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SMOOTH, VERY SMOOTH AND STRONGLY SMOOTH POINTS IN
MUSIELAK-ORLICZ SEQUENCE SPACES

SHURONG BIAN, HENRYK HUDZIK AND TINGFU WANG

Criteria for smooth points, very smooth points and strongly smooth points in
Musielak-Orlicz sequence spaces equipped with the Luxemburg norm are given.

0. INTRODUCTION

Let us denote by X a real Banach space and by S{X) the unit sphere of X. For
any x € S{X) we denote by Grad(rr) the set of all support functionals at x, that is,
Grad(z) = {/ € S(X'): f(x) = | | i | | } , where X' denotes the dual space of X. A point
x € S(X) is said to be a smooth point if Grad(x) is a singleton. A point x € S(X) is
said to be a very smooth (strongly smooth or equivalently Frechet differentiable) point
if it is a smooth point and for any sequence (/„) in S(X') such that fn(x) -> 1 we have
fn - f —> 0 weakly (respectively | | /n - / | | -4 0), where {/} = Grad(x).

It is obvious that strong smoothness implies very smoothness and this implies
smoothness. For these definitions and their applications we refer to [5].

A mapping $ : R -4 [0, oo] is said to be an Orlicz function if it is even, convex
left-continuous on [0, oo), $(0) = 0 and 3>(w) < oo for some u > 0 (see [1, 10, 11, 12,
13, 15]). A sequence M = (Mi) of Orlicz functions is called a Musielak-Orlicz function
(see [14]). We associate with this function two sequences (e*) and (b{), where

t{ — sup{u ^ 0: Mi(u) = 0}, bi = sup{u ^ 0: Mj(u) < oo}

for each i € N. Moreover, p,~(u) and Pi(u) denote the left and the right derivative of M,
at u 6 R with |u| ^ b{. Of course we assume pi(bi) = oo and pf(w) = p{u) = oc for
u > b{.

If N = (/Vj) is the Musielak-Orlicz function complementary to M = (Mi) in the
sense of Young, that is, Ni(v) = sup{u|u| - Mi(u)} for each i € N and v € R, then we
have Young's inequality "^

\uv\ ^ Mi{u) + Ni{v)
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for every u, v € R, and for any u € R the equality

|uv| = M4(u) + Ni(v)

holds if and only if p~(u) ^ v ^ Pi(u).

We say a Musielak-Orlicz function M = (Mi) satisfies the ^-condition (M € <5° for

short) if there are positive constants a and k, a natural number i0 and a sequence (ci)i2.io
OO

with C{ ^ 0 such that ^Z °t < °° a n d the inequality
i=«o

M,(2u)

holds for all i ^ io and u satisfying Mi(u) ^ a (see [14]).

Let 1° denote the space of all real sequences x = (x(i)). As usual, for x e 1°, we
denote s u p p i = {i € N: x(i) ^ 0} . With any Musielak-Orlicz function M — (Mi) we
associate the convex modular function pM: 1° —> [0, oo] defined by

t = l

and the Musielak-Orlicz sequence space

IM = {z € 1°: p(x/X) < 00 for some A > 0}.

In the space IM we define two norms; the Luxemburg norm

||x||M = i n f { A > 0 : pM{x/X) < 1}

and the Orlicz norm

*~^ I: PN{V) ^

By h.M we denote the subspace of IM which is defined to be the closure in IM of the space
of all sequences in 1° with finite number of coordinates different from 0 (the closure is
taken in the norm topology). It is easy to see that

hM = | i € /°: for any A > 0 there is i\ € N such that £ Mi(\x{i)) < 00 j .

The spaces IM and HM are Banach spaces under either of these two norms (see [1, 11, 14]).
In [11] these spaces are called modular sequence spaces. The function <IM'- IM -* [0,00)
defined by

f v-̂  /x(i)\ )
dM(x) = inf < A > 0: > Mt I -~-1 < 00 for some i0 € N >
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is nothing but the distance of x € IM from the subspace hM (see [1]).

