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We report numerical simulations confirming the predictions in Gordillo & Riboux
(J. Fluid Mech., vol. 941, 2022, A10), where we elucidated the lubrication mechanism
by which a drop of a low-viscosity liquid impacting over a smooth solid substrate skates
over a thin gas film that prevents contact with the wall. Moreover, with the purpose of
explaining the so-called lift-off mechanism reported in Kolinski et al. (Phys. Rev. Lett.,
vol. 112, issue 13, 2014, 134501), we extend our previous findings and derive expressions
for the time-varying thickness of the gas layer at the region where the distance to the wall
is minimum, finding good agreement with the numerical results. In addition, we report that
our predictions for the minimum thickness of the gas film separating a falling drop from a
wall at room temperature follow closely the experimental values when gas kinetic effects
are retained in the analysis, and also report that the analogous equation for the minimum
thickness of the vapour layer formed after a drop impacts a superheated wall predicts well
the experimental measurements.
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1. Introduction

The impact of a drop over a substrate has been the subject of intense research efforts
during the past decades as a consequence of its relevance in a myriad of natural and
technological processes; see e.g. Josserand & Thoroddsen (2016). One of the many open
questions that remains to be solved and has received substantial attention in recent years
refers to the description and quantification of the conditions under which a drop impacting
a superheated substrate skates over a vapour film, a phenomenon referred to as the dynamic
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Leidenfrost effect, which limits the cooling rate of solids in heat transfer technological
applications (Tran et al. 2012, 2013; Shirota et al. 2016). Indeed, as a consequence of
the smallness of the thermal conductivity of gases, the existence of a stable vapour film
beneath the drop reduces the heat flux and therefore the cooling capacity of the liquid
(van Limbeek et al. 2017).

The theoretical and numerical studies aimed at describing the effect of a gas or vapour
layer on the impact of a drop over a solid substrate were pioneered by Smith, Li & Wu
(2003) and Korobkin, Ellis & Smith (2008), who coupled the equations for the inviscid
motion of a two-dimensional drop impacting either a wall or a thin liquid layer with the
lubrication equations for the gas. Later, Mandre, Mani & Brenner (2009), Mani, Mandre &
Brenner (2010) and Mandre & Brenner (2012) made use of the theoretical and numerical
framework already introduced by Smith et al. (2003) and Korobkin et al. (2008) with the
purpose of deriving scaling relationships for the dimple height — namely, the thickness of
the pancake-shaped bubble entrapped at the centre of the impacting drop — and also for
the minimum distance between the drop and the wall, which is attained not at the axis
of symmetry, but at an off-centre position. The scaling for the dimple height deduced
by Mandre et al. (2009) in the two-dimensional case and by Hicks & Purvis (2010) for
the more realistic case of spherical drops was confirmed via experiments and also via
numerical simulations by Bouwhuis ef al. (2012) who, in addition, discovered a new
regime dominated by capillarity that describes the entrapment of bubbles at low impact
velocities. Let us point out here that the analysis of the entrapment of a gas pocket beneath
a falling liquid mass is analogous to the cushioning effect of the air entrapped after a solid
impacts a free surface, a physical situation that has been analysed by e.g. Wilson (1989),
Ross & Hicks (2019) and Moore (2021), using Wagner’s original ideas (Wagner 1932).
Again, back in the context of drops falling over a wall, Duchemin & Josserand (2011)
developed a boundary integral method coupled with simplified lubrication equations for
the gas flow, and reported numerical results for the minimum film thickness that did not
follow the predictions in Mandre et al. (2009), Mani et al. (2010) and Mandre & Brenner
(2012).

From the purely experimental point of view, and making use of high-speed imaging
techniques, Chandra & Avedisian (1991) and Thoroddsen et al. (2005) were the first
to report the shape and thickness of the bubble entrapped at the centre of the drop,
whereas Kolinski, Mahadevan & Rubinstein (2014b) reported experimental data on
the time-varying minimum film thickness, and described what they called the lift-off
mechanism, which takes place when a drop skates over a nanometric gas film, finding
that this effect depends on the gas to liquid viscosity ratio. Very recently, Chantelot &
Lohse (2021, 2023) extended the previous experimental studies to the case of superheated
substrates, reporting measurements of the minimum film thickness as a function of the
impact velocity and of the substrate temperature, and they scaled and interpreted their
own data using the ideas in Mandre et al. (2009) and Mandre & Brenner (2012).

Recently, Gordillo & Riboux (2022) presented a physical model based on the idea
that both the liquid pressure gradient and the component of the liquid velocity along the
tangent direction to the wall drive the gas flow within the spatio-temporal region where the
distance between the liquid and the solid is minimum. One of the main results of Gordillo
& Riboux (2022), who made extensive use of Wagner’s theoretical framework (Wagner
1932), is that the classical lubrication mechanism, by which the Couette and Poiseuille
flow rates are in balance in the slightly converging geometry formed between the drop
and the wall, prevents the liquid contacting the solid provided that the minimum gas layer
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thickness calculated in this way is larger than the height of the substrate asperities or of
the interfacial corrugations (Kim et al. 2011; Kolinski, Mahadevan & Rubinstein 2014a;
Chantelot & Lohse 2021).

The study by Gordillo & Riboux (2022) present results that differ from those in Mandre
et al. (2009), Mandre & Brenner (2012) and Chantelot & Lohse (2021, 2023), hence one of
the main purposes in this contribution will be to decipher which of the two predictions for
the minimum film thickness corresponding to the case of non-heated substrates (i.e. either
the one given in Mandre et al. (2009), Mani et al. (2010) and Mandre & Brenner (2012),
or the one deduced in Gordillo & Riboux (2022)) is in better agreement with numerical
simulations carried out using Basilisk (Popinet 2015) in the limit in which the Knudsen
number Kn defined in terms of the gas film thickness is zero, namely, when gas kinetic
effects are absent (Sprittles 2024).

It could appear that the main contribution here is nothing but a confirmation of already
published results, but this is not the case. Indeed, here we will also provide a quantitative
explanation of the so-called lift-off mechanism first described by Kolinski et al. (2014b),
by which the minimum thickness of the gas film increases in time after the distance to
the wall has reached a minimum. In spite of several contributions in the literature on the
subject, some of which are very recent (see e.g. Mishra, Rubinstein & Rycroft 2022), we
have not found any physical description or theory aimed at explaining and quantifying the
original observations made by Kolinski ez al. (2014b). Then here we deduce equations for
the time-dependent width of the gas layer where the liquid pressure is maximum, finding
that our predictions agree with the numerical results, which — as has been pointed out in
the paragraph above — have been obtained in the ideal limit in which the Knudsen number
characterizing the flow in the thin gas film is zero.

This contribution also contains a comparison between our predictions and the
experiments reported by de Ruiter et al. (2012) and Chantelot & Lohse (2023) for the case
of a non-heated substrate, with such a comparison containing two fundamental differences
from the analogous analysis reported in Gordillo & Riboux (2022). Indeed, the minimum
film thickness is calculated here using an equation that has been validated previously by
means of numerical simulations carried out in the ideal limit Kn = 0. But, in addition, in
order to compare with experiments, we retain in the algebraic expression for the minimum
film thickness the effect of Kn by replacing the actual gas viscosity with the expression for
the effective gas viscosity deduced by Zhang & Law (2011). The good agreement between
our predictions — which do not include any kind of adjusting parameter since the only
free constant will be determined using idealized numerical simulations — and experiments
indicate that, as was pointed out already by Li (2016) and Chubynsky et al. (2020), gas
kinetic effects are essential to predict the dynamics of impacting drops that skate over
a gas layer; in addition, these results provide further support to our physical description
which, as it was pointed out above, differ from the one given in Mandre et al. (2009),
Mandre & Brenner (2012) and Chantelot & Lohse (2021, 2023).

Moreover, the predictions in Gordillo & Riboux (2022) for the cases of drops impacting
a superheated substrate — namely, a substrate with a temperature larger than the boiling
temperature of the liquid — will be compared with the experimental data reported by
Chantelot & Lohse (2021, 2023) once gas kinetic effects are taken into account through the
expressions for the effective gas viscosity and the effective thermal conductivity reported
by Zhang & Law (2011) and Sharipov, Cumin & Kalempa (2007), respectively.

