On the Summation of $1^r + 2^r + 3^r + \dots + n^r$.

By J. A. DONALDSON.

(Read 14th February 1913. Received 18th February 1913.)

We shall use the notation $\Sigma n^r \equiv 1^r + 2^r + ... + n^r$. Mr A. J. Gray suggested to me that n(n+1) is always a factor of Σn^r , and that, in addition, 2n+1 is a factor when r is even.

§1. That n(n+1) is a factor of $\sum n^r$ is proved in Chrystal's Algebra I., chap. XX., §9, but the following proof seems somewhat simpler:—

Let $\Sigma n^r = f(n)$.

We know that f(n) is an integral algebraic function of n.

When n = 0, $\Sigma n^r = 0$; *i.e.* f(n) = 0; therefore f(n) contains the factor n.

Hence f(n+1) contains the factor (n+1).

Now $\Sigma(n+1)^r = f(n) + (n+1)^r = f(n+1)$,

and f(n+1) and $(n+1)^r$ both contain the factor (n+1); $\therefore f(n)$ contains the factor (n+1);

i.e. Σn^r contains the factor n(n+1).

§2. To prove that (2n+1) is a factor when r is even, we must attempt to calculate the even sums without making use of the odd ones. In the identity

 $(x+1)^r - (x-1)^r \equiv 2rx^{r-1} + 2_rC_3x^{r-3} + \ldots + 2_rC_2x^2 + 2$, which holds when r is odd, put successively x = n, x = n - 1, $\ldots x = 2$, x = 1, and we have

 $(n+1)^{r} - (n-1)^{r} = 2rn^{r-1} + \dots + 2_{r}C_{2}n^{2} + 2$ $n^{r} - (n-2)^{r} = 2r(n-1)^{r-1} + \dots + 2_{r}C_{2}(n-1)^{2} + 2$ $(n-1)^{r} - (n-3)^{r} = 2r(n-2)^{r-1} + \dots + 2_{r}C_{2}(n-2)^{2} + 2$ $3^{r} - 1^{r} = 2r2^{r-1} + \dots + 2_{r}C_{2}2^{2} + 2$ $2^{r} - 0 = 2r1^{r-1} + \dots + 2_{r}C_{2}1^{2} + 2.$

2

If we add these equations together, we have

$$(n+1)^r + n^r - 1 = 2r\Sigma n^{r-1} + \ldots + 2_r C_2 \Sigma n^2 + 2n;$$

i.e. $(n+1)^r + n^r - (2n+1) = 2r\Sigma n^{r-1} + \ldots + 2_r C_2 \Sigma n^2$.

When we put $n = -\frac{1}{2}$, the left-hand side of this last equation vanishes; hence, since Σn^2 is divisible by 2n + 1, we can prove successively that Σn^4 , Σn^6 , $\ldots \Sigma n^{2\epsilon}$ are all divisible by 2n + 1.

§3. When examining the above, I worked out the sums as far as Σn^7 and factorised them. The expressions for Σn^3 , Σn^5 , and Σn^7 contained the factor $n^2(n+1)^2$ and suggested $n^2(n+1)^2$ as a factor of Σn^r when r is odd, except in the case of r = 1.

To prove this we have the identity

 $(x+1)^{r} - (x-1)^{r} \equiv 2rx^{r-1} + 2_{r}C_{3}x^{r-3} + \dots + 2_{r}C_{3}x^{3} + 2rx,$

which holds when r is even.

When we give x the values n, n-1, ... 2, 1, and add the resulting identities, we have

$$(n+1)^r + n^r - 1 = 2r\Sigma n^{r-1} + \ldots + 2_r C_3 \Sigma n^3 + 2r\Sigma n;$$

i.e. .

 $(n+1)^r + n^r - 1 - rn(n+1) = 2r\Sigma n^{r-1} + \ldots + 2_rC_3\Sigma n^3.$

When we expand the left-hand side in powers of n, the terms below n^2 are absent; therefore n^2 is a factor of the left-hand side. Also when we put n+1=m in the left side and expand in powers of m, the terms below m^2 are absent; *i.e.* m^2 or $(n+1)^2$ is a factor of the left side.