Every / € Grad(x) for x € IM \ {0} is of the from / = y + <p, where y € 1% and ip

is a singular functional, that is, <p(z) = 0 for any z € / i M , and y is identified with the
functional

oo

{w, y) = ̂ 2 ^Wl/W ( V W = M*)) € ^ ) •
i=i

If ip = 0, we say that / is a regular support functional at x. The set of all regular support
functionals at x is denoted by iZGrad(x). It is well known that (see [1, 15])

Smooth points and smoothness in Orlicz spaces and Musielak-Orlicz spaces has been
discussed for both the Luxemburg and the Orlicz norm as well as for a non-atomic
measure and for the counting measure in the papers [2, 3, 4, 6, 7, 8, 9, 10, 17].

In [8] the following theorem was presented.

THEOREM 0 . 1 . Letx€S{lM)-

I If \x(i)\ < bi for i = 1,2,... , then x is smooth if and only if

(a) dM{x) < 1,

(b) Card{i € N: Pi{\x(i)\) ± o} = 1 or p~{\x(i)\) = Pi{\x(i)\)
(t = l , 2 , . . . ) .

II If \x(io)\ = bio forsomeio € N, pM{x) = sup{pM(j/): | |y| |M = 1, suppy C
suppx}, then x is smooth if and only if

(a) |a;(i)| < b{ for any i ^ i0,

(b) Pio(
bio) = °° orP.d^Wl) =0fori^ioorv$ lN, wherev= {v{i)}, v{i) e

[p-{\x(i)\),Pi(\x(i)\)} fbri = l,2,...,
(c) dM{x) < 1.

Ill If \x(io)\ = bio forsomei0 e N, pM(x) < sup{pM(y): \\y\\M = 1, suppj/ C
suppx} , then x is smooth if and only if

(a) | i ( i ) | < bi, i / iQ,

(b) dM{x) < 1.

The formulation of this theorem is too complicated and, as we shall see below, its
part II is not true (the assumptions are not necessary in general). Indeed, if M = (Mi),
where

Mi(u) =
oo i f | u | > -

for each i € N, define x - (1 /2 .0 ,0 , . . . ) . Obviously | | i | | M = 1. Since x(l) - 1/2 =
bi; PM{X) = 1/2 = sup{pM(y): \\y\\M = 1, suppy C suppz = {1}}, x belongs
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to case II. Since Pi(bi) = pf( l /2) = 1 < oo, P2(x{2)) - p2(0) = 1 ^ 0, we have

f ) Ni(p-(x(i))) = f iVi ( l ) = £ 0 = 0, whence (pr(x(i))) G 1%. So, condition (b) of
i=i ^ ' t=i i=i v '

case II is not satisfied, whence it follows that if case II of Theorem 0.1 is true, x should
be not a smooth point. However, we shall prove that i is smooth. Since dM(x) = 0 < 1,
Grad(x) contains only regular (that is, order continuous) functionals (see [1]). We show
that if y G S{l°N) belongs to Grad(z), then y(i) = 0 for any i ^ 1. Indeed, if y{2) > 0,
then for x = (1/2,1/2, 0,0,...) G S(lM), we have

which means that y 0 Grad(x), a contradiction. Therefore y(i) = 0 for any i ^ 1 if

y G Grad(i), which means that Grad(i) is a singleton, that is, x is a smooth point.

We shall establish a new criterion for smooth points in S(IM) and we shall also give

criteria for very smooth points and strongly smooth points of S(IM)-

Before proving new results let us recall some results concerning IM that will be used

in this paper.

LEMMA 0 . 1 . For each x G lM, d(x, hM) = dM(x) (see [1, Theorem 1.4.3];.

LEMMA 0 . 2 . Ifx€lM and dM{x) < 1, then Grad(z) = ilGrad(x) (see [7, Lemma

1.7];.

L E M M A 0 . 3 . If x G S{lM) and dM(x) - I, then there exist y,z G S{lM) with

supp a; Pi suppy = 0 and y + z = x (see [8, Proposition 1];.

LEMMA 0 . 4 . If x G S{lM) and \x{i)\ = b(, \x(j)\ - bj for i / j , then there exist

y,z G S(IM) such that supp y n supp 2 = 0 and y + z — x (see [8, Proposition 2];.

LEMMA 0 . 5 . Assume that y G 1% \ {0}. Then

(i) IMI5v = ( l + PN(ky))/k for somek > 0 whenever £ M ( & t ) > l ,
iesuppy

(") \\y\\°N = 2Z^i|j/(^)| whenever £ Miih) K 1 (see [16];.
t=l i€suppy

1. RESULTS

First we prove some auxiliary lemmas.