Let us point out clearly here that it is not the purpose of this contribution to describe
the contact between the liquid and the solid, i.e. the so-called touchdown problem, which
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Figure 1. Sketch showing the axisymmetric domain where the numerical simulations have been carried out
using Basilisk (Popinet 2015); see Appendix A for details. Here, r and z, respectively, indicate the distance to
the axis of symmetry and the distance to the wall in a cylindrical coordinate system. The numerical box is a
square of length 2.1R.

remains an open question due to the fact that either the contact or the rebound of a drop
impacting a solid depends on a number of factors, such as the substrate roughness, the
presence of contaminants at the free interface, asymmetries, van der Waals forces, or
even electrostatic effects (Kim er al. 2011; Kolinski et al. 2014a; Sprittles 2024), which
lead to differences on the instant at which the gas film destabilizes under very similar
experimental conditions; see e.g. Kolinski et al. (2014a) and de Goede et al. (2019). The
explanation for these differences is outside the scope of this contribution, which is then
focused in the description of those regimes in which a drop impacting a solid substrate,
which might be heated above the boiling point of the liquid or not, skates over a thin gas
film, this being a subject of recent interest in the literature (Sprittles 2024).

The manuscript is structured as follows. Section 2 is devoted to presenting the results
of numerical simulations carried out using Basilisk (Popinet 2015). In § 3, we review the
physical model presented in Gordillo & Riboux (2022), and compare our own predictions
and those in Mandre & Brenner (2012) and Chantelot & Lohse (2023) with the numerical
results. Taking into account gas kinetic effects, in § 4 we compare our predictions for
the minimum gas film thicknesses with the experimental values given in de Ruiter et al.
(2012) and Chantelot & Lohse (2023). Finally, § 5 summarizes the main results in this
contribution.

2. Numerical results corresponding to the case of isothermal substrates

This section is devoted to presenting the results of simulations carried out using Basilisk
(Popinet 2015) in the numerical domain depicted in figure 1, which shows a drop of radius
R of a liquid with density p, viscosity i, and interfacial tension coefficient o, falling with
uniform velocity U against a wall whose temperature 7 is equal to that of the gas, Ty = T,
(isothermal substrate); see Appendix A for details on the numerical implementation.
Using R, R/U and ,oU2 as the characteristic values of length, time and pressure, the
numerical results in this section will be expressed in terms of the Stokes and Weber
numbers defined as
2
si= PR e = PUR (2.1a.b)
Ma o
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Figure 2. (a) Time-evolving shapes of a drop impacting a wall with We = 12 and St = 2.6 x 10*. The inset
shows the geometry of both the gas pocket and the region, located at /R = /3s (solid line), where the drop
skates over a thin gas layer. Notice that the radial position where the maximum gas pressure is attained, r = a
(dashed line), verifies a ~ R+/3s. (b) Spatio-temporal evolution of the gas pressure at the wall corresponding
to the values of We and St of (a). The values of dp/dr at the spatio-temporal region where the gas pressure is
maximum are calculated as the slopes of the solid lines in the figure.

and varied within the ranges 9 x 103 < St < 4.5 x 10*,4 < We < 60, while keeping fixed
the values of the ratios p,/p = 10~3 and 1, /= 1.8 x 102, with pq and p, indicating
the gas density and viscosity, respectively. For simplicity, neither compressibility nor gas
kinetic effects have been retained in the numerical simulations, which, as has been pointed
out above, have been carried out for the case of isothermal substrates.

The numerical results depicted in figure 2(a) reveal that as the drop approaches the wall,
a dimple is formed at the axis of symmetry, entrapping a nearly cylindrical gas pocket with
radius < «/Rhy and thickness /. Figure 2 also shows that the liquid does not touch the
solid but, instead, skates over a thin gas film whose minimum thickness Ay, << hy is
attained at r o< /Rhy.

The thickness of the entrapped bubble, 4, is deduced from the mass balance (Mandre
et al. 2009; Bouwhuis et al. 2012)

Iy Apg
12004 «/Rhq ’

where it has been taken into account that the gas flow rate per unit length induced
by the pressure jump Apg = p(r =z = 0,1) — Py is Apa o (1 11a)(Apa//Rhq). Since
in a first approximation the liquid velocity field within the drop is irrotational, the
Euler—Bernoulli equation particularized at r = 0, z = hy yields (Bouwhuis et al. 2012)

nU(Rhg) ~ 21t/ Rhy (2.2)

Apg ~ p —, 2.3
Pa~ P (2.3)
where ¢ o< U/Rhg is the value of the velocity potential at » = 0 created by a disk of radius
+/Rhg moving into the liquid with a velocity U; see e.g. Peters, van der Meer & Gordillo
(2013). Then since the dimple is formed in a characteristic time h;/U, the pressure jump

deduced from (2.3) reads Apy pUZQ/R/h , from which, using (2.2), we obtain

ha o< R St™2/3; (2.4)
980 A35-5
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Figure 3. (a) Gas layer thickness 4(r)/R at T = 20 for We = 12 and St = 2.6 x 10*. The radial position where
the minimum air film thickness is attained, r(/,,;;)/R (dotted vertical line), the radial position where the
maximum pressure is reached, r/R = @/R (dashed vertical line), and the wetting radius, r/R = +/3s (solid
vertical line), are indicated. Values of the gas pressure jump at the wall for the following instants of time: (b)
Tt =12,(c) T = 15, and (d) T = 20.

then the dimple is formed in a characteristic time given by

h Aty U h
Atdo<—d—> d oc—docSt_2/3.
U R

Hence, taking the origin of times at the instant when the drop would contact the substrate
if the gas were not present, and defining the dimensionless times s and t as

(2.5)

U U
s=t—, 1=S*Ps=8%3r—, (2.6a,b)
R R

the result in (2.5) indicates that the dimple is formed at the instant of time T = t*, with
% ~ 12 (Gordillo & Riboux 2022).

Figure 2(b) shows the spatio-temporal evolution of the gas pressure at the wall i.e. at
z = 0. For a fixed value of 7, the results in figure 2() reveal that the gas pressure increases
radially, reaching a maximum at an off-centre position that moves towards larger values
of r as time progresses. In addition, figure 2 shows that the maximum gas pressure at
the wall, and also the values of the local pressure gradient at the radial position where
the maximum pressure is located, increase with 7, reaching a maximum at t = t* ~ 12.
Moreover, the results in figure 3 reveal that the maximum gas pressure and the maximum
pressure gradient, calculated as the slope of the lines depicted in figure 2(b), are reached
at the radial position

r = a(s) = RV/3s, 2.7)

namely, at the radius of the circular region that is wetted by a drop impacting with
velocity U over a wall, a result that was checked carefully against experiments and was
deduced in Riboux & Gordillo (2014) in the context of drop impact using Wagner’s
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Figure 4. Time evolution of (@) the minimum gas layer thickness A,;,, and (b) the thickness of the gas layer
measured at /R = /35, hy, = h(r = RV/3s), corresponding to the values of We and St indicated in the legend.
The pre-impact stage T < 12 is highlighted in blue.

theoretical framework (Wagner 1932). Indeed, Wagner’s theory, which has been known
for nearly a century in the context of water entry problems, permits us to deduce
the result in (2.7) in a quite straightforward manner; see also Wilson (1989), where
(2.7) was deduced in the context of ship slamming. Readers interested in the rigorous
application of Wagner’s theory (Wagner 1932) to different physical phenomena using
matched asymptotic techniques are directed to Korobkin & Pukhnachov (1988), Wilson
(1989), Howison, Ockendon & Wilson (1991), Scolan & Korobkin (2001), Oliver (2002),
Korobkin & Scolan (2006) and Moore (2014). The results in figure 3 also suggest that in
spite of the minimum gas film thickness /,,;, () is not attained at the radial position where
the maximum gas pressure is reached, namely, /,,(t) 7 hyin(T), With

hp(t) = h(r = a(s)), (2.8)

hin(T) = hyin(t); see figure 2(a). This result is appreciated more clearly in figure 4,
which provides the values of h,,(t) and hy;,(7) for different values of the Weber and
Stokes numbers explored in this study. Indeed, figure 4 reveals that i, () = hy(T)
for the instants of time (highlighted in blue in figure 4) T < t*, and also that A, (t) >
hpin(t) for T > t*. Due to the fact that the values of the maximum gas pressure, the
maximum pressure gradient and also the minimum of A,,(t) are attained at v = ¥, the
instants of time T < 7* will be termed, in what follows, as pre-impact stage, whereas
those corresponding to t > t™ will be referred here as post-impact stage; see also
the time-evolving dimple shapes included as an inset of figure 2(a). Hence here we
will consider that the ‘impact’ takes place when the maximum pressure is attained
at T = t¥, so, using the result in (2.6a,b)—(2.7), this event is localized at the radial

position r = Rv/37* St=2/3 ~ 6R St~ 1/3; therefore the minimum thickness of the gas film
is attained at the dimensionless instant ¢ = t* &~ 12 and at the dimensionless radial
position r/R ~ 6 St~ 1/3,