Now $n^2(n+1)^2$ is a factor of $\sum n^3$; hence we can show successively that it is a factor of $\sum n^5$, $\sum n^7 \dots \sum n^{2s+1}$.

Hence we have proved that :---

 Σn^r contains the factor n(n+1)(2n+1) when r is even, and the factor $n^2(n+1)^2$ when r is odd and greater than 1.

§4. **Expression** of Σn^r in powers of n.

From the section in Chrystal's Algebra, referred to above, we learn that $\sum n^r$ is an integral function of n of the $(r+1)^{\text{th}}$ degree, say

$$\Sigma n^{r} = {}_{r}a_{0}n^{r+1} + {}_{r}a_{1}n^{r} + {}_{r}a_{2}n^{r-1} + \ldots + {}_{r}a_{r-1}n^{2} + {}_{r}a_{r}n. \qquad I.$$

Hence we have

$${}_{r}a_{0}n^{r+1} + {}_{r}a_{1}n^{r} + \dots + {}_{r}a_{r}n + (n+1)^{r} = \Sigma(n+1)^{r}$$

= ${}_{r}a_{0}(n+1)^{r+1} + {}_{r}a_{1}(n+1)^{r} + \dots + {}_{r}a_{r}(n+1).$ II.

II. is an identity and true for all positive integral values of n, and so we may equate coefficients of like powers of n giving :—

n^*	${}_{r}a_{0} \times {}_{r+1}C_{1} = 1, \qquad (1)$
n^{r-1}	$_{r}a_{0} \times _{r+1}C_{2} + _{r}a_{1} \times _{r}C_{1} = _{r}C_{1}, \dots \dots$
n^{r-2}	$,a_0 \times {}_{r+1}\mathbf{C}_3 + ,a_1 \times {}_{r}\mathbf{C}_2 + ,a_2 \times {}_{r-1}\mathbf{C}_1 = {}_{r}\mathbf{C}_2, \dots \dots$
n^{r-1}	$a_0 \times a_{r+1} \mathbf{C}_{s+1} + a_1 \times \mathbf{C}_s + \dots + a_s \times \mathbf{c}_{s+1} \mathbf{C}_1 = \mathbf{C}_s, \dots, (s+1)$
n	$(r+1)_r a_0 + r_r a_1 + (r-1)_r a_2 + \ldots + 2_r a_{r-1} = r, \ldots (r)$

constant $_{r}a_{0} + _{r}a_{1} + _{r}a_{2} + \ldots + _{r}a_{r-1} + _{r}a_{r} = 1$(r+1)

The $(r+1)^{\text{th}}$ equation is also the expression of the fact that the identity I. holds when n = 1.

These equations enable us to calculate a_0, a_1, \ldots, a_r successively in terms of r.

Evidently a_{r+1} is always equal to zero, since $\sum n^r$ is always divisible by n. We shall see that the equations $(1) \dots (r+1)$ give us no information as to a_{r+1} .

From (1),
$$_{r}a_{0}=\frac{1}{r+1}$$
.

From (2),
$$\frac{1}{r+1} \frac{(r+1)r}{2!} + r_r a_1 = r$$
,

giving

From (3),
$$\frac{1}{r+1} \frac{(r+1)r(r-1)}{3!} + \frac{1}{2} \frac{r(r-1)}{2!} + (r-1)_r a_2 = \frac{r(r-1)}{2!}$$
,

 $a_{1} = \frac{1}{2}$.

which, except when r = 1, gives ${}_{ra_2} = \frac{1}{6} \frac{r}{2!}$. When r = 1, ${}_{a_2}$ is the term ${}_{ra_{r+1}}$, and this shows how these equations give us no information about ${}_{ra_{r+1}}$.

From (4),
$$\frac{1}{r+1} \frac{(r+1)\dots(r-2)}{4!} + \frac{1}{2} \frac{r\dots(r-2)}{3!} + \frac{r}{12} \frac{(r-1)(r-2)}{2!} + (r-2)_r a_3 = \frac{r(r-1)(r-2)}{3!},$$

which reduces to $_{r}a_{3} = 0 \times \frac{r(r-1)}{3!}$.