LEMMA 1 . 1 . If M = (M,-) is a Musielaic-Orhcz function such that N G <5§ and

(yn) is a sequence in 1% such that yn{i) —* 0 for each i G N and

(1) lim su P y; iV i (y n ( i ) )=0,
J>tO

then \\yn\\°N -> 0.
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P R O O F : Choose any e > 0 and take h > 0 such that 4/h < e. By N € S°, there

exist k > 0, a > 0, i0 € N and Cj ^ 0 (i > io) with ^Z c< < oo such that

Ni(hv) ^ kNi(v) + Ci if i > i0, iVjfv) ^ a.

Without loss of generality we assume that ^Z ĉ  ^ 1. By (1), there is i'o > io such that

E *rf ,-w • f MNi{yn(V> ^ rnin^ a, - >.

By yn{i) -> 0 for each i € N, we get £ Ni(hyn{i)) ^ 1 for n large enough. Hence, we get
t=i

for n large enough, which means that ||j/n||5v ^ 0 as n ^ cc. D

LEMMA 1 . 2 . If | |x | |M = 1, dM{x) < 1 - 6 < 1, yn € S(Z^) for any n € N and
(x,yn) -> 1 as n -> oo, then condition (1) from Lemma 1.1 holds.

P R O O F : If (1) is not true, by passing to a subsequence if necessary, we may assume
that there are a sequence (in) C N with in /* oo and £Q > 0 such that

We consider two cases.

I- Il2/«|l5v = l / ^ n ( l + PN(knyn)) for an infinite number of n. Noticing that kn ^ 1,
we get a contradiction:

1 *- (x, yn)

( k )
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H- llj/n||yv = 12 l>i\yn(i)\ for an infinite number of n.

By dM(x) < 1 - 9, there is i0 € N such that £ M,-(x(i)/(l - 5)) < oo. So,
t>>0

|x(i)|/(l - 6) ^ bi for i > i0- From

where qi(s) = sup{t > 0: Pi(t) ^ s } , we have J2 bi\yn(i)\ ^ e0- Hence for in > i0, we
»>»n

get a contradiction:

t=i

in

-*)£Mv»(0| = 5>M0|-

The following lemma is very important in the remaining considerations.

LEMMA 1 . 3 . If \\x\\M = 1, ||yn||^ = 1 for each n € N and (x, yn) -4 1 as n -> oo;

tien:

(0 2/n(j) —> 0 as n —> oo whenever |x(j)| < e;-,

(») lim+inf(j/n(i)pj(x(j)) - 2/n(j)pf (*(»'))) ^ 0 whenever |x(j)| ^ e> and

|x(i)j > 0.

PROOF: We may assume without loss of generality that x(i) ^ 0 for any i e N. If
(i) is not true, we may assume that there is j € N such that x(j) < e, and yn(j) ^ c > 0
for each n € N. Let us define x with x(jf) = e3- and x(i) - x(i) for i ^ j . It is easy to see
that PM(X) = PM{X) ^ 1, whence ||x||w = 1. Hence

> (x, yB> + c(e> -

which is a contradiction. So (i) is proved.
If (ii) is not true, there are x(j) > Cj, x(i) > 0 and a > 0 satisfying

yu(i)Pj(x(j)) < yn(j)p~{x(i)) - 2a (n = 1,2,...).
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Since pN(yn) s? \\yn\\N ^ \\yn\\°N = 1, we get \yn(j)\ < A> := sup{v ^ 0: Nj(v) < 1} for

any j € N. (Note that Aj = N~l{\) if Nj{Aj) = 1 and A, = 6;- if Nj(Aj) < 1.) Since p~
is left continuous and pi is right continuous one can find a number r > 0 such that

Then

(p~ (x(i)) - pj (x(i) - r))i/n(i) < | , (Pi(x(j) + r) - p^iO")))^^) < \-

Thus

Vn(i)Pj(x(j

for all n e N. We
x(j)+.

I

)+r)<

<

have

Pj{s)ds

Vn(i)Pi(xU:

Vn{j)Pi (x(i

x(t)

> / PT(»)ds or

< yn(j)p< i
a

- - - 2 a - »

x(j)+r

r

{x(i))

a
"2 =

- 2 o + ^

i/»(?)pr(a

x(t)

< [ p-

- r) - a

and we may assume that the second inequality holds. Denote cj = x(j) + r. One can
find a number q, x(i) > Cj ̂  x(i) — r such that

(2) / Pj{a)d8= / ft" (a) da.