The division of the impact process into two well-defined stages is crucial to
understanding the differences between the present analysis and the predictions in Mandre
& Brenner (2012) and Chantelot & Lohse (2021, 2023), who describe the instants previous
to the ‘impact’, namely, the pre-impact stage taking place for T < t*. In contrast, the
predictions in Gordillo & Riboux (2022) were deduced with the purpose of describing
both the impact and the post-impact stages, and therefore should be applicable to quantify
the different events taking place for v > 7*.

980 A35-7
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Figure 5. Radial component of the dimensionless gas velocity field, u,/U, represented in the frame of
reference moving with the wetting velocity V,, given in (3.3) for three different values of (r — a)/h, and two
different instants of time: (@) T = 20 and (b) T = 40. Here, @ ~ R+/3s indicates the radial position where the
maximum gas pressure is attained (see figure 3) and ha = 2/(9m) @~ ha,m, with hy ,, given in (3.4). Here,
We = 12, St = 2.60 x 10*, whereas z(1) indicates the vertical coordinate of the interface at the minimum value
of (r — @) /h, represented in the figure.

The next section is devoted to checking which of the predictions for the minimum film
thickness — either the ones deduced in Mandre & Brenner (2012) or those in Gordillo &
Riboux (2022) — are in better agreement with the numerical results.

3. Modelling the impact of drops over isothermal substrates
3.1. Review of previous results

The predictions in Mandre & Brenner (2012), later extended by Chantelot & Lohse
(2021, 2023) to the case of superheated substrates, are based on the following idea:
the minimum gas film thickness is attained when a self-similar solution describing the
pre-impact stage at the region where the distance to the wall is minimum, fails to predict
the flow for T > 7* because the capillary and convective terms in the momentum equation,
initially neglected, become of the order of the dominant terms in the approximate solution.
Hence, as far as we understand, the results in Mandre ef al. (2009), Mandre & Brenner
(2012) and Chantelot & Lohse (2021, 2023) have been deduced using an argument that
neither describes nor identifies the physical mechanism that prevents the contact between
the liquid and the wall.

In contrast, the physical model in Gordillo & Riboux (2022) describes the lubricated
impact of a drop over a wall for instants of time T > t*. The physical idea behind the
predictions in Gordillo & Riboux (2022) relies on the well-known lubrication mechanism
depicted in figure 5, where the gas velocity field calculated numerically along the region
where the gas pressure is maximum, is represented in a frame of reference moving with
the wetting velocity at which the local maximum pressure propagates radially outwards,
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da U |3
Vin(s) = E = E ;a 3.1

where the subscript m is used to denote the values of quantities particularized at r = a(s);
see (2.7). Figure 5 shows that in the moving frame of reference, the gas velocity field can
be expressed as the superposition of the Poiseuille (parabolic) velocity profile induced
by the favourable pressure gradient pointing radially outwards, towards the atmosphere
(see figure 2b), plus the Couette (linear) velocity profile caused by the relative motion
between the point of maximum pressure and the wall, which is directed towards the axis
of symmetry. Notice that the point of maximum pressure is attained at the radial position
where the liquid interfacial velocity in the laboratory frame of reference equals the velocity
of the moving frame of reference; see e.g. Wagner (1932) and Gordillo & Riboux (2022).

Hence, for the case of isothermal substrates, the distance between the drop and the wall
at r = a(s) during the instants close to the one for which the minimum film thickness is
attained, can be quantified through the equation (Gordillo & Riboux 2022)

namely (see figures 2 and 3)

hy 0p  Vhm _
12pq Or 2

0. (3.2)

Non-continuum effects, which could have been retained in (3.2) by considering values
for the slip lengths at the interface and at the wall different from zero (see e.g. Duchemin
& Josserand (2012) and Riboux & Gordillo (2014)), will be considered in § 4 using the
approach detailed in Li (2016) in his numerical study of the head-on collision of drops.
This approximation consists in modifying the value of the actual viscosity by using the
equation for the effective viscosity deduced in Zhang & Law (2011), which depends
explicitly on the Knudsen number defined in terms of the gas film thickness. While gas
kinetic effects need to be retained in order to compare our predictions with experiments,
van der Waals effects can be neglected safely in the modelling because these forces
become relevant only when £, < 20 nm (Sprittles 2024), namely, for values of the gas
film thicknesses that are well below those measured experimentally by de Ruiter et al.
(2012) for the case of isothermal impacts, and by Chantelot & Lohse (2021, 2023) for the
case of drops impacting the wall in the dynamic Leidenfrost regime.

Notice that (3.2) expresses that the value of the Poiseuille flow rate per unit length
induced by the large pressure gradient generated around r = a(s) (see figure 3) needs
to be balanced by the Couette flow because, otherwise, the gas beneath the region
where the pressure is maximum would flow radially outwards, emptying this volume, and
consequently the liquid would make contact with the wall.

In order to deduce an equation for #,,, the next step that we followed in Gordillo &
Riboux (2022) was to make use of the fact that the vertical interfacial velocities during
7 > 7* are much smaller than the impact velocity, i.e. (1/U)dh/dt < 1, and also that
the gas film is slender, dh/0r < 1. In this way, since the Reynolds number verifies
Re = St uy /e > 1, and hence the production of vorticity at the gas—liquid interface is
confined within small boundary layers, the liquid velocity and pressure fields can be
approximated by the irrotational values calculated using Wagner’s theoretical framework
Wagner (1932). At this point, notice that the condition (1/U)dh/dt < 1 also implies that
£ dhy,/dt < Vi, hy, — with £ indicating the characteristic length along which #,, varies, of

the order of ~ h,, — due to the fact that £ > h,, and also because V,, o« U St'/3 > U, this
being the reason why the term £dh,, /dt has been neglected in the mass balance (3.2).
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Therefore, Wagner’s potential flow theory (Wagner 1932) predicts that the component
of the liquid velocity parallel to the wall at » &~ a(t) (see also Appendix C, where we
discuss the role played by the gas shear stresses) can be expressed as

3
V() = U ‘/7_ 125173 (3.3)

where use of (2.6a,b) and (3.1) has been made, and Wagner’s theory also predicts that the
length along which the liquid interfacial velocity changes of the order of V,, is

V1273
3

ham(T) =R Y (3.4)
see Gordillo & Riboux (2022) for details. Moreover, Wagner’s theoretical framework
(Wagner 1932) also reveals that the tangential liquid velocity changes from V,, to 2V,
in a region of width A, , located around r = a(s), and therefore in the moving frame of
reference where (3.2) applies, there exists a stagnation point of the flow. Then, by virtue of
the Euler—Bernoulli equation and of fact that the local flow is quasi-steady in the moving
frame of reference, the relative pressure with respect to that of the surrounding atmosphere
at the stagnation point reads

1 3
Apm() = 5 V2 = & pU? St/3. (3.5)

Consequently, the expression for /,,(t) follows from (3.2) once we approximate the
pressure gradient as (see figures 2 and 3)

p  Apw(t) 1 VR
“or T i 2Ty G0

with V,,(t) and Ap,,(t) given in (3.3) and (3.5), respectively. In (3.6), £(7) refers to the
characteristic length where the gas pressure varies of the order of ~ O(Ap,,), and hence
(Gordillo & Riboux 2022)

if £¢ < g, then £ = ha,m;} a7)

if bc > hym, thenf =£,.