From (5),
$$\frac{1}{r+1} \frac{(r+1)\dots(r-3)}{5!} + \frac{1}{2} \frac{r\dots(r-3)}{4!} + \frac{r}{12} \frac{(r-1)\dots(r-3)}{3!} + (r-3)_r a_4 = \frac{r\dots(r-3)}{4!},$$

which, except when r = 3, gives

$$_{r}a_{4} = -\frac{1}{30}\frac{r(r-1)(r-2)}{4!}$$

From the above sample of calculation, and the form of equations, (1)...(r+1), it is obvious that *a*, is of the form

$$a_s \times \frac{r(r-1)(r-2)\dots(r-s+2)}{s!}$$

where the constant a_s depends on s only.

If we go back now to equation I., when r=3, ${}_{3}a_{3}=0$ since $\sum n^{3}$ contains the factor n^{2} .

Now $_{r}a_{3} = a_{3} \times \frac{r(r-1)}{3!}$, and when r = 3, $\frac{r(r-1)}{3!}$ does not vanish;

therefore $a_3 = 0$, as we saw above by calculation.

For the same reason, viz., that $\sum n^r$ is divisible by n^2 when r is odd and greater than 1, $a_5 = a_7 = a_9 = ... = 0$.

Values of a are given below up to a_{18} .

8	a,
2	1/6
4	- 1/30
6	1/42
8	- 1/30
10	5/66
12	- 691/2730
14	7/6
16	- 3617/510
18	43867/798
L	l <u>.</u>

The values of a_{i} given above were not all calculated from the

$$\Sigma n^9 = {}_{9}a_0n^{10} + {}_{9}a_1n^9 + {}_{9}a_2n^8 + {}_{9}a_4n^6 + {}_{9}a_6n^4 + {}_{9}a_8n^2.$$
 III.

Our object is to calculate a_8 , knowing the others up to a_6 .

Equation (r+1) shows, when we put r=9, that

$$_{9}a_{0} + _{9}a_{1} + _{9}a_{2} + _{9}a_{4} + _{9}a_{6} + _{9}a_{8} = 1.$$

Now $_{9}a_{0} + _{9}a_{1} + \ldots + _{9}a_{6} = \frac{1}{10} + \frac{1}{2} + \frac{3}{4} - \frac{7}{10} + \frac{1}{2} = \frac{23}{20};$

$$\therefore \quad _{9}a_{8}=-\tfrac{3}{20}$$

Also

$$_{r}a_{s} = a_{s}\frac{r(r-1)...(r-6)}{8!};$$

$$\therefore \quad {}_{9}a_{8} = a_{8}\frac{9 \cdot 8 \dots 3}{8!} = -\frac{3}{20};$$

whence $a_8 = -\frac{1}{30}$.

We might also get a_8 by starting with $\sum n^8$ for, putting r = 8,

$$\Sigma n^8 = {}_8a_0n^9 + {}_8a_1n^8 + {}_8a_2n^7 + {}_8a_4n^5 + {}_8a_6n^3 + {}_8a_8n,$$

$${}_8a_0 + {}_8a_1 + {}_8a_2 + {}_8a_4 + {}_8a_6 + {}_8a_8 = 1.$$

and

In general to get a_{2s} , make r equal to 2s or 2s + 1, and it sometimes happens that one value will give simpler calculations than the other.

§5. As we have not used the fact that $\sum n^r$ is divisible by (n+1) in §4, we may use these coefficients to show that $\sum n^r$ is divisible by (n+1) always, and by $(n+1)^2$ when r is odd and greater than 1.

