ON C*-ALGEBRAS WITH THE APPROXIMATE n-TH ROOT PROPERTY

A. CHIGOGIDZE, A. KARASEV, K. KAWAMURA AND V. VALOV

We say that a C^* -algebra X has the approximate *n*-th root property $(n \ge 2)$ if for every $a \in X$ with $||a|| \le 1$ and every $\varepsilon > 0$ there exits $b \in X$ such that $||b|| \le 1$ and $||a-b^n|| < \varepsilon$. Some properties of commutative and non-commutative C^* -algebras having the approximate *n*-th root property are investigated. In particular, it is shown that there exists a non-commutative (respectively, commutative) separable unital C^* -algebra X such that any other (commutative) separable unital C^* -algebra is a quotient of X. Also we illustrate a commutative C^* -algebra, each element of which has a square root such that its maximal ideal space has infinitely generated first Čech cohomology.

1. INTRODUCTION

All topological spaces in this paper are assumed to be (at least) completely regular. A compact Hausdorff space is called a *compactum* for simplicity. By C^* -algebra and homomorphisms between C^* -algebras, we mean unital C^* -algebras and unital *-homomorphisms. For a space X and an integer $n \ge 2$, we consider the following conditions ($\|\cdot\|$ denotes the supremum norm):

- (*)_n For each bounded continuous function $f: X \to \mathbb{C}$ and each $\varepsilon > 0$, there exists a continuous function $g: X \to \mathbb{C}$ such that $||f g^n|| < \varepsilon$.
- $(**)_n$ For each bounded continuous function $f: X \to \mathbb{C}$ and each $\varepsilon > 0$, there exist bounded continuous functions $g_1, \ldots, g_n: X \to \mathbb{C}$ such that $f = \prod_{i=1}^{i=n} g_i$ and $||g_i g_j|| < \varepsilon$ for each i, j.

We say that the space $C^*(X)$ of all bounded complex-valued functions on X has the approximate *n*-th root property if X satisfies condition $(*)_n$. The results in this paper were inspired by the following theorem established by Kawamura and Miura [10]:

THEOREM 1.1. Let X be a compactum with dim $X \leq 1$ and n a positive integer. Then the following conditions are equivalent.

Received 3rd March, 2005

The second author was partially supported by his NSERC Grant 257231-04. The paper was started during the third author's visit to Nipissing University in July 2004. The last author was partially supported by his NSERC Grant 261914-03.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

- (1) C(X) has the approximate *n*-th root property.
- (2) X satisfies condition $(**)_n$.
- (3) the first Čech cohomology H¹(X; Z) is n-divisible, that is, each element of H¹(X; Z) is divided by n.

Let $\mathcal{A}(n)$ denote the class of all completely regular spaces satisfying condition $(*)_n$ and $\mathcal{A}_1(n)$ is the subclass of $\mathcal{A}(n)$ consisting of spaces X with dim $X \leq 1$.

In Section 2 we investigate some properties of the classes $\mathcal{A}(n)$ and $\mathcal{A}_1(n)$. In particular, the following theorem is established.

THEOREM 1.2. Let n be a positive integer and let \mathcal{K} denote one of the classes $\mathcal{A}(n)$ and $\mathcal{A}_1(n)$. Then, for every cardinal $\tau \ge \omega$, there exists a compactum $X_{\tau} \in \mathcal{K}$ of weight $\leqslant \tau$ and a \mathcal{K} -invertible map $f_{\mathcal{K}}: X_{\tau} \to \mathbb{I}^{\tau}$.

Here, a map $h: X \to Y$ is said to be *invertible* for the class \mathcal{K} (or simply, \mathcal{K} -invertible) if for every map $g: Z \to Y$ with $Z \in \mathcal{K}$ there exists a map $\overline{g}: Z \to X$ such that $g = h \circ \overline{g}$.

Theorem 1.2 implies the next corollary.

COROLLARY 1.3. Let n be a positive integer and let \mathcal{K} be one of the classes $\mathcal{A}(n)$ and $\mathcal{A}_1(n)$. Then, for every $\tau \ge \omega$, there exists a compactum $X \in \mathcal{K}$ of weight τ which contains every space from \mathcal{K} of weight $\le \tau$.

It is easily seen that the modification of condition $(*)_n$, obtained by requiring both fand g to be of norm ≤ 1 , is equivalent to $(*)_n$. This observation leads us to consider the following classes of general (non-commutative) C^* -algebras. We say that a C^* -algebra X satisfies the approximation n-th root property if for every $a \in X$ with $||a|| \leq 1$ and every $\varepsilon > 0$ there exists $b \in X$ such that $||b|| \leq 1$ and $||a - b^n|| < \varepsilon$. The class of all C^* -algebras with the approximate n-th root property is denoted by $\mathcal{AP}(n)$. Let $\mathcal{AP}_1(n)$ be the subclass of $\mathcal{AP}(n)$ consisting of C^* -algebras of bounded rank ≤ 1 (recall that bounded rank of C^* -algebras is a non-commutative analogue of the covering dimension dim, see [5]). We also consider the class $\mathcal{HP}(n)$ of C^* -algebras X with the following property: for every invertible element $a \in X$ with $||a|| \leq 1$ and every $\varepsilon > 0$ there exists $b \in X$ such that $||b|| \leq 1$ and $||a - b^n|| < \varepsilon$.

