On the Summation of $\mathbf{1}^{r}+2^{r}+3^{r}+\ldots+n^{r}$.

By J. A. Donaldson.

(Read 14th Februcry 1913. Received 18th February 1913.)
We shall use the notation $\Sigma n^{r} \equiv 1^{r}+2^{r}+\ldots+n^{r}$. Mr A. J. Gray suggested to me that $n(n+1)$ is always a factor of Σn^{r}, and that, in addition, $2 n+1$ is a factor when r is even.
§ 1 . That $n(n+1)$ is a factor of Σn^{r} is proved in Chrystal's Algebra I., chap. XX., §9, but the following proof seems somewhat simpler:-

Let $\Sigma n^{r}=f(n)$.
We know that $f(n)$ is an integral algebraic function of n.
When $n=0, \Sigma n^{r}=0$; i.e. $f(n)=0$; therefore $f(n)$ contains the factor n.

Hence $f(n+1)$ contains the factor $(n+1)$.
Now $\Sigma(n+1)^{r}=f(n)+(n+1)^{r}=f(n+1)$, and $f(n+1)$ and $(n+1)^{r}$ both contain the factor $(n+1)$;
$\therefore f(n)$ contains the factor $(n+1)$;
i.e. Σn^{r} contains the factor $n(n+1)$.
§2. To prove that $(2 n+1)$ is a factor when r is even, we must attempt to calculate the even sums without making use of the odd ones. In the identity

$$
(x+1)^{r}-(x-1)^{r} \equiv 2 r x^{r-1}+2_{r} \mathrm{C}_{3} x^{r-3}+\ldots+2_{r} \mathrm{C}_{2} x^{2}+2,
$$

which holds when r is odd, put successively $x=n, x=n-1, \ldots x=2$, $x=1$, and we have

$$
\begin{aligned}
& (n+1)^{r}-(n-1)^{r}=2 r n^{r-1}+\ldots \ldots \ldots+2_{r} \mathrm{C}_{2} n^{2}+2 \\
& n^{r}-(n-2)^{r}=2 r(n-1)^{r-1}+\ldots+2_{r} \mathrm{C}_{2}(n-1)^{2}+2 \\
& (n-1)^{r}-(n-3)^{r}=2 r(n-2)^{r-1}+\ldots+2_{r} \mathrm{C}_{2}(n-2)^{2}+2 \\
& 3^{r}-1^{r}=2 r^{2^{r-1}}+\ldots \ldots \ldots \ldots \ldots+2{ }_{r} \mathrm{C}_{2} 2^{2}+2 \\
& 2^{r}-0=2 r 1^{r-1}+\ldots \ldots \ldots \ldots \ldots+2 \mathrm{C}_{2} 1^{2}+2 .
\end{aligned}
$$

If we add these equations together, we have

$$
(n+1)^{r}+n^{r}-1=2 r \Sigma n^{r-1}+\ldots+2_{r} \mathrm{C}_{2} \Sigma n^{2}+2 n ;
$$

i.e. $\quad(n+1)^{r}+n^{r}-(2 n+1)=2 r \Sigma n^{r-1}+\ldots+2_{r} \mathrm{C}_{2} \Sigma n^{2}$.

When we put $n=-\frac{1}{2}$, the left-hand side of this last equation vanishes; hence, since Σn^{2} is divisible by $2 n+1$, we can prove successively that $\Sigma n^{4}, \Sigma n^{6}, . . \Sigma n^{24}$ are all divisible by $2 n+1$.
§3. When examining the above, I worked out the sums as far as Σn^{7} and factorised them. The expressions for $\Sigma n^{3}, \Sigma n^{5}$, and Σn^{7} contained the factor $n^{2}(n+1)^{2}$ and suggested $n^{2}(n+1)^{2}$ as a factor of Σn^{r} when r is odd, except in the case of $r=1$.