Of course
yn(i)Pj{cj) < yn(j)Pi(ci) - a (n = 1,2,.. .)•

Since 0 < PJ(CJ), p~(ci) < 00, there is A; > 0 such that

() ^
Pi (ft) P;(Cj) Pi

Define x with x(i) = Ci, x(j) = Cj, x(t) = x(t) for t ^ i and < 7̂  j . Then

Pw(i) = PM(X) + Mjicj) - Mj(x(j)) + Miia) - Mi{x(i))
CJ x{i)

= PM{X) + I Pj(s) ds- p~(s) ds = pM{z) < 1,

whence \\x\\M ^ 1. From (2) and (3), we get

1 ^ (x,yn) = (x,yn) + yn{j){cj - x(j)) -
Cj l ( i )

= (x,Vn) + J [VnU) ~ kPj(s)) ds- J(yn(i) - kp-{s))

1 v f 0. , . . ar ar

><™> + y pjW)ds = {x^)+pjW)^l+pT

ds
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which is a contradiction finishing the proof. D
As an immediate consequence of Lemma 1.3, we get

. LEMMA 1 . 4 . Assume that \\x\\M — 1, ||y||jv = * ^ ^ (x,y) = 1- Then:

(i) v(j) = 0 whenever |x(j)| < e,,

(») y(i)Pj(x(J)) > yU)Pi(x{i)) whenver \x(j)\ ^ &,- and \x{i)\ > 0.

Now, we are ready to give criteria for smooth points of S(IM)-

THEOREM 1 . 1 . Ifx£ S{IM), then x is a smooth point if and only if:

(i) dM(x)<\,

(ii) there is at most one index i satisfying \x{i)\ = bit

(iii-1) if\x{i)\ < bi for all i € N, then p~(|x(i)|) = Pt(|z(z)|) whenever \x{i)\ <
. Mfl(l),

(iii-2) if \x(io)\ = bio for some i o £ N and \x(i)\ < b{ for i ^ i0, then PN{X) < 1

orp-(6io) =CXD orpj(|x(i)|) =0 for i / i0.

PROOF: Assume without loss of generality that x(i) ^ 0 for all i e N.
NECESSITY. If (i) or (ii) is not true, then by Lemma 0.3 and Lemma 0.4, there are
y, z € S{IM) such that supp y D supp z = 0 and x =.y + z. Clearly, y — z € S(IM) too.
Take y' € Grad(y),z* 6 Grad(z). Then

1 ± y*(z) = y'(y ± z) < \\y*\\ \\y ± z\\M = \\y'\\ = 1.

So y'{z) = 0. Similarly z'(y) = 0. Consequently y*{y) = z'(z) = 1, whence y* ^ z*.
Moreover

y*(x)=y*(y + z)=y-(y) = \\y\\M = i.

So j / * 6 Grad(i). Similarly, z* € Grad(x), which is a contradiction proving the necessity
of (i) and (ii).

Now, we shall prove that </M(X) < 1 and \x(i)\ < 6, for alii € N imply

(4) pM(x) = 1

and

(5) pN(p-(x))^jr,\x(i)\p-(\x(i)\)<oo.
i = l

Indeed, by d^i^) < 1, there exists A > 1 and io £ N such that ^M<(Ax(i)) < CXD.

By x(i) < bi, there exists Ao with 1 < Ao ^ A such that ]PMj(Aox(i)) < oo. Hence
t=i

PM(AOX) < oo. Since pM{tx) is a continuous function of t on the interval [0, Ao], we
obtain (4). From

/•Aou

Mi(\ou) > / Pi{s)ds > (Ao - l)up~(u)
Ju
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and PM(^OX) < oo, we get (5).

If (iii-1) does not hold, we may assume that pf (x(l)) < p\ (x(l)) and M\ (x(l)) < 1.
By (4), there is i € N (we may assume that i — 2) such that M2(x(2)) > 0. Therefore
pj(i(2)) >0and, by (5),

i)) < oo and
t = i t = 2

Let x*,x* be defined as follows:

E,-=i

p-(x(i)) + x(l)pi(x(l)) < oo.

if i =

if t

Since (x,x*) = 1 = | |x| |w, so
have

1. Moreover, for any y € lM with pM(2/) < 1 we

whence | | i* | |^ ^ 1 and consequently ||X*||JV = 1. This means that x* € Grad(x). Simi-
larly x* € Grad(x).