Leaving out left-hand suffixes,

$$\Sigma n^{r} = a_{0}n^{r+1} + a_{1}n^{r} + a_{2}n^{r-1} + a_{4}n^{r-3} + \dots + a_{r}n \quad (r \text{ even}),$$

$$\Sigma n^{r} = a_{0}n^{r+1} + a_{1}n^{r} + a_{2}n^{r-1} + a_{4}n^{r-3} + \dots + a_{r-1}n^{2} \quad (r \text{ odd}).$$
(1) $r \text{ even}.$ By $(r+1)$, $a_{0} + a_{1} + a_{2} + \dots + a_{r} = 1;$

$$\therefore \quad a_{0} + a_{2} + \dots + a_{r} = 1 - a_{1} = \frac{1}{2}.$$
Now $\prod_{n=-1} \Sigma n^{r} = a_{1} - (a_{0} + a_{2} + \dots + a_{r}) = 0;$

$$\therefore \quad \Sigma n^{r} \text{ is divisible by } (n+1) \text{ when } r \text{ is even.}$$

(2) rodd. Just as in the case of r even, we show that $\sum n^r$ is divisible by n+1.

Equation (r) is

$$(r+1)a_0+ra_1+(r-1)a_2+\ldots 2a_{r-1}=r;$$

 $(r+1)a_0 - ra_1 + (r-1)a_2 + \ldots + 2a_{r-1} = 0;$

i.e.
$$(r+1)a_0 + (r-1)a_2 + \ldots + 2a_{r-1} = r - a_1r = \frac{1}{2}r$$
;

i.e.

i.e.
$$\mathbf{L} \left(\frac{d}{dn} \Sigma n^r \right) = 0 \quad (r \text{ odd});$$

i.e. Σn^r contains the factor $(n+1)^2$ when r is odd and greater than 1 (for equation (r) does not involve a_1 when r=1).

§6. Proof of Bernoulli's Theorem.

I had reached this stage when Professor Whittaker pointed out to me Bernoulli's expansion (see Chrystal's Algebra II., §7, Chap. XXVIII.). We can demonstrate this expansion from the above as follows :—

. The tabulated values of a_i are simply Bernoulli's numbers with alternating signs.

From what we have proved in [§]4, we can assume

$$\Sigma n^{r} = \frac{n^{r+1}}{r+1} + \frac{1}{2}n^{r} + \frac{\beta_{1}}{2}rn^{r-1} - \frac{\beta_{2}}{4}rC_{3}n^{r-3} + \frac{\beta_{3}}{6}rC_{5}n^{r-5} - \frac{\beta_{4}}{8}rC_{7}n^{r-7} \dots$$

where $\beta_{s} = |a_{2s}|$;
i.e. $ra_{2s} = (-)^{s-1}\frac{\beta_{s}}{2s}rC_{2s-1}$.
When we substitute for the *a*'s in $(r+1)$, we have

(1) when r is even, =2p say,

$$_{r}a_{0} + _{r}a_{1} + _{r}a_{2} + _{r}a_{4} + \ldots + _{r}a_{r} = 1$$
;

i.e.
$$\frac{1}{r+1} + \frac{1}{2} + \frac{\beta_1}{2} C_1 - \frac{\beta_2}{4} C_3 + \ldots = 1$$
;
i.e. ${}_{2p}C_1 \frac{\beta_1}{2} - {}_{2p}C_3 \frac{\beta_2}{4} + \ldots + (-)^{p-1} {}_{2p}C_{2p-1} \frac{\beta_p}{2p} = \frac{1}{2} - \frac{1}{2p+1} = \frac{2p-1}{2(2p+1)}$.
IV.

(2) When r is odd,
$$= 2p + 1$$
 say,
 ${}_{r}a_{0} + {}_{r}a_{1} + {}_{r}a_{2} + \dots + {}_{r}a_{r-1} = 1$;
i.e. $\frac{1}{r+1} + \frac{1}{2} + \frac{\beta_{1}}{2}{}_{r}C_{1} - \frac{\beta_{2}}{4}{}_{r}C_{3} + \dots = 1$;
i.e. ${}_{2p+1}C_{1}\frac{\beta_{1}}{2} - {}_{2p+1}C_{3}\frac{\beta_{2}}{4} + \dots + (-)^{p-1}{}_{2p+1}C_{2p-1}\frac{\beta_{p}}{2p}$
 $= \frac{1}{2} - \frac{1}{2p+2} = \frac{p}{2p+2}$. ∇ .