Indeed, in (3.7), £, indicates the characteristic capillary length where capillary forces
balance the pressure in (3.5), namely (Gordillo & Riboux 2022)

ohy, o hy, i [ (V7!
A ¢ | —Rwe 12 [ 2 (2 . 3.8
E% X Apm = (1) x Abm (4 R U (3.8)

The substitution of (3.3)—(3.6) into (3.2) yields the following equation for 4,,/R:

1
y (—1 + 5y> =0, (3.9)
with
St Vi [ hm\>
- Zm (T 3.10
Y 2(£/R)U<R) (3.10)
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h v\ e\
y=06 and %:(12&_1 (Fm) E) . (3.11)

Then, by virtue of (3.7), if £, > hg u, then £/R = £./R, hence (3.8) and (3.11) yield the
following expression for /,,/R under the so-called capillary regime:

and therefore,

% oc y?3123 wem1/3 571079 (3.12)
From this, using (3.8), we deduce the following expression for £./R:
% oc y 3 ¢3/6 We=2/3 5178/, (3.13)

In contrast, if Ay, > €., then £/R = h, /R (see (3.4) and (3.7)), and the expression for
hy /R in the so-called inertial regime follows from the definition of y in (3.10):

h .
% oy 2r s77/8, (3.14)

Then the parameter controlling whether the minimum film thickness is given by either
the capillary equation (3.12) or the inertial equation (3.14) is the ratio (see (3.4), (3.7) and
(3.13))

hz,m = W3y 13 519 1213 = §213, (3.15)

c

where
E=r1&, withé = WesSt1/0y71/2 (3.16)

and, consequently, all the results deduced above can be summarized, making use of (3.6),
as follows.

2
If& < &*, then h% = Ayt We /3 5¢719/9 and —zﬁ x % T 16 51479 We2/3 =173,
r

i B U?
If§ 2§ then =4 = By!/?7 5r77/% and —a—p x % =52 56513,
r
(3.17)

Here, A and B are order unity prefactors to be determined in § 3.2, and the corresponding
expressions for the pressure gradients have been obtained making use of (3.6)—(3.7).
Indeed, the substitution of the equations for V,,/U and ¢/R given in (3.3) and (3.7) into
(3.11) would give A =~ 6 and B ~ 2, but these are only approximate values, which will
be quantified accurately in § 3.2 using the results of the numerical simulations. Let us
anticipate here that the analysis in § 3.2 will also reveal that the correct value of £* —
namely, of the threshold value of & separating the capillary and inertial regimes — is
£* & 3.5, which is substantially larger than the ad hoc threshold value &* = 6~1/2 that
we used in Gordillo & Riboux (2022).

Notice that the result corresponding to the capillary-dominated regime in (3.17) was
already obtained by Duchemin & Josserand (2011), but using a type of approach different
to the one followed here. Indeed, among other things, the lubrication equations in
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Duchemin & Josserand (2011) do not satisfy the continuity of the tangential velocities
at the interface, therefore the term representing the Couette contribution to the flow rate is
missing in their approximate description, this being a key ingredient of the physical model
presented in Gordillo & Riboux (2022), based on the classical lubrication mechanism
illustrated in figure 5, which we improve here by retaining gas kinetic effects, as will be
detailed below. In addition, here we extend the analysis corresponding to the capillary
and inertial regimes in Gordillo & Riboux (2022) with the purpose of describing the
so-called lift-off mechanism described by Kolinski er al. (2014b); hence here we include
the dependence with time in the equations for the minimum film thickness. Moreover, the
values of the prefactors A and B in (3.17) corresponding to the case of low viscous liquids
will also be provided here; indeed, in view of the results in Mishra et al. (2022), these two
values could also depend on the viscosity ratio.

3.2. Comparison between predictions and the numerical results

The two expressions for the minimum film thickness in (3.17) depend on the value of the
parameter & defined in (3.15)—(3.16), which expresses a measure of the relative importance
between the capillary and the dynamic pressure given in (3.5). In this way, values of
the parameter & such that & > £* indicate that capillary effects are subdominant and the
impact can be considered as inertial, whereas in the opposite limit, capillary effects can
no longer be neglected, and the drop impacts the wall in the so-called capillary regime.
Likewise, Mandre & Brenner (2012) deduced the following equations, analogous to those
given in (3.17) depending on whether or not capillary effects can be neglected.

hmc,MB

Capillary regime: o We™2/3 5178/,

(3.18)

: . hmi _
Inertial regime: L ME o St43,

In order to decipher which of the two different predictions is in closer agreement with
the numerical results — namely, either that deduced by Mandre & Brenner (2012) (and later
used by de Ruiter et al. 2012; Chantelot & Lohse 2023) or the more recent ones in Gordillo
& Riboux (2022) — we compare in figure 6 the ratios between the numerical values of
the minimum gas film thickness calculated at t* = 12, h,;,,(t = 12), and the predictions
given in (3.17) and (3.18). The results depicted in figure 6, where the proportionality
constants in (3.17) and (3.18) have been selected in order to maximize the agreement with
the numerical values, reveal that our predictions in (3.17) reproduce the numerical results
better using, in addition, prefactors of order unity, namely A = 3.5 and B = 1, which are
similar to the ones obtained by substituting the values of V,,,/U and £/R given in (3.3) and
(3.7)into (3.11),1i.e. A~ 6 and B ~ 2.

As pointed out already, figure 7 shows that the values of h,,;,, and k,, are very similar to
each other up to T = t*. Beyond that instant of time, the values of /,,;, keep on decreasing
but very smoothly, so that the curve corresponding to 4, lies above the one for /,,;, for T >
7*. Figure 7 also compares the results of numerical simulations with the time-dependent
predictions given in (3.17), once the origin of times is fixed appropriately. Indeed, notice
that the virtual origin of times is set in figure 7 at a dimensionless instant " = —3, a value
that is consistent with the time taken to entrap the central bubble. This result, which could
be interpreted as if the impact began before the drop reaches the wall, shares similarities
with previous findings on the subject; see e.g. Peters et al. (2013), where both numerical
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Figure 6. Comparison between the numerical values of the minimum gas layer thickness calculated as
Imin(T* = 12) and the predicted values hy,, given either in (3.18) (Mandre & Brenner 2012; Chantelot &
Lohse 2023) or in (3.17) (Gordillo & Riboux 2022) for the case of isothermal substrates, y = 6. The predicted
values in (a,b) correspond, respectively, to the capillary and inertial regimes in (3.17) and (3.18). The values
predicted by Mandre & Brenner (2012) (M&B) and Chantelot & Lohse (2023) (C&L) are represented
using open symbols (o): in (@), hy = 17.0R We=2/3 §178/9  whereas in (b), hy = 180.0R Sr~*/3. The values
corresponding to the predictions in Gordillo & Riboux (2022) are represented using full symbols (e): in (a),
hg, = 3.5Rt *2/3y2/3 St10/9 We=1/3 whereas in D), hy, = 1.0RT* Sr=1/6 y1/2. Dashed lines indicate variations
i /hg = 1.0 £ 0.2. (¢) Comparison between the numerical results and the theoretical predictions in (3.17) as a
function of & = We Sy—1/0 y_l/z, with hy, calculated as hy, = 3.5Rﬂc*2/3yz/3 S719/9 We=1/3 for the case of the
capillary regime, or as iy, = 1.0RT* Sr=7/6 y1/2 for the case of the inertial regime. In (c), dashed lines indicate
variations h,, /hy, = 1.0 £ 0.1.

and experimental results reveal that the gas cushioning effects can be quantified using a
virtual origin of times, or the numerical results in Ross & Hicks (2019), which show that
a two-dimensional impacting solid deforms the interface before contacting the liquid.
Interestingly, the results in figure 7 are the manifestation of the so-called ‘lift-off
instability’, described empirically by Kolinski et al. (2014b) and analysed very recently
using two-dimensional numerical simulations by Mishra et al. (2022). Indeed, figure 7
shows that, consistently with our predictions, the growth in time of the minimum film
thickness can be quantified using either the capillary or the inertial limits of (3.17),
depending on whether the value of the parameter & is larger or smaller than £* ~ 3.5.
The fair agreement between predictions and numerical results in figure 7 indicates that the
lift-off instability corresponding to low values of the liquid to gas viscosity ratio can be
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Figure 7. Comparison between the numerical values of /,,,(t) (empty symbols) and h,, = h(r/R = 3s, 7)
(full symbols), with the values predicted in (3.17) for the case of isothermal substrates, y = 6, using the
following values for the prefactors: h,/R = 2.42 y2/ 3t = )3 We 138199 (solid lines) or hn/R =
0.48y1/2(r — ¢/)St77/% (dashed lines), with t/ = —3. In each of the plots, the thin vertical dashed line
shows the value T = 12. Values are: (a) We = 4, St = 3.0 x 10%; (b) We = 12, St = 2.6 x 10%; (¢) We = 12,
St =1.2 x 10*; (d) We =22, St=2.1 x 10%; (¢) We =36, St = 2.6 x 10*; (f) We =48, St = 4.5 x 10*;
(g) We :448, St = 3.6 x 10*; (h) We = 48, St = 1.8 x 10*; (i) We = 48, St = 1.2 x 10*; (j) We = 60, St =
1.8 x 10%.
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quantified using the equations below.