But if x(l) ^ 0, then x'(2) ^ x*(2); if x(l) = 0, then x*(l) ^ x*(l). Therefore
x* 9̂  x*. This contradicts the assumption that x is a smooth point, finishing the proof
of the necessity of condition (iii-1).

If (iii-2) does not hold, we may assume that x(l) — b\, x(i) < &,• for i ^ 1, pM{x) =
1> P7(bi) < oo and p2(x(2)) > 0. Notice that

Let us define

Ex(i)pf(x(0)+x(2)p2(x(2))

Ex(i)p-(x(i))+x(2)p2(x(2))

for i ^ 2

for i = 2.
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Similarly as in case (iii-1) we can prove that x* € Grad(x). Consider also x* defined by

^ for » = 1

0 for i ^ 1 .

Then x*(x) = 1 and for any y € lM with pM[y) < 1 we have (y,xj) = y{l)/bi ^ 61/61 =
1. So ||x*||^ = 1, whence it follows that x* € Grad(x). Note that x* ^ x* because
x*(2) / x*(2). Therefore, x cannot be smooth if (iii-2) is not satisfied.

SUFFICIENCY. By condition (i) and Lemma 0.2, Grad(x) = .RGrad(x). Assume also

that conditions (ii), (iii) are satisfied. We consider separately five cases.

I. x(i) < bt for all t € N and x(i) < Mf *(1) for all i € N.

Take an arbitrary x* € .RGrad(x). By condition (iii-1) and Lemma 1.4, we have

So, x*{i)pj(x(j)) = x*(j)pi(x{i)) for every i,j with Pi(x(i)) > 0, Pj{x(i)) > 0, whence

it follows that there is d > 0 such that

x'lj)
—. . = d for any j with pAx{j)) > 0.
Pj\?K3))

If x(j) < ej, we have Pj{x(j)) = 0 and Lemma 1.4 (i) yields x*{j) = 0. Assume that

Pj{x{j)) = ° a n d XU) = ej- By PM{Z) = 1 t h e r e is io € N such that Mio(x{i0)) > 0, so

PToi^o)) > °- By Lemma 1.4(i),

0 = x'{io)Pj(x{j)) > x*{j)pr(x{i0)).

So, we still have x*(j) — 0. This means that x*(j) — dpj(x(j)) for all i e N. From
00 / 00

1 = (x,x*) = d^2x(i)pi(x(i)), we obtain d = 1 / £ x(i)pi(x(i)). Hence x'(i) —
1=1 ' 1=1

/
oo
52 2;(j)Pi(x(^)) f°r a ^ i € N , and so x* is unique, that is, x is smooth.
t=i

II. x(i) < bi for all i € N and Mx (x(l)) = 1.
Obviously, M;(x(i)) = 0 for all i # 1. So, by (iii-1) Pi(x(i)) = p~(x{i)) = 0 for all

i ^ 1. We can prove similarly to case I that for any x* € .RGrad(x), we have x'(i) — 0
for all i 7̂  1. Therefore, suppx* = {1}, whence

is the only element of Grad(x), that is, x is a smooth point.

III. x{l) = 61, x(i) < 6i for i # 1 and p^(bi) = 00.

For any x* e i?Grad(x) and any i ^ 1, by Lemma 1.4 we have x*(i) = 0 if x(i)

and
00 >

https://doi.org/10.1017/S0004972700019523 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019523


[11] Musielak-Orlicz sequence spaces 451

if x(i) > a. (We apply Lemma 1.4 (ii) with j = 1 if e, = 0 and Lemma 1.4 (i) if et- > 0).

So, we have x'(i) = 0 for i / 1. This shows that suppx* = {1}, that is, x* is unique,

namely x'= (fef1,0,0,.. .)•

IV. x(l) = bu x(i) < bt for i ^ 1 and pM(x) < 1.

For any x* € -RGrad(z), if x*(i) > 0 for i / 1, then by x(i) < bit one can find c with

x(i) < c <b{ satisfying J2 Mj(x(j))+Mi(c) < 1. Define x with x(i) = c and x(j) = x{j)

for j ^ i. Then PM(X) ^ 1 and \\X\\M < 1. Hence

which is a contradiction. So, x*(i) = 0 for i ^ 1, which shows that x* is unique (in fact

x' = (l/bi, 0,0, . . . )) .