In the sequel, $\mathcal{AP}(n)_s$ denotes the class of all separable C^* -algebras from $\mathcal{AP}(n)$. The notations $\mathcal{AP}_1(n)_s$ and $\mathcal{HP}(n)_s$ have the same meaning.

Recall now the concept of \Re -invertibility introduced in [2], where \Re is a given class of C^* -algebras. A homomorphism $p: X \to Y$ is said to be \Re -invertible if, for any homomorphism $g: X \to Z$ with $Z \in \Re$, there exists a homomorphism $\overline{g}: Y \to Z$ such that $g = \overline{g} \circ p$. We also introduce the notion of a universal C^* -algebra for a given class \Re as a C^* -algebra $Y \in \Re$ such that any other C^* -algebra from \Re is a quotient of Y.

Section 3 is devoted to the classes $\mathcal{AP}(n)$, $\mathcal{AP}_1(n)$ and $\mathcal{HP}(n)$. The results of this section can be considered as non-commutative counterparts of the results from Section 2. For example, Theorem 1.4 below is a non-commutative version of Theorem 1.2.

THEOREM 1.4. Let n be a positive integer and let \mathcal{K} be one of the classes $\mathcal{AP}(n)$, $\mathcal{AP}_1(n)$ and $\mathcal{HP}(n)$. Then there exists a \mathcal{K} -invertible unital *-homomorphism $p: C^*(\mathbb{F}_{\infty}) \to Z_{\mathcal{K}}$ of $C^*(F_{\infty})$ to a separable unital C^* - algebra $Z_{\mathcal{K}} \in \mathcal{K}$, where $C^*(\mathbb{F}_{\infty})$ is the group C^* -algebra of the free group on countable number of generators.

It is well-known that every separable C^* -algebra is a surjective image of $C^*(\mathbb{F}_{\infty})$. Therefore, if \Re is a class of separable C^* -algebras and $p: C^*(F_{\infty}) \to Y_{\Re}$ is a \Re -invertible homomorphism with $Y_{\Re} \in \Re$, then Y_{\Re} is universal for the class \Re . Hence, Theorem 1.4 implies that each of the classes $\mathcal{AP}(n)_s$, $\mathcal{AP}_1(n)_s$ and $\mathcal{HP}(n)_s$ has a universal element.

Let us note that there exists a non-commutative C^* -algebra which belongs to any one of the classes $\mathcal{AP}(n)_s$, $\mathcal{AP}_1(n)_s$ and $\mathcal{HP}(n)_s$. Indeed, let X = M(m) be the algebra of all $m \times m$ complex matrixes, where $m \ge 2$ is a fixed integer. By [1], the bounded rank of any $A \in X$ is 0. Moreover, using the canonical Jordan form representation, one can show that if $A \in X$ and $n \ge 2$, then A can be approximated by a matrix $B \in X$ with $C^n = B$ for some $C \in X$. Hence, the class X is a common part of $\mathcal{AP}(n)_s$, $\mathcal{AP}_1(n)_s$ and $\mathcal{HP}(n)_s$. This implies that the universal elements of $\mathcal{AP}(n)_s$, $\mathcal{AP}_1(n)_s$ and $\mathcal{HP}(n)_s$ are also non-commutative.

Section 4 deals with square root closed compacta, compacta X such that, for every $f \in C(X)$, there is $g \in C(X)$ with $f = g^2$. It is known that if X is a first-countable connected compactum, then X is square-root closed if and only if X is locally connected, dim $X \leq 1$ and $\check{H}^1(X;\mathbb{Z})$ is trivial, see [6, 8, 10, 12]. A topological characterisation of general square root closed compacta is still unknown. Here we show that a square root closed compactum X with dim $X \leq 2$, constructed based on the idea of Cole ([13, Chapter 3, Section 19], and Karahanjan [9] has infinitely generated first Čech cohomology $\check{H}^1(X;\mathbb{Z})$. This space is the limit of an inverse system $(X_\alpha, \pi_\alpha^\beta : \alpha < \omega_1)$ starting with the unit disk in the plane and such that each map $\pi_\alpha^\beta : X_\beta \to X_\alpha$ is invertible with respect to the class of square root closed compacta. A similar construction yields a one-dimensional such compactum. This illustrates that the topological characterisation of (not necessarily first countable) square root closed compacta would be rather different than the one for first-countable compacta mentioned above. Also, the invertibility of the maps π_α^β allows us to obtain a universal element for the class of square root closed compacta with arbitrarily fixed weight.