To prove this we have the identity

$$
(x+1)^{r}-(x-1)^{r} \equiv 2 r x^{r-1}+2_{r} \mathrm{C}_{3} x^{r-3}+\ldots+2_{r} \mathrm{C}_{3} x^{3}+2 r x,
$$

which holds when r is even.
When we give x the values $n, n-1, \ldots 2,1$, and add the resulting identities, we have

$$
(n+1)^{r}+n^{r}-1=2 r \Sigma n^{r-1}+\ldots . .+2_{r} \mathrm{C}_{3} \Sigma n^{3}+2 r \Sigma n ;
$$

i.e. $\quad(n+1)^{r}+n^{r}-1-r n(n+1)=2 r \Sigma n^{r-1}+\ldots+2_{r} \mathrm{C}_{3} \Sigma n^{3}$.

When we expand the left-hand side in powers of n, the terms below n^{2} are absent; therefore n^{2} is a factor of the left-hand side. Also when we put $n+1=m$ in the left side and expand in powers of m. the terms below m^{2} are absent; i.e. m^{2} or $(n+1)^{2}$ is a factor of the left side.

Now $n^{2}(n+1)^{2}$ is a factor of Σn^{3}; hence we can show successively that it is a factor of $\Sigma n^{5}, \Sigma n^{7} \ldots \Sigma n^{2+1}$.

Hence we have proved that:-
Σn^{r} contains the factor $n(n+1)(2 n+1)$ when r is even, and the factor $n^{2}(n+1)^{2}$ when r is odd and greater than 1 .
§4. Expression of Σn^{r} in powers of n.
From the section in Chrystal's Algebra, referred to above, we learn that Σn^{r} is an integral function of n of the $(r+1)^{\text {th }}$ degree, say

$$
\begin{equation*}
\Sigma n^{r}={ }_{r} a_{0} n^{r+1}+{ }_{r} a_{1} n^{r}+{ }_{r} a_{2} n^{r-1}+\ldots+{ }_{r} a_{r-1} n^{2}+{ }_{r} a_{r} n . \tag{I.}
\end{equation*}
$$

Hence we have

$$
\begin{align*}
r_{r} a_{0} n^{r+1}+{ }_{r} a_{1} n^{r}+\ldots+{ }_{r} a_{r} n+(n+1)^{r}=\Sigma(n+1)^{r} \\
={ }_{r} a_{0}(n+1)^{r+1}+{ }_{r} a_{1}(n+1)^{r}+\ldots+{ }_{r} a_{r}(n+1) . \tag{II.}
\end{align*}
$$

II. is an identity and true for all positive integral values of n, and so we may equate coefficients of like powers of n giving :-
$n^{r} \quad{ }_{r} a_{0} \times{ }_{r+1} \mathrm{C}_{1}=1$,
$n^{r-1} \quad{ }_{r} a_{0} \times{ }_{r+1} \mathrm{C}_{2}+{ }_{r} a_{1} \times{ }_{r} \mathrm{C}_{1}={ }_{r} \mathrm{C}_{1}$,
$n^{r-2} \quad{ }_{r} a_{0} \times{ }_{r+1} \mathrm{C}_{3}+{ }_{r} a_{1} \times{ }_{r} \mathrm{C}_{2}+{ }_{r} a_{2} \times{ }_{r-1} \mathrm{C}_{1}={ }_{r} \mathrm{C}_{2}$,
$n^{r-1} \quad{ }_{r} a_{0} \times{ }_{r+1} \mathrm{C}_{s+1}+{ }_{r} a_{1} \times{ }_{r} \mathrm{C}_{s}+\ldots+{ }_{r} a_{s} \times{ }_{r \rightarrow+1} \mathrm{C}_{1}={ }_{r} \mathrm{C}_{s}, \ldots \ldots \ldots(s+1)$
$n \quad(r+1)_{r} a_{0}+r_{r} a_{1}+(r-1)_{r} a_{2}+\ldots+2_{r} a_{r-1}=r, \ldots \ldots \ldots \ldots \ldots .(r)$
constant ${ }_{r} a_{0}+{ }_{r} a_{1}+{ }_{r} a_{2}+\ldots+{ }_{r} a_{r-1}+{ }_{r} a_{r}=1 . \ldots \ldots \ldots \ldots \ldots \ldots . .(r+1)$
The $(r+1)^{\text {th }}$ equation is also the expression of the fact that the identity I. holds when $n=1$.