)/
If ¢ <3.5, then 2" — 2.40y23 (¢ 4 3)¥/3 We1/3 51009,

ho (3.19)
If§ 2 3.5, then % = 0.48y"2 (¢ +3) st77/5.

Notice that the values of the prefactors in (3.19), A = 2.42 and B = 0.48, are not the
same as those deduced from figure 6, A = 3.5 and B = 1; the reason for these slight
differences lies in the fact that the numerical values in figure 6 correspond to 4, (t = 12),
namely, to an instant of time around which the transition between the pre-impact and
post-impact stages depicted in figure 4 takes place, whereas the values predicted in (3.19)
correspond to &, (t > 12), namely, within the post-impact stage described by our model;
see figure 7. Then the small differences in the values of the proportionality constants are
caused by the fact that the results in figure 6 correspond to an instant of time that is
slightly smaller than that from which our modelling starts being valid, as it is evidenced
by the fact that the actual function h,,(t) depicted in figure 7 possesses a minimum at
T ~ 12, whereas our (3.19) predict that /,, increases monotonically with 7. In fact, the
results in figure 6 indicate that the expressions for /,, corresponding to the post-impact
stage deduced here can be used to describe the minimum film thickness at the instant
of time 7 = 12, at which the analysis is not strictly valid, by simply introducing slight
changes in the values of the constants A and B in (3.19). Let us point out here that we
could not include in figure 7 the analogous predictions by Mandre & Brenner (2012) and
Chantelot & Lohse (2023) because these authors limited their analysis to the instant when
the minimum film thickness is attained, therefore their results do not depend on time.

Appendix B compares the numerical values of the pressure and the pressure gradient
with the predictions given in § 3.1, providing further support to our physical description.

4. Comparison between predictions and experiments
4.1. Modelling the vapour production and the inclusion of gas kinetic effects

A previous step before comparing our predictions with the experimental measurements
is to add to (3.2) the term representing the flow rate per unit length ¢, produced by
the evaporation of the liquid. Indeed, as explained in the Introduction, we will consider
here not only the case of isothermal impacts already analysed in §§2 and 3, but also
the case of drops impacting over superheated substrates, i.e. substrates with temperature
Ts > Tp, with T}, indicating the boiling temperature of the liquid. Then, in order to predict
the experimental measurements for the minimum film thickness reported in Chantelot &
Lohse (2021, 2023), where AT = Ts — T} is varied within an ample range of values, we
make use here of the result in Sobac et al. (2014), which provided the following expression
for the flow rate per unit length of vapour produced in a region of length ¢, where the
distance between the liquid and the wall is A,,:

ky AT ¢
qv =~ Pt
’ Pl hp
In (4.1), L refers to the latent heat of vaporization of the liquid, and the viscosity, density
and thermal conductivity of the vapour will be denoted in what follows as ., o, and k,.

Notice that (4.1) expresses the balance between the conductive heat flux from the substrate
into the drop and the evaporation rate of the liquid at the interface; indeed, we justified
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in Gordillo & Riboux (2022) that the heat flux across the liquid thermal boundary layer
can be neglected for the particular case of the experiments reported in Chantelot & Lohse
(2021, 2023).

Therefore, the equation analogous to (3.2) for the case of drops impacting over

superheated substrates reads

hy Op  Vmhn kg AT £
121, Or 2 ool By’

(4.2)

where we have made use of (4.1). The substitution of (3.3)—(3.6) into (4.2) yields the
following equation for 4, /R:

1
y(—l +5ﬁy) — B, 4.3)
o
with
St Va (hm>2 (,0 ) (M) ky AT
=—— — | — and B*=pB(—)(— )., whereB = . 4.4
YT 2w/ U \R YAV e
Consequently,
_ 1/2
. (Ve
— = (2y8t — — , 4.5
R ( Y ( U) R) 43)
with

y=3<ﬁ) [1+ 142 (@)} (4.6)
Ma 3 \nu

The substitution of (4.6) and of either (3.4) or (3.8) into (4.5) provides the same
expressions as those given in (3.17), which are then valid to describe the skating of drops
over either a gas or a vapour layer, the only difference being that y = 6 for the case of
isothermal impacts, whereas y is given by (4.4) and (4.6) for the cases of drops impacting
a substrate in the dynamic Leidenfrost regime. Hence our physical description differs
substantially from that of Chantelot & Lohse (2021, 2023), who deduce different equations
depending on whether the substrate is superheated or not, therefore the isothermal case
cannot be recovered using their results corresponding to superheated substrates in the limit
in which the production of vapour tends to zero.

The recent review on the subject by Sprittles (2024) states clearly that gas kinetic effects
cannot be neglected in the description of the head-on collision of drops (Li 2016) or in the
impact of drops on a substrate (Riboux & Gordillo 2014; Chubynsky et al. 2020) if the
value of the Knudsen number, defined as

Kn= —, 4.7
= .7

with A denoting the mean free path of the gas, becomes Kn 2 0.1, which is the case
of interest here. Indeed, the typical values of the gas film thickness in the experiments
reported by de Ruiter ez al. (2012) and Chantelot & Lohse (2021, 2023) vary between 103
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and 107 nanometres, whereas the values of the mean free path of air and ethanol at normal
conditions are, respectively,

A~ 69nm and Ay ~ 50 nm. (4.8a,b)

Then, in order to account for gas kinetic effects, we define an effective gas viscosity
w*(Kn) (Sprittles 2024) and make use of the expression deduced by Zhang & Law (2011),
employed successfully by Li (2016) in his study of the head-on collision of drops:

u = i (4.9)
1 4 6.0966 Kn + 0.9650 Kn? + 0.6967 Kn3’
where u refers to the value of the actual gas viscosity. Notice that for the case of drops
impacting a non-heated substrate, (1, in (4.6) refers to the effective air viscosity, namely,
y = w) (see (4.9)), whereas the Knudsen number defined in (4.7) is calculated using the
value of the mean free path given by

Py

A= ——,
Py + Apm

(4.10)
with 4, and Ap,, given, respectively, in (4.8a,b) and (3.5). For the case of drops impacting
a superheated substrate, u, = u;,, and

P, 273 +0.5(Tp + Ty)

A=A , 4.11
eth Pa—I-Apm Ta ( )

with T, =298 K, and T, = 78 and T refer to the values in Celsius of the boiling
temperature of ethanol and of the substrate temperature, respectively. For the case of
drops impacting a superheated substrate, here we also include gas kinetic effects in the
heat transfer from the wall into the liquid, making use of the effective heat conductivity
for the vapour given by (Sharipov et al. 2007)

= ke
Y 1+4+391Kn’
As pointed out in the Introduction, van der Waals effects are not retained in the analysis
because in all the experimental results reported by de Ruiter et al. (2012) and Chantelot &

Lohse (2021, 2023), the gas film thickness is well above 20 nm, which is the length scale
below which these forces become relevant (Sprittles 2024).

(4.12)

4.2. Comparison with experiments

The comparison with the numerical results in § 3 confirms our physical description, and it
is now our purpose in this subsection to check whether our results, once gas kinetic effects
are taken into consideration, can also be used to predict the experimental data reported by
de Ruiter et al. (2012) and Chantelot & Lohse (2021, 2023) for drops impacting over either
isothermal or superheated substrates.