2. Some properties of the classes $\mathcal{A}(n)$ and $\mathcal{A}_1(n)$

LEMMA 2.1. Let X be the limit space of an inverse system $\{X_{\alpha}, p_{\alpha}^{\beta} : \alpha, \beta \in A\}$ of compacta. Then, for every $f \in C(X)$ and every $\varepsilon > 0$, there exists $\alpha \in A$ and $g \in C(X_{\alpha})$ such that $g \circ p_{\alpha}$ is ε -close to f, where $p_{\alpha} : X \to X_{\alpha}$ is the α -th limit projection.

PROOF: We take a finite cover ω of f(X) consisting of open and convex subsets of \mathbb{C} each of diameter $< \varepsilon$. Since X is compact, we can find α and an open cover

 $\gamma = \{U_j : j = 1, ..., m\}$ of X_{α} such that $p_{\alpha}^{-1}(\gamma)$ is a star-refinement of the cover $f^{-1}(\omega)$. Without loss of generality, we can assume that each U_j is functionally open in X_{α} , that is, $U_j = h_j^{-1}((0, 1])$ for some function $h_j : X_{\alpha} \to [0, 1]$. For any j we fix a point $x_j \in p_{\alpha}^{-1}(U_j)$ and the required function $g : X_{\alpha} \to \mathbb{C}$ is defined by $g(y) = \sum_{i=1}^{j=m} h_j(y) f(x_j)$.

COROLLARY 2.2. Let \mathcal{K} be one of the classes $\mathcal{A}(n)$ and $\mathcal{A}_1(n)$. If X is the limit space of an inverse system $\{X_{\alpha}, p_{\alpha}^{\beta} : \alpha, \beta \in A\}$ of compacta with each $X_{\alpha} \in \mathcal{K}$, then $X \in \mathcal{K}$.

PROOF: This is a direct application of Lemma 2.1 for the class $\mathcal{A}(n)$. Since the limit space of any inverse system of at most one dimensional compacta is of dimension ≤ 1 , the validity of our corollary for $\mathcal{A}(n)$ yields its validity for $\mathcal{A}_1(n)$.

We say that a class of spaces \mathcal{K} is *factorisable* if, for every map $f: X \to Y$ of a *compactum* $X \in \mathcal{K}$, there exists a compactum $Z \in \mathcal{K}$ of weight $w(Z) \leq w(Y)$ and maps $\pi: X \to Z$ and $p: Z \to Y$ such that $f = p \circ \pi$.

PROPOSITION 2.3. Any one of the classes $\mathcal{A}(n)$ and $\mathcal{A}_1(n)$ is factorisable.

PROOF: We consider first the class $\mathcal{A}(n)$. Fix a map $f: X \to Y$ of a compactum $X \in \mathcal{A}(n)$ and assume $w(Y) \leq \tau$. Obviously, we can assume X is of weight $w(X) > \tau$ and Y is compact. By induction, we construct sequences of compacta X_k , dense subsets $M_k \subset C(X_k)$ of cardinality $\leq \tau$ and maps $\pi_k: X \to X_k$, $p_k^{k+1}: X_{k+1} \to X_k$, $k \geq 0$, satisfying the following conditions:

- (0) $X_0 = Y, \pi_0 = f,$
- (1) $p_k^{k+1} \circ \pi_{k+1} = \pi_k, w(X_k) \leq \tau$ and M_k separates points of X_k $(k \ge 0);$
- (2) For every $h \in M_k$ and every $\varepsilon > 0$, there exists $g \in M_{k+1}$ such that $||h \circ p_k^{k+1} g^n|| < \varepsilon \ (k \ge 0).$

The weight of the function space C(Y) is $\leq \tau$, so C(Y) contains a dense subset M_0 of cardinality $\leq \tau$, separating points of Y. Suppose the spaces X_i , the sets M_i and the maps π_i , p_{i-1}^i , $i \leq k$, have been constructed for some k. Since $X \in \mathcal{A}(n)$, for each $h \in M_k$ and each positive rational number $r \in Q^+$, there exists $g(h, r) \in C(X)$ with $\|h \circ \pi_k - g(h, r)^n\| < r$. Let $\pi_{k+1} \colon X \to X_k \times (\mathbb{R})^{M_k \times Q^+} \times (\mathbb{R})^{M_k}$ be the diagonal product of π_k and all maps g(h, r) and $h \circ \pi_k$, where $h \in M_k$, $r \in Q^+$. Let $X_{k+1} = \pi_{k+1}(X)$ and $p_k^{k+1} \colon X_{k+1} \to X_k$ be the natural projection onto X_k . Since M_k separates points of X_k (condition (1)), π_{k+1} is an embedding and hence every g(h, r) can be represented as g_{k+1}(h, r) \circ \pi_{k+1} with $g_{k+1}(h, r) \in C(X_{k+1})$. Because $w(X_{k+1}) \leq \tau$, $C(X_{k+1})$ contains a dense subset M_{k+1} of cardinality $\leq \tau$ containing all $g_{k+1}(h, r)$, $h \in M_k$, $r \in Q^+$ and also separating points of X_{k+1} . Obviously, X_{k+1} , M_{k+1} and π_{k+1} satisfy conditions (1) and (2). Let Z be the limit of the inverse sequence $\{X_k, p_k^{k+1} : k = 1, 2...\}$, $p: Z \to Y$ the first limit projection and $\pi: X \to Z$ the limit of the maps π_k . Also let $p_k: Z \to X_k$ be