When we multiply IV. by $(-)^{p-1}(2p+1)$, we get, since ${}_{2p}C_{2t-1} \times \frac{2p+1}{2s} = {}_{2p+1}C_{2t},$ ${}_{2p+1}C_{2p}\beta_p - {}_{2p+1}C_{2p-2}\beta_{p-1} + \dots + (-)^{p-1}{}_{2p+1}C_2\beta_1 = (-)^{p-1}(p-\frac{1}{2}).$ IV.¹

Similarly, when we multiply V. by $(-)^{p-1}(2p+2)$, we get

$${}_{2p+2}\mathbf{C}_{2p}\,\beta_p - {}_{2p+2}\mathbf{C}_{2p-2}\,\beta_{p-1} + \ldots + (\,-\,)^{p-1}{}_{2p+2}\mathbf{C}_2\,\beta_1 = (\,-\,)^{p-1}p. \qquad \mathbf{V}^{\,1}$$

We can calculate the β 's from IV.¹ or V.¹ by giving p the values 1, 2, 3... successively. *Cf.* Calculation of α_{s} , in end of § 4, by putting r = 8 or 9 in equation (r+1).

These alternative recurrence formulae for β are the same as those for Bernoulli's numbers (see Chrystal's Algebra II., Equations (10') and (11'), § 6, Chap. XXVIII.).

Hence the numbers β_1 , β_2 , etc., are Bernoulli's numbers B_1 , B_2 , etc.

Hence

$$\Sigma n^{r} = \frac{n^{r+1}}{r+1} + \frac{1}{2}n^{r} + \frac{B_{1}}{2}rn^{r-1} - \frac{B_{2}}{4}rC_{3}n^{r-3} + \frac{B_{3}}{6}rC_{5}n^{r-5} - \frac{B_{4}}{8}rC_{7}n^{r-7} + \dots,$$

the last term being $(-)^{\frac{1}{2}(r-2)}B_{\frac{1}{2}r}n$ or $\frac{1}{2}(-)^{\frac{1}{2}(r-3)}r B_{\frac{1}{2}(r-1)}n^2$ according as r is even or odd (Bernoulli's Theorem).

The proof seems rather complicated, as I have taken trouble to make every step clear, but it depends on very simple principles, and does not involve even an infinite series.

§ 7. To show how intimately connected the simple factors of Σn^r are with the Bernoullian expansions given in that section of

Chrystal referred to in §6 of this paper, we will give a formula for calculating the Bernoullian numbers, deduced from the fact that 2n + 1 is a factor of $\sum n^{2p}$.

Since $\sum n^{2p}$ contains the factor 2n+1, we have, putting $n=-\frac{1}{2}$ in the expression for $\sum n^{2p}$.

$$\frac{1}{2p+1} - 1 + 2^2 \frac{\mathbf{B}_1}{2} 2p \quad 2^4 \frac{\mathbf{B}_2}{4} {}_{2p} \mathbf{C}_3 + \dots + (-)^{p-1} 2^{2p} \frac{\mathbf{B}_p}{2p} {}_{2p} \mathbf{C}_{2p-1} = 0.$$

i.e. taking $\frac{1}{2p+1} - 1$ to the right-hand side of the equation and multiplying up by 2p + 1,

$$2^{2}B_{1\ 2p+1}C_{2} - 2^{4}B_{2\ 2p+1}C_{4} + 2^{6}B_{3\ 2p+1}C_{6}\dots + (-)^{p-1}2^{2p}B_{p\ 2p+1}C_{2p} = 2p. \qquad VI.$$

Now $x\frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} = 1 + \frac{B_{1}}{2!}2^{2}x^{2} - \frac{B_{2}}{4!}2^{4}x^{4} + \frac{B_{3}}{6!}2^{6}x^{6}\dots$

Multiply up by $e^{x} - e^{-x}$, expand both sides, and write down the condition that the coefficient of x^{2p+1} is the same on both sides, and we get equation VI.