V. s( l ) - 6i, i ( i ) < 6i for i / 1, Pi(x(z)) = 0 for t # 1, pM(x) = 1.

Then for any x* € i?Grad(x). if x*(i) > 0 and x(i) ^ ej for some i / 1. by Lemma
1.4,

0 = x*(l)p,(x(i)) > x'(i)pi(6i) - I 'WprfAff 'Cl)) > 0,

because M(x(l)) = 1 by PM{%) = 1- This is a contradiction, which shows that x*(i) — 0
for i ^ 1 whenever x(i) ^ ej. If 0 ^ x(i) < ei: then x*(z) = 0 by Lemma 1.4 (i). Therefore
suppx* = {1}, whence x* is unique. This finishes the proof. D

THEOREM 1 . 2 . For x € S(IM) the following assertions are equivalent:

(A) x is a strongly smooth point,

(B) x is a very smooth point,

(C) (i) < M x ) < i ,

(ii) |x(i)j = b{ for at most one i € N,

(iii-1) if\x(i)\ < bi for all i € N, then N € 8°2 and \x(i)\ < M r ' ( l )

implies p~ (\x(i)\) =Pi(\x(i)\),

(iii-2) if \x(io)\ = bio for some i0 € N and |x(i)| < 6j for i / iO)

then Pio(bio) = oo or /t>w(a;) < 1 or Pi(|x(z)|) = 0 for i / i0

and N € $ .

PROOF: We still assume without loss of generality that x(i) > 0 for all i 6 N. The
implications (A) => (B) =>(C)(i),(ii) are trivial. Since very smooth points are smooth
points, if (iii-1) is not true, then N g 6° and

\x(i)\ <bi for all i 6 N.

From Theorem 1.1, we get in this case that suppy = suppx, where y determines the
unique support functional of x. Combining this with PM{X) = 1, we get

J2 Mi{bi)= Y, M ^ ) > E Mi{x{i))=pM{x) = l.
igsuppi/ tgsuppi igsuppi

https://doi.org/10.1017/S0004972700019523 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019523


452 S. Bian, H. Hudzik and T. Wang [12]

By Lemma 0.5, there is k ^ 1 such that \\y\\°N = (l + pN(ky))/k. Since N g 5°, there
exists z € 1% satisfying

pN(z) ^ 1 and dN (~ - yj ^ 0.

(If df/(y) = 0 we choose z € 1% with dAr(z) > 0; if dn(y) > 0 we choose z € l°N with
djv(z) = 0.) Let

yn = I y(i), y(2),. • • ,y(n), — ^ - 2 , k , . . . ) .

Then

i^n t>n

Ul+pN(ky))-

So limsup ||2/n||N ^ 1- On the other hand

00

t=l t=n+l

and by

t>n t=n+l

we have (x,yn) -+ (x,j/) = 1. So, liminf ||yn||5v > 1- Hence lim \]yn\\°N = 1. But since
n—>oo n-»oo

dN((z/k) — y) 7̂  0, there is a singular functional tp such that ip((z/k) - z) ^ 0. Thus

<p{yn-y) = tpyr - y) 7^0, that is, yn -^w y as n -1 00.

This contradicts the fact that x is a very smooth point.

If (iii-2) does not hold, then we may assume that x(l) = b\, x(i) < 6< for all
i ^ 1, PM{X) = 1, Pi{h) < 00 and N £ 8°. Since a; is a smooth point, by condition
(iii-2) from Theorem 1.1, we have Pi[x(i)) = 0 for i ^ 1. So, Mj(a;(i)) = 0 for i ^ 1 and
M\[x(l) = PM{X) — 1- In this case, y = (6^",0,0,...) is the only support functional at x.
Take A; > 0 satisfying k/bi = Piih). Then

Now, we can deduce a contradiction in the same way as above, proving the necessity of

condition (iii-2).
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(C) => (A). It follows from Theorem 1.1 that x is a smooth point, so x has a unique
support functional y. Suppose that /„ € S(l'M), fn(x) -* 1 and fn = yn + <pn, where
yn € 1% and <pn are singular functionals for all n 6 N. We need to prove that | |/n — y|| -> 0
as n —> oo. By dM(x) < 1 and Lemma 0.1, there is z 6 hM such that | | i — z\\ < \-0 < 1.
Thus