the k-th limit projection. By Lemma 2.1, for every $h \in C(Z)$ and every $\varepsilon > 0$, there exists m and $g_m \in C(X_m)$ such that $||h - g_m \circ p_m|| < \varepsilon/3$. Now, take $h_m \in M_m$ with $||g_m - h_m|| < \varepsilon/3$. According to our construction, $||h_m \circ p_m^{m+1} - g^n|| < \varepsilon/3$ for some $g \in M_{m+1}$. Hence, $||h - (g \circ p_{m+1})^n|| < \varepsilon$. Finally, by Lemma 2.1, we see $Z \in \mathcal{A}(n)$.

For the class $\mathcal{A}_1(n)$ we need the following modifications of the previous proof: all M_k , $k \ge 0$, are dense subsets of $C(X_k)$ of cardinality $|M_k| \le \tau$ satisfying conditions (1) and (2), where the compactum X_k is of dimension ≤ 1 for each $k \ge 1$. It suffices to demonstrate the construction of X_1 and M_1 . Using the above notations, take the diagonal product $q_1: X \to Y \times \mathbb{C}^{M_0 \times Q^+} \times \mathbb{C}^{M_0}$ of $\pi_0 = f$ and all maps g(h, r) and $h \circ \pi_0$, where $h \in M_0$ and $r \in Q^+$. Let also $Z_1 = q_1(X)$ and $q_0: Z_1 \to Y$ be the natural projection. Then, $w(Z_1) \le \tau$ and, by the Mardešič factorisation theorem [11], there exists a compactum X_1 of weight $\le \tau$ and dim $X_1 \le 1$, and maps $\pi_1: X \to X_1$ and $q_2: X_1 \to Z_1$ with $q_1 = q_2 \circ \pi_1$. Obviously, every g(h, r) can be represented as $g_1(h, r) \circ \pi_1$ with $g_1(h, r) \in C(X_1)$. We denote $p_0^1 = q_0 \circ q_2$ and choose a dense subset $M_1 \subset C(X_1)$ such that $|M_1| \le \tau$ and M_1 contains every $g_1(h, r)$ with $h \in M_0$ and $r \in Q^+$, and separates points of X_1 . In this way we obtain the spaces X_k with dim $X_k \le 1$. The last inequalities imply that the limit space Z is also of dimension ≤ 1 . Moreover, by Lemma 2.1, Z satisfies $(*)_n$, so $Z \in \mathcal{A}_1(n)$.

COROLLARY 2.4. Let \mathcal{K} be one of the classes $\mathcal{A}(n)$ and $\mathcal{A}_1(n)$. Then every space $X \in \mathcal{K}$ has a compactification $Z \in \mathcal{K}$ with w(Z) = w(X).

PROOF: Obviously, $X \in \mathcal{K}$ implies $\beta X \in \mathcal{K}$. Let Y be an arbitrary compactification of X with w(Y) = w(X) and let $f: \beta X \to Y$ be the extension of the identity on X. Then, by Proposition 2.3, there exists a compactum $Z \in \mathcal{K}$ and maps $g: \beta X \to Z$ and $h: Z \to Y$ with $h \circ g = f$ and w(Z) = w(X). It remains only to observe that Z is a compactification of X.

PROPOSITION 2.5. Let \mathcal{K} be one of the classes $\mathcal{A}(n)$ and $\mathcal{A}_1(n)$. Then every compactum $X \in \mathcal{K}$ can be represented as the limit space of an ω -spectrum $\{X_{\alpha}, p_{\alpha}^{\beta} : \alpha, \beta \in A\}$ of metrisable compacta with each $X_{\alpha} \in \mathcal{K}$.

PROOF: Because of similarity of the arguments, we consider only the class $\mathcal{A}(n)$. First, represent X as the limit space of an ω -spectrum $\{X_{\alpha}, p_{\alpha}^{\beta} : \alpha, \beta \in \Lambda\}$ and introduce the relation L on Λ^2 consisting of all $(\alpha, \beta) \in \Lambda^2$ such that $\alpha \leq \beta$ and for each $f \in C(X_{\alpha})$ and $\varepsilon > 0$ there is $g \in C(X_{\beta})$ with $||f \circ p_{\alpha}^{\beta} - g^{n}|| < \varepsilon$. The relation L has the following properties:

- (i) for every $\alpha \in \Lambda$ there exists $\beta \in \Lambda$ with $(\alpha, \beta) \in L$:
- (ii) if $(\alpha, \beta) \in L$ and $\beta \leq \gamma$, then $(\alpha, \gamma) \in L$;
- (iii) if $\{\alpha_k\}$ is a chain in Λ with each $(\alpha_k, \beta) \in L$, then $(\alpha, \beta) \in L$, where $\alpha = \sup\{\alpha_k\}$.