These equations enable us to calculate ${ }_{r} a_{0,}, a_{1}, \ldots, a_{r}$ successively in terms of r.

Evidently ${ }_{r} a_{r+1}$ is always equal to zero, since Σn^{r} is always divisible by n. We shall see that the equations $(1) \ldots(r+1)$ give us no information as to ${ }_{r} a_{r+1}$.

From (1), ${ }_{r} a_{0}=\frac{1}{r+1}$.
From (2), $\frac{1}{r+1} \frac{(r+1) r}{2!}+r_{r} a_{1}=r$,
giving

$$
{ }_{r} a_{1}=\frac{1}{2} .
$$

From (3), $\frac{1}{r+1} \frac{(r+1) r(r-1)}{3!}+\frac{1}{2} \frac{r(r-1)}{2!}+(r-1)_{r} a_{2}=\frac{r(r-1)}{2!}$,
which, except when $r=1$, gives ${ }_{r} a_{2}=\frac{1}{6} \frac{r}{2!}$. When $r=1,{ }_{r} a_{2}$ is the term ${ }_{r} a_{r+1}$, and this shows how these equations give us no information about ${ }_{r} a_{r+1}$.

$$
\text { From (4), } \left.\begin{array}{rl}
\frac{1}{r+1} \frac{(r+1) \ldots(r-2)}{4!}+\frac{1}{2} & \frac{r \ldots(r-2)}{3!}
\end{array}+\frac{r}{12} \frac{(r-1)(r-2)}{2!}\right) ~=(r-2)_{r} a_{3}=\frac{r(r-1)(r-2)}{3!},
$$

which reduces to,$a_{3}=0 \times \frac{r(r-1)}{3!}$.

From (5), $\frac{1}{r+1} \frac{(r+1) \ldots(r-3)}{5!}+\frac{r}{2} \frac{r .(r-3)}{4!}+\frac{r}{12} \frac{(r-1) \ldots(r-3)}{3!}$

$$
+(r-3)_{r} a_{4}=\frac{r \ldots(r-3)}{4!},
$$

which, except when $r=3$, gives

$$
{ }_{r} a_{4}=-\frac{1}{30} \frac{r(r-1)(r-2)}{4!} .
$$

From the above sample of calculation, and the form of equations, (1) $\ldots(r+1)$, it is obvious that ${ }_{r} a_{4}$ is of the form

$$
\alpha, \times \frac{r(r-1)(r-2) \ldots(r-s+2)}{s!}
$$

where the constant a_{s} depends on s only.
If we go back now to equation I., when $r=3,{ }_{3} a_{3}=0$ since Σn^{3} contains the factor n^{2}.

Now, $a_{3}=a_{3} \times \frac{r(r-1)}{3!}$, and when $r=3, \frac{r(r-1)}{3!}$ does not vanish ; therefore $a_{3}=0$, as we saw above by calculation.

For the same reason, viz., that Σn^{r} is divisible by n^{2} when r is odd and greater than $1, a_{5}=a_{7}=a_{9}=\ldots=0$.

Values of a are given below up to a_{18}.

8	a_{s}
2	$1 / 6$
4	$-1 / 30$
6	$1 / 42$
8	$-1 / 30$
10	$5 / 66$
12	$-691 / 2730$
14	$7 / 6$
16	$-3617 / 510$
18	$43867 / 798$

The values of a_{4} given above were not all calculated from the
equations (1) $\ldots(r+1)$ as before, but by giving r a particular value in a way which the following example will make clear:-

$$
\Sigma n^{9}={ }_{9} a_{0} n^{10}+{ }_{9} a_{1} n^{9}+{ }_{9} a_{2} n^{8}+{ }_{9} a_{4} n^{6}+{ }_{9} a_{6} n^{4}+{ }_{9} a_{8} n^{2}
$$

III.