The equations given in (4.6) and (3.17) can be used to predict the minimum gas film
thickness for arbitrary values of 7. However, the unified description for the skating of a
drop over a gas or vapour film provided by (4.6) and (3.17) also requires us to introduce
the effect of the vapour produced at the dimple on the instant of time t* at which the
central bubble is formed, i.e. at the instant when the minimum film thickness is attained at

r~ RSt 1/3/37*.
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Then, for the case of superheated substrates, the term on the left-hand side of the
mass conservation equation (2.2) needs to be modified in order to take into account
the evaporation of the liquid. Consequently, in this case, the flow rate that needs to be
evacuated radially outwards from the axis of symmetry is 7w (Rhy) (U + ky AT /(py haL)).
Therefore, expressing /y/R = t* St~%/3 and following the same steps as those detailed in
§ 3, the mass balance (2.2) provides the following equation for 7* (Gordillo & Riboux
2022):

o512 _ 10,4302 (T* + B sﬂﬂ) , (4.13)

with 8* defined in (4.4). Notice that (4.13) recovers the value of ™ & 12 corresponding to
the case of isothermal substrates, for which g* = 0.

Before comparing our predictions with the experimental values provided in de Ruiter
et al. (2012) and Chantelot & Lohse (2021, 2023), it is first necessary to express the
real temperature-dependent material properties of the gas and of the vapour as functions
of the substrate temperature. This is done here using the Python routines provided as
supplementary material available at https://doi.org/10.1017/jfm.2024.20, which implement
(3.17), (4.6) and (4.7)—(4.12) and make use of the values o0 =22 x 107> N m~! or
o =17 x 1073 N m~! for the interfacial tension coefficient of ethanol at either room
or boiling temperature, with these values taken from www.ddbst.com. Notice that all
the material properties are quantified at the mean temperature (7} + T5)/2 as detailed
in Gordillo & Riboux (2022), and this is reflected in the Python routines provided as
supplementary material. Let us point out here that we have not considered the effect of
Marangoni stresses in our physical model because the liquid located at a distance A, from
the wall is evaporating along a region of length ¢, therefore the interfacial temperature
remains constant and equal to the boiling temperature of the liquid at the region of interest
here, namely, where the minimum film thickness is attained.

Figure 8 reveals that the minimum gas film thickness can be predicted using the
equations corresponding to the capillary or inertial limits in (3.17) and (4.4)—(4.12) with
relative errors ~30 %. For the case of isothermal substrates, the predicted value for the
minimum film height has been calculated in figure 8 retaining gas kinetic effects and using
the capillary limit in (3.17) with A = 3.5, namely, the value deduced from figure 6 for the
case of drops impacting a wall at room temperature in the ideal case Kn = 0. Hence for
the case of substrates at room temperature, we conclude that the experimental data can be
approximated using the equation (see (3.17))

h

N\ 2/3
A 35 x (6 ﬁ) 122/3 We=1/3 541019, (4.14)

Ha

with u = p* defined in (4.9).

Figure 8 also compares the experimental measurements in Chantelot & Lohse
(2021, 2023) with our predictions. In this case, since the vapour layer prevents contact
between the liquid and the wall, a transition between the capillary and inertial regimes in
(3.17) is observed when the impact velocity increases. In this case, the equations for the
minimum film thickness used in the comparisons of figure 8 are (see (3.17))

hm

— ~23 Y213 0213 W= 113 §¢10/9 (4.15)
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Figure 8. (a) Comparison between the predictions given in (4.14)—(4.16) and the values for the minimum
thickness of the air or vapour layers measured by de Ruiter et al. (2012) (DeR) and Chantelot & Lohse (2023)
(C&L) for different values of the impact velocity U and for different values of the substrate temperature 7.
Here, the values of the effective gas viscosity and the effective gas conductivity have been modified taking
into account kinetic effects through (4.7)—(4.12). Solid lines represent the predictions for £, corresponding to
the capillary regime, whereas the predictions for 4, in the inertial regime are represented using dashed lines.
(b) Comparison between the predicted and measured values of /,, in (a) as a function of &. (¢) The experimental
data are compared here only with the predictions given by (4.16). In this case, the value of the prefactor is 1.15
instead of 1.25. (d) Comparison between the predicted and measured values of 4, in (¢) as a function of £. The
dashed horizontal lines in (b,d) are placed at 1 & 0.3.

and

h
F’” ~ 1.25t% St~ /64172 (4.16)

for the capillary and inertial regimes, respectively. In (4.15)—(4.16), y is given by (4.6),
7* has been calculated using (4.13), and gas kinetic effects have been quantified through
(4.7)—(4.12). The value of the prefactor in (4.15), corresponding to the capillary limit
in (3.17), differs from that in (4.14). This could be due to the differences in the local
geometry of the interface for r &~ a; indeed, the experiments in figure 3 of Chantelot
& Lohse (2021) show that the curvature of the interface near r & a for the case of
Leidenfrost drops increases with T (see also Kolinski et al. 2014b), a fact implying
that the prefactor affecting ¢ in (4.5) for the case of superheated substrates should be
smaller than for the case of isothermal impacts. Notice also that since the local curvature
is very much dependent on whether the substrate is superheated or not, it could also be the
case that de Ruiter et al. (2012) and Chantelot & Lohse (2023) provide the experimental
values of h,,;,(t = 12) for the case of isothermal substrates, whereas Chantelot & Lohse
(2021, 2023) provide h,,(t ~ 12) for the case of superheated substrates; in that case, the
value of the constant in (4.15) would be very similar to the one in (3.19). Figures 8(c,d)
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also show a comparison between the predicted and measured minimum film thicknesses
under the approximation followed in Gordillo & Riboux (2022), where we considered that
the minimum film thickness could be predicted using the inertial approximation given in
(4.16). In this case, figures 8(c,d) show that the experimental measurements by Chantelot
& Lohse (2021, 2023) can be predicted reasonably well, with relative errors +30 %, using
a value 1.15 for the prefactor in (4.16), which is very similar to that deduced from figure 6.
Notice also that figure 8 also includes the predicted minimum film thickness corresponding
to the largest temperature, 7y = 295 °C, when the value of the prefactor in (4.16) is varied
from 1.25 to 1.7. A possible reason why an increase in the value of the prefactor improves
the comparison with the experimental data for the case of the highest substrate temperature
could be the fact that the slender approximation under which (3.17) are deduced breaks
for sufficiently large values of Ts. Indeed, the parameter expressing the ratio between the
minimum film thickness and the length along which the pressure gradients in the liquid
take place, namely,

h
o~ yl2 516, (4.17)
ha,m
where we have made use of (3.4) and (4.16), could become larger than unity for substrate
temperatures T exceeding the threshold value given by the condition (see (4.17))

V2> 8PR = M (ﬁ) > §42/3. (4.18)
~ oL ov) "~

where use of (4.6) has been made. The results depicted in figure 9 reveal that, indeed,
the spatial region where the maximum pressure gradient is attained is clearly not slender
for the larger value of Ty because the film thickness is larger than the length along which
the liquid pressure gradient takes place. In these cases, since h,, ~ hg ,, the capillary
pressure is ~ o hy, /hi m ~ 0/hq m, with this value being similar to the liquid overpressure
Apy, given in (3.5) because

Apm
o/ham

which happens to be of order unity for the experiments corresponding to the largest
temperatures reported by Chantelot & Lohse (2023). Then the loss of slenderness for the
largest value of T implies larger capillary pressures because /4, is not much smaller than
ha.m, a fact also implying that the values of the gas pressure gradient are smaller than
those corresponding to the slender limit in which (3.17) have been deduced. A reduction
in the pressure gradient implies larger values of h,, (see (4.2)), and this fact could be
behind the result depicted in figure 8 for the case 7, = 295 °C. Let us also point out that
the discrepancies between the predictions and experimental measurements for the case
Ty = 295°C could also be originated as a consequence of limitations in the temporal
resolution of the experiments carried out by Chantelot & Lohse (2023) for the highest
impact velocities.