Indeed, to show (i), we take a countable dense subset $M_{\alpha} \subset C(X_{\alpha})$ and, as in Proposition 2.3, for every $h \in M_{\alpha}$ and $r \in Q^+$ choose $g(h,r) \in C(X)$ with $||h| \circ p_{\alpha} - g(h,r)^n|| < r$. Notice that, for each $f \in C(X)$, there is a $\gamma \in \Lambda$ and $\varphi \in C(X_{\gamma})$ such that $f = \varphi \circ p_{\gamma}$. Applying this to g(h,r), we can find $\beta \in \Lambda$, $\beta > \alpha$, such that for each $(h,r) \in M_{\alpha} \times Q^+$, we have $g(h,r) = g_{\beta}(h,r) \circ p_{\beta}$, where $g_{\beta}(h,r) \in C(X_{\beta})$. Then $(\alpha,\beta) \in L$. Property (ii) follows directly and (iii) follows from Lemma 2.1 and the fact that X_{α} is the limit space of the inverse sequence generated by X_{α_k} and the projections $p_{\alpha_k}^{\alpha_{k+1}} : X_{\alpha_{k+1}} \to X_{\alpha_k}, k = 1, \ldots$, because α is supremum of the chain $\{\alpha_k\}$.

By [3, Proposition 1.1.29], the set $A = \{\alpha \in \Lambda : (\alpha, \alpha) \in L\}$ is cofinal and ω -closed in Λ . Obviously, $X_{\alpha} \in \mathcal{A}(n)$ for each $\alpha \in A$ and X is the limit of the inverse system $\{X_{\alpha}, p_{\alpha}^{\beta} : \alpha, \beta \in A\}.$

PROOF OF THEOREM 1.2: We consider the family of all maps $\{h_{\alpha}: Y_{\alpha} \to \mathbb{I}^{\tau}\}_{\alpha \in \Lambda}$ such that each Y_{α} is a closed subset of \mathbb{I}^{τ} with $Y_{\alpha} \in \mathcal{K}$. Let Y be the disjoint sum of all Y_{α} and the map $h: Y \to \mathbb{I}^{\tau}$ coincides with h_{α} on every Y_{α} . We extend h to a map $\overline{h}: \beta Y \to \mathbb{I}^{\tau}$. Since $\beta Y \in \mathcal{K}$, by Proposition 2.3, there exists a compactum X of weight $\leq \tau$ and maps $p: \beta Y \to X$ and $f: X \to \mathbb{I}^{\tau}$ such that $X \in \mathcal{K}$ and $f \circ p = \overline{h}$.

Let us show that f is \mathcal{K} -invertible. Take a space $Z \in \mathcal{K}$ and a map $g: Z \to \mathbb{I}^{\tau}$. Considering βZ and the extension $\overline{g}: \beta Z \to \mathbb{I}^{\tau}$ of g, we can assume that Z is compact. We also can assume that the weight of Z is $\leq \tau$ (otherwise we apply again Proposition 2.3 to find a compact space $T \in \mathcal{K}$ of weight $\leq \tau$ and maps $g_1: Z \to T$ and $g_2: T \to \mathbb{I}^{\tau}$ with $g_2 \circ g_1 = g$, and then consider the space T and the map g_2 instead, respectively, of Z and g). Therefore, without loss of generality, we can assume that Z is a closed subset of \mathbb{I}^{τ} . According to the definition of Y and the map h, there is an index $\alpha \in \Lambda$ such that $Z = Y_{\alpha}$ and $g = h_{\alpha}$. The restriction $p \mid Z: Z \to X$ is a lifting of g, that is, $f \circ (p \mid Z) = g$.

3. C^* -ALGEBRAS WITH THE APPROXIMATE *n*-TH ROOT PROPERTY

In this Section we investigate the behaviour of the classes $\mathcal{AP}(n)$, $\mathcal{AP}_1(n)$ and $\mathcal{HP}(n)$ with respect to direct systems and then use the result to prove the existence of universal elements in the classes $\mathcal{AP}(n)_s$, $\mathcal{AP}_1(n)_s$ and $\mathcal{HP}(n)_s$.

When we refer to a unital C^* -subalgebra of a unital C^* -algebra we always assume that the inclusion is a unital *-homomorphism. The product in the category of (unital) C^* -algebras, that is, the ℓ^{∞} -direct sum, is denoted by $\prod \{X_t : t \in T\}$. For a given set Y and a cardinal number τ , the symbol $\exp_{\tau} Y$ denotes the partially ordered (by inclusion) set of all subsets of Y of cardinality not exceeding τ .

Recall that a direct system $S = \{X_{\alpha}, i_{\alpha}^{\beta}, A\}$ of unital C^* -algebras consists of a partially ordered directed indexing set A, unital C^* -algebras $X_{\alpha}, \alpha \in A$, and unital *-homomorphisms $i_{\alpha}^{\beta}: X_{\alpha} \to X_{\beta}$, defined for each pair of indexes $\alpha, \beta \in A$ with $\alpha \leq \beta$, and satisfying the condition $i_{\alpha}^{\gamma} = i_{\beta}^{\gamma} \circ i_{\alpha}^{\beta}$ for each triple of indexes $\alpha, \beta, \gamma \in A$ with $\alpha \leq \beta \leq \gamma$.