Our object is to calculate a_{8}, knowing the others up to α_{6}.
Equation $(r+1)$ shows, when we put $r=9$, that

$$
{ }_{9} a_{0}+{ }_{9} a_{1}+{ }_{9} a_{2}+{ }_{9} a_{4}+{ }_{9} a_{6}+{ }_{9} a_{8}=1
$$

Now

$$
{ }_{9} a_{0}+{ }_{9} a_{1}+\ldots+{ }_{9} a_{6}=\frac{1}{10}+\frac{1}{2}+\frac{3}{4}-\frac{7}{10}+\frac{1}{2}=\frac{23}{20} ;
$$

$$
\therefore \quad{ }_{0} a_{8}=-\frac{3}{20} .
$$

Also

$$
{ }_{r} a_{8}=\alpha_{8} \frac{r(r-1) \ldots(r-6)}{8!} ;
$$

$$
\therefore \quad{ }_{9} a_{8}=a_{8} \frac{9.8 \ldots 3}{8!}=-\frac{3}{20} ;
$$

whence

$$
a_{8}=-\frac{1}{30} .
$$

We might also get a_{8} by starting with Σn^{8} for, putting $r=8$,

$$
\Sigma n^{8}={ }_{8} a_{0} n^{9}+{ }_{8} a_{1} n^{8}+{ }_{8} a_{2} n^{7}+{ }_{8} a_{4} n^{5}+{ }_{8} a_{6} n^{3}+{ }_{8} a_{8} n,
$$

and

$$
{ }_{8} a_{0}+{ }_{8} a_{1}+{ }_{8} a_{2}+{ }_{8} a_{4}+{ }_{8} a_{6}+{ }_{8} a_{8}=1
$$

In general to get a_{2}, make r equal to $2 s$ or $2 s+1$, and it sometimes happens that one value will give simpler calculations than the other.
§5. As we have not used the fact that Σn^{r} is divisible by $(n+1)$ in $\S 4$, we may use these coefficients to show that Σn^{r} is divisible by $(n+1)$ always, and by $(n+1)^{2}$ when r is odd and greater than 1.

Leaving out left-hand suffixes,

$$
\begin{aligned}
& \Sigma n^{r}=a_{0} n^{r+1}+a_{1} n^{r}+a_{2} n^{r-1}+a_{1} n^{r-3}+\ldots+a_{r} n \quad(r \text { even }), \\
& \Sigma n^{r}=a_{0} n^{r+1}+a_{1} n^{r}+a_{2} n^{r-1}+a_{4} n^{r-3}+\ldots+a_{r-1} n^{2} \quad(r \text { odd }) .
\end{aligned}
$$

(1) r even. $\mathrm{By}(r+1), a_{0}+a_{1}+a_{2}+\ldots a_{r}=1$;

$$
\therefore \quad a_{0}+a_{2}+\ldots a_{r}=1-a_{1}=\frac{1}{2} .
$$

Now $\underset{n=-1}{\mathbf{L}} \Sigma n^{r}=a_{1}-\left(a_{0}+a_{2}+\ldots a_{r}\right)=0$;

$$
\therefore \quad \Sigma n^{r} \text { is divisible by }(n+1) \text { when } r \text { is even. }
$$

(2) r odd. Just as in the case of r even, we show that Σn^{r} is divisible by $n+1$.

Equation (r) is

$$
(r+1) a_{0}+r a_{1}+(r-1) a_{2}+\ldots 2 a_{r-1}=r ;
$$

i.e. $\quad(r+1) a_{0}+(r-1) a_{2}+\ldots+2 a_{r-1}=r-a_{1} r=\frac{1}{2} r$;
i.e. $\quad(r+1) a_{0}-r a_{1}+(r-1) a_{2}+\ldots+2 a_{r-1}=0$;
i.e. $\quad \mathrm{L}\left(\frac{d}{n=-1} \mathrm{dn}^{2} \Sigma n^{r}\right)=0 \quad(r$ odd $)$;
i.e. $\quad \Sigma n^{r}$ contains the factor $(n+1)^{2}$ when r is odd and greater than 1 (for equation (r) does not involve a_{1} when $r=1$).