~ WeSt—1/3, (4.19)

5. Conclusions

In this contribution, we have presented numerical simulations validating the predictions in
Gordillo & Riboux (2022), where we described the lubrication mechanism by which a drop
falling over a substrate skates over a gas or vapour layer. With the purpose of explaining
and quantifying the lift-off mechanism reported empirically by Kolinski ez al. (2014b) and
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Figure 9. Ratio between the measured minimum film thickness and the length /, ,, given in (3.4) along
which pressure gradients take place. The meanings of the symbols are the same as in figure 8.

investigated numerically by Mishra et al. (2022), we have extended our previous results
and have provided equations, including the values of the prefactors, that reproduce closely
the time evolution of the minimum film thickness calculated numerically. Moreover, with
the purpose of comparing our results with the measured values of the gas or vapour
film thicknesses, we have included gas kinetic effects in the algebraic equations for the
minimum thickness of the gas layer, finding that our predictions, up to prefactors, are in
good agreement with the results reported by de Ruiter et al. (2012) and Chantelot & Lohse
(2021, 2023).
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Appendix A. Numerical simulations

The numerical results in § 2, which have been calculated using the free software Basilisk
(Popinet 2015), extending the ideas in the codes by Sanjay (2022) and Zhang et al.
(2022), simulate the axisymmetric impact of a drop of radius R initially centred at
z = 1.006R, falling with a uniform velocity U over an impermeable horizontal substrate.
The numerical results have been obtained by imposing symmetry conditions at the axis,
the impenetrability and no-slip boundary conditions at the wall limiting the computational
domain depicted in figure 1, and outflow boundary conditions at the two remaining
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(a)
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0 g
0.25 0.30 0.35 0.40 0.360 0.361 0.362
r/R r/R
Figure 10. Each black dot represents the vertex of a numerical cell, whereas the interface is plotted using a
blue solid line. (a) The numerical domain is divided into regions with different discretization levels: red box,
h/R < 0.1 and r/R < 1.0, with cell sizes A > R/1950; yellow box, /R < 0.01 and r/R < +/3s 4 0.15, with

cell sizes A > R/31208. For the rest of the numerical domain, A > R/975. (b) A closer view of the region

around the advancing front. (¢) Detailed view of the spatial region around the wetting radius r = +/3s (red
dashed line). Here, We = 12, St = 2.60 x 10* and = 0.0435 ~ 38 5t~%/3.

boundaries, where both the pressure and the gradient of normal velocities are set to
zero. We have checked that the numerical results are unaffected by the dimensions of
the computational domain.

We have made use of an adaptive Cartesian mesh, which refines the solution both at
the interface and at the regions with the largest velocity gradients. The tolerances for the
volume fraction field, for the velocity field and for the curvature are set to 1073, 10~2 and
1075, respectively, and the maximum level of grid refinement is defined in each of the
different regions into which the computational domain has been divided; indeed, the grid
size is A > R/975 for z > 0.1, but A > R/31208 near the wall, where the velocity and
pressure gradients reach the largest values; see the figure 10 caption for details. Moreover,
we have carried out a sensitivity analysis in order to verify that the results reported are
independent of the grid size; indeed, figure 11 shows that the values of the pressure, the
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Figure 11. Plots of (@) hyin/R(T), (b) Ap/(pUz)(r), and (c) time evolution of (Bp/ar)R/(pUz)(r) at the
spatio-temporal region where the gas pressure is maximum for different values of the discretization level A.
The numerical results have been calculated for We = 4 and St = 3 x 10*, which correspond to the values of the
dimensionless parameters characterizing a water drop of radius R = 1.05 mm impacting a wall with velocity
U = 0.52 m s~ ! reported by de Ruiter ef al. (2012). The numerical results are compared with the experimental
measurements in de Ruiter ez al. (2012) in the inset of (a). The values of A in the legend indicate the minimum
grid size. Numerical values at t* ~ 12 are given for (d) h,, /R, (e) Ap/(pUz) and (f) (8p/8r)R/(pU2) as
functions of R/ A, with A indicating the minimum grid size.

pressure gradient and the minimum gas film thickness become independent of the grid
size and converge towards well-defined values. Figure 11 also shows that our numerical
results reproduce, with small relative errors, the experimental value of the minimum gas
film thickness reported by de Ruiter et al. (2012), and table 1 reports the minimum number
of cells in the z direction used to compute the gas velocity field within the lubrication layer;
see also figures 16 and 17.
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We St Size
4 3.03 x 10* 15
12 1.20 x 10* 23
12 2.60 x 10* 11
22 2.12 x 104 10
36 2.60 x 10* 7
48 1.84 x 10* 9
48 3.60 x 10* 5
60 1.80 x 10* 9

Table 1. Minimum number of numerical cells used to describe the flow in the lubrication layer at the radial
position where the thickness of the gas film is minimum. In consequence, the number of cells in the z direction
for the rest of the radial positions and instants of times is larger than the values provided in the table.

0.030 T T

0.025

0.020f e

I »
0015 17 =4, sr=3 < 10°

We=12,8t=1.2x10*
We =12, 8t=2.6x10*
We=22,S5t=2.1x10*
We =36, St=2.6 x 10*
We =48, St=1.2 x 10*
We =48, St=1.8 x 10*
We =48, St=3.6 x 10*
We =48, St=4.5 x 10*
We =60, St=1.8 x 10*

Ap,, St2B3

0.010+

4 = o v 4« m o

3 6

Figure 12. Comparison between the maximum liquid pressure predicted in (3.5) and the maximum gas
pressure at the wall for different instants of time and different values of the Weber and Stokes numbers. The
dashed line indicates the transition at t* = 12 between the pre-impact and post-impact stages.

Appendix B. Comparison between the predicted and calculated values of the gas
pressure and the gas pressure gradient

In this contribution, we do not restrict ourselves to validate our physical model with the
results shown in figures 6 and 7; indeed, notice here that the equations for the minimum
gas film thickness 4, have been deduced through (3.2), which depends on the value of
the local pressure gradient at the spatio-temporal region where the pressure is maximum.
Hence our predictions for &, are linked to the correctness of the approximations to the
time-dependent values of both the pressure and the pressure gradient given, respectively,
in (3.5) and (3.17). This is the reason why figure 12 compares the result in (3.5) with
the numerical values of the maximum gas pressure at the wall. Notice that the agreement
between predictions and the numerical results improves for increasing values of We due
to the fact that the numerical values for the gas pressure depicted in figure 12 are the
result of subtracting the capillary pressure from the value of the maximum liquid pressure
predicted by (3.5). Moreover, figure 13 shows the time evolution of the pressure gradient at
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Figure 13. (a) Values of the pressure gradient at the spatio-temporal region where the pressure is maximum
for the range of We and St considered in this study. The pressure gradient has been calculated as the
slope of the lines tangent to the gas pressure distribution at the wall; see figure 2. (b) The values of
the maximum pressure gradients, attained at v = t™ ~ 12, can be predicted well for all values of &
using the expression for —dp/adr in (3.17) corresponding to the capillary scaling. (¢) The values of the
pressure gradient at T = t* ~ 12 can be predicted well for & > 4 using the expression for —dp/dr in
(3.17) corresponding to the inertial scaling. Here, IT" = IT;(t*) = (—=dp/dr)(t*) St=3/3/(pU?/R) and I =
(%) = (=dp/dr)(t*) We™3 $t714/% ) (pU? JR).

the region where the pressure is maximum. In both this figure and figure 14, the numerical
values of the pressure gradient have been calculated as illustrated in figure 2, namely,
as the slope of the lines tangent to the gas pressure distribution at the wall. The results
in figures 13(b,c) show that the maximum values of the pressure gradients depicted in
figure 13(a) can be predicted using the equations for —dp/dr given in (3.17) particularized
at the instant 7 = t* &~ 12. Moreover, figure 14 validates further the predictions given in
(3.17) for the time-varying values of the pressure gradient at the spatio-temporal region
where the pressure is maximum. Indeed, figure 14(a) shows that the numerical values
corresponding to the smaller values of We follow the capillary scaling of —dp/dr provided
in (3.17), whereas figure 14(b) confirms that the values of the calculated pressure gradient
for We > 36 are well captured, specially for the larger values of 7, by the equation
corresponding to the inertial limit given in (3.17), as expected from the fact that the
transition from the capillary to the inertial regimes is controlled by the value of the
parameter & = 7&; see (3.15)—(3.16).
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Figure 14. Comparison between the two different expressions for the pressure gradient given in (3.17) and

the numerical values calculated as illustrated in figure 2, namely, as the slope of the lines tangent to the gas

pressure distribution at the wall. The dashed line indicates the transition at t* = 12 between the pre-impact

and post-impact stages. In (a), IT, = —(3p/dr) We=2/3 St=14/° /(pU? /R) and the solid line indicates o< T/,

whereas in (b), IT; = —(dp/dr) St_5/3/(pU2/R) and the solid line indicates o« 7 /2; see (3.17).