203

The (inductive) limit of the above direct system is a unital C^* -algebra which is denoted by $\varinjlim S$. For each $\alpha \in A$ there exists a unital *-homomorphism $i_{\alpha}: X_{\alpha} \to \varinjlim S$ which will be called the α -th limit homomorphism of S.

If A' is a directed subset of the indexing set A, then the subsystem $\{X_{\alpha}, i_{\alpha}^{\beta}, A'\}$ of S is denoted $S \mid A'$.

Let $\tau \ge \omega$ be a cardinal number. A direct system $S = \{X_{\alpha}, i_{\alpha}^{\beta}, A\}$ of unital C^* -algebras X_{α} and unital *-homomorphisms $i_{\alpha}^{\beta} \colon X_{\alpha} \to X_{\beta}$ is called a *direct* C_{τ}^* -system [4] if the following conditions are satisfied:

- (a) A is a τ -complete set, that is, for each chain C of elements of the directed set A with $|C| \leq \tau$, there exists an element sup C in A. See [3] for details.
- (b) The density $d(X_{\alpha})$ of X_{α} is at most τ , for each $\alpha \in A$.
- (c) The α -th limit homomorphism $i_{\alpha}: X_{\alpha} \to \varinjlim S$ is an injective *-homomorphism for each $\alpha \in A$.
- (d) If $B = \{\alpha_t : t \in T\}$ is a chain of elements of A with $|T| \leq \tau$ and $\alpha = \sup B$, then the limit homomorphism $\varinjlim\{i_{\alpha_t}^{\alpha} : t \in T\} : \varinjlim(\mathcal{S} \mid B) \to X_{\alpha}$ is an isomorphism.

PROPOSITION 3.1. ([4, Proposition 3.2]) Let τ be an infinite cardinal number. Every unital C^* -algebra X can be represented as the limit of a direct C^*_{τ} -system $S_X = \{X_{\alpha}, i^{\beta}_{\alpha}, A\}$ where the index set $A = \exp_{\tau} Y$ for some (any) dense subset Y of X with |Y| = d(X).

LEMMA 3.2. ([4, Lemma 3.3]) If $S_X = \{X_{\alpha}, i_{\alpha}^{\beta}, A\}$ is a direct C_{τ}^* -system, then

$$\varinjlim \mathcal{S}_X = \cup \big\{ i_\alpha(X_\alpha) \colon \alpha \in A \big\}.$$

The next proposition is a non-commutative version of Corollary 2.2.

PROPOSITION 3.3. Let \mathcal{K} be one of the classes $\mathcal{AP}(n)$, $\mathcal{AP}_1(n)$ and $\mathcal{HP}(n)$. If X is the limit of a direct system $\mathcal{S} = \{X_{\alpha}, i_{\alpha}^{\beta}, A\}$ consisting of unital C^{*}-algebras and unital *-inclusions with $X_{\alpha} \in \mathcal{K}$ for each α , then $X \in \mathcal{K}$.

PROOF: We consider first the case $\mathcal{K} = \mathcal{AP}(n)$. Let $a \in X$ with $||a|| \leq 1$ and $\varepsilon > 0$. Since $\cup \{X_{\alpha} : \alpha \in A\}$ is dense in X (we identify each $i_{\alpha}(X_{\alpha})$ with X_{α}), there exist α and $y \in X_{\alpha}$ with $||a - y|| < \varepsilon/4$. Then, $||y|| < ||a|| + \varepsilon/4 \leq 1 + \varepsilon/4$, so $||(y/1 + \varepsilon/4)|| < 1$. Since $X_{\alpha} \in \mathcal{AP}(n)$, there is $b \in X_{\alpha}$ with $||(y/1 + \varepsilon/4) - b^n|| < \varepsilon/2$ and $||b|| \leq 1$. Then $||a - b^n|| \leq ||a - (y/1 + \varepsilon/4)|| + ||(y/1 + \varepsilon/4) - b^n|| < \varepsilon$. Hence, $X \in \mathcal{AP}(n)$. The above arguments work also for the class $\mathcal{HP}(n)$ because of the fact that the set of invertible elements of a C^* -algebra is open. Indeed, for an invertible element a of X, the above fact allows us to choose y in the above argument as an invertible element of X. Consequently, $y/(1 + \varepsilon/4)$ is invertible in X_{α} and, since $X_{\alpha} \in \mathcal{HP}(n)$, there is $b \in X_{\alpha}$ with the required properties. Because the limit of any direct system consisting of C^* -algebras with bounded

[7]

rank ≤ 1 has a bounded rank ≤ 1 [5, Proposition 4.1], the above proof remains valid for the class $\mathcal{AP}_1(n)$.

As in the commutative case (see Proposition 2.5), we can establish a decomposition theorem for the classes $\mathcal{AP}(n)$, $\mathcal{AP}_1(n)$ and $\mathcal{HP}(n)$.

