

∫
G
ρ(s)u(s−1x0) dmG(s) = 0

Since the integrand is nonnegative and ρ > 0 this would imply that u(x) = 0 for
mG-almost every x , but then η = u mG = 0, which is a contradiction.

In view of the corollary we assume from now on that u has been chosen to be
positive and semicontinuous.
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Proof of Theorem 32. We fix a compact set K ⊂ G such that G = ΛK = KΛ.
Since u is lower-semicontinuous and strictly positive we then have

δ := inf
k∈K

u(k)δ(k) > 0.

It follows from [2, (5.2), page 2957] that there exists a finite set F such that for
all λ ∈ Λ and mG-almost all g ∈ G we have

u(gλ−1)∆G(λ
−1) 6

∑
c∈F

u(gc−1)∆G(c−1).

Note that if g satisfies this inequality and if we write g = kλ with k ∈ K and
λ ∈ Λ, then∑
c∈F

u(gc−1)∆G(c−1) > u(gλ−1)∆G(λ
−1) = u(k)∆G(k)∆G(g−1) > δ ·∆G(g)−1.

Since this holds for mG-almost every g ∈ G, we deduce that for all g ∈ G we
have∫

G

(∑
c∈F

u(s−1gc−1)∆G(c−1)

)
ρ∗n(s) dmG(s)> δ·

∫
G
∆G(s−1g)−1ρ∗n(s) dmG(s).

By Lemma 36 the left-hand side equals∑
c∈F

ρ∗n ∗ u(gc−1) =
∑
c∈C

u(gc−1),

whereas the right-hand side equals to

δ ·∆G(g)−1
·

(∫
G
ρ∗n(s)δ(s) dmG(s)

)
= δ ·∆G(g)−1

·

(∫
G
ρ(s)δG(s) dmG(s)

)n

,

which diverges to∞ by Property (iii) of Lemma 33. We thus have established for
every g ∈ G that

∑
c∈C u(gc−1) = ∞, contradicting the fact that c is finite.
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