§ 6. Proof of Bernoulli's Theorem.

I had reached this stage when Professor Whittaker pointed out to me Bernoulli's expansion (see Chrystal's Algebra II., §7, Chap. XXVIII.). We can demonstrate this expansion from the above as follows :-

The tabulated values of a_{4} are simply Bernoulli's numbers with alternating signs.

From what we have proved in §4, we can assume
$\Sigma n^{r}=\frac{n^{r+1}}{r+1}+\frac{1}{2} n^{r}+\frac{\beta_{1}}{2} r n^{r-1}-\frac{\beta_{2}}{4} \mathrm{C}_{3} n^{r-3}+\frac{\beta_{3}}{6} \mathrm{C}_{5} n^{r-5}-\frac{\beta_{4}}{8} r^{2} \mathrm{C}_{7} n^{r-\tau}$.
where $\beta_{t}=\left|a_{22}\right|$;
i.e. $\quad{ }_{r} a_{2 s}=(-)^{r-1} \frac{\beta_{t}}{2 s}{ }_{r} \mathrm{C}_{2-1}$.

When we substitute for the a 's in ($r+1$), we have
(1) when r is even, $=2 p$ say,

$$
{ }_{r} a_{0}+{ }_{r} a_{1}+{ }_{r} a_{2}+{ }_{r} a_{4}+\ldots+{ }_{r} a_{r}=1 ;
$$

i.e. $\frac{1}{r+1}+\frac{1}{2}+\frac{\beta_{1}}{2}, \mathrm{C}_{1}-\frac{\beta_{2}}{4} \mathrm{C}_{3}+\ldots=1$;
i.e. ${ }_{2 p} \mathrm{C}_{1} \frac{\beta_{1}}{2}-{ }_{2 p} \mathrm{C}_{3} \frac{\beta_{2}}{4}+\ldots+(-)^{p-1}{ }_{2 p} \mathrm{C}_{2 p-1} \frac{\beta_{p}}{2 p}=\frac{1}{2}-\frac{1}{2 p+1}=\frac{2 p-1}{2\left({ }^{2} p+1\right)}$.
(2) When r is odd, $=2 p+1$ say,

$$
{ }_{r} a_{0}+{ }_{r} a_{1}+{ }_{r} a_{2}+\ldots+{ }_{r} a_{r-1}=1 ;
$$

i.e. $\frac{1}{r+1}+\frac{1}{2}+\frac{\beta_{1}}{2}, \mathrm{C}_{1}-\frac{\beta_{2}}{4}, \mathrm{C}_{3}+\ldots=1$;
i.e. $\quad{ }_{2 p+1} \mathrm{C}_{1} \frac{\beta_{1}}{2}-{ }_{2 p+1} \mathrm{C}_{3} \frac{\beta_{2}}{4}+\ldots+(-)^{p-1}{ }_{2 p+1} \mathrm{C}_{2 p-1} \frac{\beta_{p}}{2 p}$

$$
=\frac{1}{2}-\frac{1}{2 p+2}=\frac{p}{2 p+2} . \quad \mathrm{V} .
$$

When we multiply IV. by $(-)^{p-1}(2 p+1)$, we get, since ${ }_{2 p} \mathrm{C}_{2 t-1} \times \frac{2 p+1}{2 g}={ }_{2 p+1} \mathrm{C}_{2 \text {, }}$,

$$
\begin{equation*}
{ }_{2 p+1} \mathrm{C}_{2 p} \beta_{p}-{ }_{2 p+1} \mathrm{C}_{2 p-2} \beta_{p-1}+\ldots+(-)^{p-3}{ }_{2 p+1} \mathrm{C}_{2} \beta_{1}=(-)^{p-1}\left(p-\frac{1}{2}\right) . \tag{}
\end{equation*}
$$