PROPOSITION 3.4. Let \mathcal{K} be one of the classes $\mathcal{AP}(n)$, $\mathcal{AP}_1(n)$ and $\mathcal{HP}(n)$. The following conditions are equivalent for any unital C^* -algebra X:

- (1) $X \in \mathcal{K}$.
- (2) X can be represented as the direct limit of a direct C^*_{ω} -system $\{X_{\alpha}, i^{\beta}_{\alpha}, A\}$ satisfying the following properties:
 - (a) The indexing set A is cofinal and ω -closed in the ω -complete set $\exp_{\omega} Y$ for some (any) dense subset Y of X such that |Y| = d(X).
 - (b) X_{α} is a (separable) C^* -subalgebra of X with $X_{\alpha} \in \mathcal{K}, \alpha \in A$.

PROOF: A similar statement holds for the class of all C^* -algebras of bounded rank $\leq n$ (see [5, Proposition 4.2]). So, it suffices to consider the classes $\mathcal{AP}(n)$ and $\mathcal{HP}(n)$. We suppose $\mathcal{K} = \mathcal{AP}(n)$. The implication (2) \Longrightarrow (1) follows from Proposition 3.3.

In order to prove the implication $(1) \Longrightarrow (2)$ we first consider a direct C_{ω}^* -system $\mathcal{S}_X = \{X_{\alpha}, i_{\alpha}^{\beta}, \Lambda\}$ with the properties indicated in Proposition 3.1. Each X_{α} is identified with $i_{\alpha}(X_{\alpha})$. We next introduce the following relation $L \subseteq A^2$:

 $(\alpha, \beta) \in \Lambda^2$ if and only if $\alpha \leq \beta$ and for each $x \in X_{\alpha}$ with $||x|| \leq 1$ and each $\varepsilon > 0$ there exists $y \in X_{\beta}$ such that $||y|| \leq 1$ and $||x - y^n|| < \varepsilon$.

Let us show that L satisfies the following conditions:

- (i) for every $\alpha \in \Lambda$ there exists $\beta \in \Lambda$ with $(\alpha, \beta) \in L$:
- (ii) If $(\alpha, \beta) \in L$ and $\beta \leq \gamma$, then $(\alpha, \gamma) \in L$;
- (iii) if $\{\alpha_k\}$ is a chain in Λ with each $(\alpha_k, \beta) \in L$, then $(\alpha, \beta) \in L$, where $\alpha = \sup\{\alpha_k\}$.

To verify (i), we take $\alpha \in \Lambda$ and a countable set $M \subset X_{\alpha}$ which is dense in the unit ball $B_{\alpha} = \{x \in X_{\alpha} : ||x|| \leq 1\}$. Since $X \in \mathcal{AP}(n)$, for each $x \in M$ and each $r \in Q^+$, we may take (and fix) $y(x,r) \in X$ with $||x - y(x,r)^n|| < r$ and $||y(x,r)|| \leq 1$. By Lemma 3.2, every y(x,r) belongs to some $X_{\alpha(x,r)}$. Since Λ is ω -complete, according to [3, Corollary 1.1.28], there exists $\beta \in \Lambda$ such that $\beta \geq \alpha$ and $\beta \geq \alpha(x,r)$ for each $x \in M$ and $r \in Q^+$. Then, X_{β} contains all y(x,r) and $(\alpha,\beta) \in L$. Condition (ii) follows directly because $\beta \leq \gamma$ implies $X_{\beta} \subset X_{\gamma}$. Let us establish condition (iii). If α is the supremum of the countable chain $\{\alpha_k\}$, then X_{α} is the direct limit of the direct system generated by the C^* -subalgebras X_{α_k} , k = 1, 2, ldots, and the corresponding inclusion homomorphisms. This fact and $(\alpha_k, \beta) \in L$ for all k yield $(\alpha, \beta) \in L$.

Since L satisfies the conditions (i)-(iii), we can apply [3, Proposition 1.1.29] to conclude that the set $A = \{\alpha \in \Lambda : (\alpha, \alpha) \in L\}$ is cofinal and ω -closed in Λ . Note that $(\alpha, \alpha) \in L$ precisely when $X_{\alpha} \in \mathcal{AP}(n)$. Therefore, we obtain a direct C_{ω}^* -system

 $S'_X = \{X_{\alpha}, i^{\beta}_{\alpha}, A\}$ consisting of C^* -subalgebras $X_{\alpha} \in \mathcal{AP}(n)$ of X. Clearly $\varinjlim S'_X = X$. This completes the proof for the class $\mathcal{AP}(n)$. The case $\mathcal{K} = \mathcal{AP}(n)$ is similar.