1 *- Sn{x) = (x, yn) + ipn{x) ^ ||Z||M||2A>||N + fn{x - z)

< hn\\°N + llVnll \\x - z\\M < \\yn\\°N + | | ^ | | ( 1 - 0)

= ll/nll -

whence ||yjn|| —»• 0 as n —> oo. Therefore, we can assume in the rest of the proof of this
implication that \\yn\\°N = 1 and {x,yn) -> 1 as n -> oo. By dM{x) < 1 and Lemma 1.2,
we have

(6) lim s u p V M ( y B ( i ) ) = 0 .
t>«0

By (6) and Young's equality, we get

(7) lim
» t>to

To show that \\yn — y\\ —>0asn-^oo, we consider the following five cases.

I. x(i) < bi and x(i) < Mr1 (I) for all i € N.
From (C) (iii-1), we get p^(x(i)) = Pi(x(i)) for all i € N and TV £ $>. By Theorem

1.1, the unique support functional y at x is given by

From Lemma 1.3(ii), in the case when pi{x[i)) > 0 and Pj(x(j)) > 0, we have

lim Pi(x(i))yn(j) = lim Pj(x{j))yn{i).
n—too n—>oo

So, there exists d > 0 such that

lim yn(j) =dp>(ar(j))

for every j e N with Pj(a;(j)) > 0 (namely d is the common value of lim (yn{i)/p(x(i)))
n—>oo \ /

which does not depend on i).
Assume now that Pj(x(j)) = 0. If x(j) < ej: then yn(j) -> 0 by Lemma 1.3(i). If

I ( J ) = e3 and yn(j) -^ 0 as n -> oo, we can assume that yn(j) > c > 0 for all n € N.
There exists i0 € N such that p~g(x(i0)) > 0 (otherwise p~(x(i)) - 0 and M;(x(i)) = 0
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for all i E N, whence PM{X) = 0 ^ 1, a contradiction to (4)). Therefore PT0(x{i0)) > 0
for some io G N and consequently

limo(yn(iQ)pj(x(j)) -yn(j)p,^(x(i0))) < 0,

which contradicts Lemma 1.4(i). So, yn(j) -> 0 as n -> oo. This means that

VnU) ̂  dpj(x(j))

for any j G N. Combining this with (7), we get

oo oo

1 «- {x,yn) = ]Tx(i)yn(i) ->
t = l

whence

This implies that yn(j) - y{j) —> 0 as n —> oo for all j € N. Combining this with (6), we
get

? \ 2
t>to

By Lemma 1.1, ||(j/n - j / ) /2 | | ^ -> 0, that is, ||yn - y||^ ->• 0 as n -> oo.

II. x(i) < 64 for a l i i G N and z(l) = M f ^ l ) .

In this case it follows from condition (C) (iii-1) that N G 6° and p~(x(i)) =
Pi(x(i)) = 0 for i ^ 1 (since Mj(x(i)) = 0 and Pi is continuous at x(i) for i ^ 1).
It follows from the proof of Theorem 1.1 that the unique support functional at x is
represented by the sequence

In a similar way to case I, we can prove that yn(i) —̂  0 for i ^ 1. By (7), we get

oo

1 = lim y2x{i)yn(i) = lim x(l)yn{l).
n-nxi

t= l

Therefore, yn(l) -> l /x ( l ) = y(l) . From (6) and Lemma 1.1, we get \\yn - y\\°N —t 0 as
n -^ oo.

III. x(l) = bi, x(i) < b{ for i / 1, Pi{b\) < oo and PM{X) = 1-
By (C)(iii-2), we get Pi{x{i)) = 0 for i ^ 1 and iV € (5°- From the proof of

Theorem 1.1 it follows that the support functional at x is given by y = ((l/frj), 0 , 0 , . . . ) .
Similarly to case I we can prove that yn(i) -> 0 as n -» oo for all i ^ 1. By (7), we get
yn(l) —• l/&i — y(l). From (6) and Lemma 1.1 it follows that \\yn — y\\°N -> 0 as n -> oo.