Appendix C. Effect of the gas shear stresses on the interfacial liquid velocity

The purpose of this appendix is to analyse the effect of the gas shear stresses on the value
of the liquid interfacial velocity. For the case of isothermal substrates, the shear stress
balance at the interface yields the following relationship between the jump in tangential
velocity across the liquid boundary layer, AV,,, and the gas velocity within the thin film
~ Vi

u, Vin AV, Ha )
AN LN L Cl1
Ry ™ Ha . v o T (C1)
with
h 12
soc [P R (i) §r5/6 (C2)
pU Ha

indicating the characteristic thickness of the liquid boundary layer growing during
the characteristic time hy/U «x R/U Sr=2/3 (Gordillo & Riboux 2022). Then, since

Bm ~ ham ~ 15R St™! (see (3.4)), (C1) yields

AV, (Ma)‘/z Stl/6

— K1, (C3)
Vin 122

15

a result explaining the mostly uniform velocity profiles within the liquid side of the
interface depicted in figure 15, which also shows that the interfacial velocity is & V,,,
with V,, given in (3.1). However, notice also that the numerical results in figure 15
reveal that the radial velocity at the interface reaches the value predicted by Wagner’s
theory, u, = V,,, only for sufficiently large values of We and 7. This is a consequence
of the fact that the values of We and St in figure 15 correspond to the cases depicted in
figures 7(a,d,h), for which capillary pressure cannot be neglected, as it can be inferred from
the fact that the values of £, are very well approximated by the expression corresponding
to the capillary regime in (3.19) during the initial stages of the post-impact process,
except for the case We ~ 4. Then u,/V,, < 1 in figure 15 because when the values of
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Figure 15. Normalized radial velocity field u,/V,, as a function of the dimensionless vertical position z =
z/z(1), with z(1) the vertical coordinate of the interface at different dimensionless times t, and for different
normalized radial positions (r — a) /f_za. (a) Here, We = 3.94, St = 3 x 10* at 7 values (a i-aiii) 12, (aiv—a vi)
15 and (a vii—a ix) 20, for the following radial positions (r — a) /i_za: (ai) 10, (aii) 11, (aiii) 12, (aiv) 8, (av) 9,
(avi) 10, (avii) 5, (a viii) 6 and (a ix) 7. (b) Here, We = 22, St = 2.12 x 10* at T values (bi-biii) 12, (biv-b vi)
15, (b vii-b ix) 20 and (b x—b xii) 40, for the following radial positions (r — a)/h,: (b1) 1, (bii) 2, (biii) 3, (biv)
2, (bv) 3, (bvi) 4, (bvii) 1.5, (bviii) 2.5, (bix) 3.5, (bx) 3.5, (bxi) 4.5 and (bxii) 5.5. (c) Here, We = 48,
St =1.84 x 10* at 7 values (ci—ciii) 12, (civ—cvi) 15, (¢ vii—cix) 20 and (c x—c xii) 40, for the following
radial positions (r — @) /hy: (ci) 0.5, (cii) 1, (ciii) 1.5, (civ) 1, (cv) L5, (cvi) 2, (cvii) 2, (c viii) 2.5, (cix) 3,
(cx) 4, (cxi) 5 and (cxii) 5.5.
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Figure 16. Comparison between u,/V,,, with u, indicating the radial component of the gas velocity field
calculated numerically and V,, given in (3.3), with the prediction u,/V,, corresponding to the capillary limit
(xc) in (C4)—(CS5). The velocity fields have been represented in the frame of reference moving with the wetting
velocity V,, for four different instants of time 7, namely (a) 12, (b) 15, (¢) 20 and (d) 40, and for three
different values of (r — a) /l_za, with @ ~ Rv/3s and h, ~ ham given in (3.4). The velocity fields predicted
by (C4)—(C5) are represented using black solid lines, whereas dashed lines illustrate the contribution of the
Couette flow, corresponding to x. = 0 in (C4). Here, We = 22, St = 2.12 x 10*, whereas z(1) indicates the
vertical coordinate of the interface at the minimum value of (r — a)/h, represented in each of the plots.

We, St and 7 are such that the impact takes place within the capillary regime described
by the conditions given in (3.16)—(3.17), the interfacial liquid pressure along a distance
L. > h, located downstream the point of maximum pressure (see (3.7)—(3.8)) is larger
than the atmospheric pressure, and in fact is comparable to the dynamic pressure. Then
the capillary overpressures extending along a distance ¢, > h, downstream of the point
of maximum pressure contribute to decrease the value of the liquid tangential velocity
at the interface with respect to Wagner’s expression for V,,. Hence the prediction for V,,
could be improved by including in Wagner’s framework the contribution of the capillary
normal stresses in the boundary condition for the potential at the interface along a region
L. > h, extending downstream of the point of maximum pressure. Here, £, (Gordillo &
Riboux 2022) is a length that, when the impact takes place within the capillary regime
defined in (3.16)—(3.17), is larger than the length %, characterizing the so-called inner
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Figure 17. Comparison between u,/V,,, with u, indicating the radial component of the gas velocity field
calculated numerically and V,, given in (3.3), with the prediction uy,/V,, corresponding to the inertial limit
(x;) in (C4)—(C5). The velocity fields have been represented in the frame of reference moving with the wetting
velocity V,, for four different instants of time 7, namely (a) 12, (b) 15, (¢) 20 and (d) 40, and for three
different values of (r — a) /}_zu, with @ ~ Ry/3s and ha ~ ham given in (3.4). The velocity fields predicted
by (C4)—(C5) are represented using black solid lines, whereas dashed lines illustrate the contribution of the
Couette flow, corresponding to x; = 0 in (C4). Here, We = 48, St = 1.84 x 10, whereas z(1) indicates the
vertical coordinate of the interface at the minimum value of (r — @) /h, represented in each of the figures.

solution in Wagner’s classical theory (Howison et al. 1991); this extra theoretical effort
does not modify the essence of our physical modelling and could be considered in a
separate contribution.

Figures 16 and 17 compare the gas velocity field calculated numerically for different
instants of time in a frame of reference moving with velocity V,,,/U = 1/24/3/s along the
spatial region where the maximum pressure is attained, with the velocity field resulting
from the superposition of a parabolic Poiseuille flow plus a linear Couette flow given by
the equation

U, 1 St V3 z
—{]<r, $) =3 Kei (ﬁ) [2(z = h(r, DT+ == 1/2 [K(s) el 1} : (C4)
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with 0.5 < K(s) < 1.1 adjusted so that us,/U in (C4) matches the value of the tangential
velocity calculated numerically at z = A(r, s). In (C4),

o = —A'T 116 We2/3 5414/,

B (C5)
xi = —B't=52 8603,

where we have made use of the results in (3.17), and A’ = 0.0114 and B’ = 0.2449 are the
values of the proportionality constants deduced from figure 14. The results in figures 16
and 17 show that the interfacial velocity in the moving frame of reference is not zero;
this would be the case only if K(s) = 1 in (C4). Nevertheless, these deviations cannot be
attributed to the shear stresses exerted by the gas at the interface; indeed, the gas shear
stresses would induce a liquid interfacial velocity that, in the moving frame of reference,
would point in the direction opposite to that shown in figures 16 and 17, and, moreover, as
can be seen clearly in figure 15, the gradients of the radial liquid velocity along the vertical
coordinate are fairly small as a consequence of the smallness of the gas to liquid viscosity
ratio; see (C1). Then the reason for K # 1 in (C4) is associated with the simplifications
made in the potential flow description since, as was indicated previously, Wagner’s theory
does not take into account the effect of the capillary pressure and the actual geometry of the
bottom part of the drop has been linearized; indeed, notice that the boundary conditions
corresponding to the solutions of the Laplace equation used here have been imposed at
z = 0; see Gordillo & Riboux (2022) for details.
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