Similarly, when we multiply V. by $(-)^{p-1}(2 p+2)$, we get

$$
{ }_{2 p+2} \mathrm{C}_{2 p} \beta_{p}-{ }_{2 p+2} \mathrm{C}_{2 p-2} \beta_{p-1}+\ldots+(-)^{p-1}{ }_{2 p+2} \mathrm{C}_{2} \beta_{1}=(-)^{p-1} p . \quad \mathrm{V}^{1}{ }^{1}
$$

We can calculate the β 's from IV. ${ }^{1}$ or V. ${ }^{1}$ by giving p the values $1,2,3 \ldots$ successively. $C f$. Calculation of a_{8}, in end of $\S 4$, by putting $r=8$ or 9 in equation $(r+1)$.

These alternative recurrence formulae for β are the same as those for Bernoulli's numbers (see Chrystal's Algebra II., Equations (10^{\prime}) and (11^{\prime}), § 6, Chap. XXVIII.).

Hence the numbers β_{1}, β_{2}, etc., are Bernoulli's numbers B_{1}, B_{2}, etc.

Hence

$\Sigma n^{r}=\frac{n^{r+1}}{r+1}+\frac{1}{2} n^{r}+\frac{\mathrm{B}_{1}}{2} r n^{r-1}-\frac{\mathrm{B}_{2}}{4} \mathrm{C}_{3} n^{r-3}+\frac{1 \mathrm{~B}_{3}}{6} \mathrm{C}_{5} n^{r-5}-\frac{\mathrm{B}_{4}}{8}{ }_{r} \mathrm{C}_{7} n^{r-\overline{7}}+\ldots . .$, the last term being $(-)^{\frac{1}{2}(r-2)} \mathrm{B}_{\frac{1}{2} r} n$ or $\frac{1}{2}(-)^{\left.\frac{2}{2} r-3\right) r} \mathrm{~B}_{\mathfrak{f}(r-1)} n^{2}$ according as r is even or odd (Bernoulli's Theorem).

The proof seems rather complicated, as I have taken trouble to make every step clear, but it depends on very simple principles, and does not involve even an infinite series.
§ 7. To show how intimately connected the simple factors of Σn^{r} are with the Bernoullian expansions given in that section of

Chrystal referred to in $\S 6$ of this paper, we will give a formula for calculating the Bernoullian-numbers, deduced from the fact that $2 n+1$ is a factor of $\Sigma n^{2 p}$.

Since $\Sigma n^{2 p}$ contains the factor $2 n+1$, we have, putting $n=-\frac{1}{2}$ in the expression for $\Sigma n^{2 p}$.

$$
\frac{1}{2 p+1}-1+2^{2} \frac{\mathrm{~B}_{1}}{2} 2 p \quad{ }_{2} \frac{\mathrm{~B}}{2}^{4}{ }_{2 p} \mathrm{C}_{3}+\ldots+(-)^{p-1} 2^{2 p} \frac{\mathrm{~B}_{p}}{2 p} \mathrm{C}_{2 p-1}=0 .
$$

i.e. taking $\frac{1}{2 p+1}-1$ to the right-hand side of the equation and multiplying up by $2 p+1$,

$$
\begin{aligned}
& 2^{2} \mathrm{~B}_{12 p+1} \mathrm{C}_{2}-2^{4} \mathrm{~B}_{22 p+1} \mathrm{C}_{4}+2^{6} \mathrm{~B}_{32 p+1} \mathrm{C}_{6} \cdots \\
&+(-)^{p-1} 2^{2 p} \mathrm{~B}_{p}{ }_{2 p+1} \mathrm{C}_{2 p}=2 p . \quad \text { VI. }
\end{aligned}
$$

Now $x \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}=1+\frac{\mathrm{B}_{1}}{2!} 2^{2} x^{2}-\frac{\mathrm{B}_{2}}{4!} 2^{4} x^{4}+\frac{\mathrm{B}_{3}}{6!} 9^{6} x^{6} \ldots$.
Multiply up by $e^{x}--e^{-x}$, expand both sides, and write down the condition that the coefficient of $x^{2 p+1}$ is the same on both sides, and we get equation VI.