IV. x(l) = bi, x(i) < bi for i / 1 and pj"(&i) = oo.
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In this case, N € <J§ is not necessary. We get from the proof of Theorem 1.1 that

the unique support functional at x is given by y — ( l /6i , 0 ,0 , . . . ) .

If x(i) < et, by Lemma 1.3(i), we get yn(i) -4 0 as n -> oo. If x(i) ^ e;, by Lemma

1.3(ii),

lim {yn(l))Pi{x(i)) -yn(i)pl(x(l)) > 0.

But Pi{x{i)) < co, yn(l) ^ Nf ' (1) , yn{l)pi(z[i)) < oo. So, j/n(i) -» 0 as n -> oo for
^ 1- By (7),

j/n(l) -¥ r = 2/(1), that is, yn(i)->y{i) (i = 1,2,...).

Now, we shall consider two subcases to finish the proof in this case.
oo

IV.1. For an infinite number of n we have 1 = ||y||^ = X) yn{i)^i-

By (7),

Hence lim J£,yn{i)bi = O- Consequently
n—>oo i—o

bin \\yn - y\\% = J im | (0, yn(2), yn(3),...) |

IV.2. There is an infinite number of n for which

^ lim Jyn(i)fci =0.
N n-»oo ̂ —'

t=2

First, we shall prove that kn -> oo. Otherwise, we can assume (passing to a subsequence
if necessary) that kn -* k0 < oo. Since ko/bi < oo = pf (6i), there exists c > 0 such that

^ 6 i ( V 6 i ) + c = A0 + c. Hence

1 = lim — (1 + . knVn)) 2 Jirn ^ - ( l + M

1(1 A^fc/M) ^ 1(M(6) TV^/M) ^ ^ 1 f= 1 ( 1 + A^fco/M) ^ 1(M(6,) + TV^o/M) ^ ^ = 1 + f •

This is a contradiction. Notice that

lim " ^ M * lim ^ ^ ) ^ lim (
n-»oo Kn n-too Kn n-»oo

whence
1 1 °°

1 = lim — (1 +pN(knyn)) ^ 1 + lim rrY'Ni(knyn{i)).
n->oo Kn n-»oo Kn *—£
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So, lim (1/kn) £ Ni(knyn(i)) = 0. Consequently
n-»oo i = 2

lim \\yn - y\\°N =

V . x ( l ) = b u x ( i ) < h for i ^ l a n d pM(x) < 1 .

By the proof of Theorem 1.1, the unique support functional at x is given by y =
( l /6 i ,0 ,0 , . ..)• Assume to the contrary that (yn) does not converge coordinatewise for
i / 1. Then we can assume that there is i ^ 1 such that yn{i) ^ c > 0 for all n 6 N. Since
x(i) < bi, one can find u > 0 with x(i) < u < b{ satisfying ^2Mj(x(J)) + M,(u) ^ 1.

_ _ J*'
Define x with x(j) — x(j) for j ^ i and x(i) = u. Then PM(Z) ^ 1. But

(x, yn) = (x, yn) + yn{i) (u - x(i)) ^ (x, yn) + c(u - x(i))

-¥ 1 + c(u — x(i)).

This contradicts the inequality (x,yn) ^ ||i||Af||l/n||5v = !• So, j/n(i) -> 0 as n -»• oo for
i ^ 1. Using (7), we get j /n(l) —̂  y(l) = \/b\. We divide the remaining part of the proof
into two subcasses.

oo

V-l. Ill/nlljv = JZ biyn(i) for a n infinite number of n.

Similarly to case IV-1 we can prove that | | y n - 2 / | | ^ - > 0 a s n - > o o .

V-2. \\yn\\°N = (l/kn)(l + PN{knyn)) for an infinite number of n.

We shall show that in this case limsupA;n = oo. Otherwise, we can assume that kn —¥
n—*oo

k0 < oo, whence

1 = lim ^ ( 1 + P N ( * „ < / „ ) ) > lim i -
n—•oo Kn n-too fcn

"^ I h

k0

a contradiction, which shows that limsupA;n = oo. Now, we can prove that \\yn — y\\% —> 0
similarly to case IV-2. °° D

As an immediate consequence of Theorem 1.2 we get the following:

COROLLARY 1 . 1 . The following assertions are equivalent:

(i) IM is strongly smooth,

(ii) IM is very smooth,

(iii) IM is smooth and N € 6%.
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