PROOF OF THEOREM 1.4: Let $\mathcal{B} = \{f_t : C^*(\mathbb{F}_\infty) \to X_t : t \in T\}$ denote the set of all unital *-homomorphisms on $C^*(\mathbb{F}_{\infty})$ such that $X_t \in \mathcal{K}$. We claim that the product $\prod \{X_t : t \in T\}$ belongs to \mathcal{K} . This is obviously true if \mathcal{K} is either $\mathcal{AP}(n)$ or $\mathcal{HP}(n)$. Since the bounded rank of this product is ≤ 1 provided each X_t is of bounded rank ≤ 1 [5, Proposition 3.16], the claim holds for the class $\mathcal{AP}_1(n)$ as well. The *-homomorphisms $f_t, t \in T$, define the unital *-homomorphism $f: C^*(\mathbb{F}_{\infty}) \to \prod \{X_t: t \in T\}$ such that $\pi_t \circ f = f_t$ for each $t \in T$, where $\pi_t \colon \prod \{X_t \colon t \in T\} \to X_t$ denotes the canonical projection *-homomorphism onto X_t . By Proposition 3.4, $\prod \{X_t: t \in T\}$ can be represented as the limit of the C^*_{ω} -system $\mathcal{S} = \{C_{\alpha}, i^{\beta}_{\alpha}, A\}$ such that C_{α} is a separable unital C^* -algebra with $C_{\alpha} \in \mathcal{K}$ for each $\alpha \in A$. Suppressing the injective unital *-homomorphisms $i_{\alpha}^{\beta}: C_{\alpha} \to C_{\alpha}$ C_{β} , we may assume, for notational simplicity, that C_{α} 's are unital C^{*}-subalgebras of $\prod \{X_t : t \in T\}$. Let $\{a_k : k \in \omega\}$ be a countable dense subset of $C^*(\mathbb{F}_{\infty})$. By Lemma 3.2, for each $k \in \omega$ there exists an index $\alpha_k \in A$ such that $f(a_k) \in C_{\alpha_k}$. Since A is ω -complete, there exists an index $\alpha_0 \in A$ such that $\alpha_0 \ge \alpha_k$ for each $k \in \omega$. Then $f(a_k) \in C_{\alpha_k} \subseteq C_{\alpha_0}$ for each $k \in \omega$. This observation coupled with the continuity of f guarantees that $f(C^*(\mathbb{F}_{\infty})) = f(\operatorname{cl}\{a_k : k \in \omega\}) \subseteq \operatorname{cl}\{f(\{a_k : k \in \omega\})\} \subseteq \operatorname{cl} C_{\alpha_0} = C_{\alpha_0}.$

Let $Z_{\mathcal{K}} = C_{\alpha_0}$ and define the unital *-homomorphism $p: C^*(\mathbb{F}_{\infty}) \to Z_{\mathcal{K}}$ as f, regarded as a homomorphism of $C^*(\mathbb{F}_{\infty})$ into $Z_{\mathcal{K}}$. Note that $f = i \circ p$, where $i: Z_{\mathcal{K}} = C_{\alpha_0} \hookrightarrow \prod \{X_t: t \in T\}$ stands for the inclusion.

By construction, we see $Z_{\mathcal{K}} \in \mathcal{K}$. Let us show that $p: C^*(\mathbb{F}_{\infty}) \to Z_{\mathcal{K}}$ is \mathcal{K} -invertible. For a given unital *-homomorphism $g: C^*(\mathbb{F}_{\infty}) \to X$, where X is a separable unital C^* -algebra with $X \in \mathcal{K}$, we need to establish the existence of a unital *-homomorphism $h: Z_{\mathcal{K}} \to X$ such that $g = h \circ p$. Indeed, by definition of the set \mathcal{B} , we conclude that $g = f_t: C^*(\mathbb{F}_{\infty}) \to X_t = X$ for some index $t \in T$. Observe that $g = f_t = \pi_t \circ f = \pi_t \circ i \circ p$. This allows us to define the required unital *-homomorphism $h: Z_{\mathcal{K}} \to X$ as the composition $h = \pi_t \circ i$. Hence, p is \mathcal{K} -invertible.

4. EXAMPLE

In this section, we show that a construction due to B. Cole (see [13, Chapter 3, Section 19]) and M. Karahanjan [9, Theorem 5] yields a square root closed compactum X such that $\check{H}^1(X;\mathbb{Z})$ is infinitely generated. In the sequel, we shall omit the coefficient group Z. We shall need the following theorem which is a consequence of [7, Theorem 3.2].

THEOREM 4.1. Let $f: X \to Y$ be an open surjective map between compacta. Then $f^*: \check{H}^1(Y) \to \check{H}^1(X)$ is a monomorphism. Now we outline the construction due to B. Cole. This is based on the exposition in [13, Chapter 3, Section 19, p. 194-197]. Let X be a compactum and define

$$S_X = \left\{ \left(x, (z_f)_{f \in C(X)} \right) \colon f(x) = z_f^2 \quad \text{for each } f \in C(X) \right\} \subset X \times \mathbb{C}^{C(X)}$$

Note that S_X is a closed subset of $X \times \prod \{f(X) \mid f \in C(X)\}$ and hence is a compactum. Also, it is easy to see that S_X is a pull-back in the following diagram:

where $F: X \to \mathbb{C}$ is defined by $F(x) = (f(x))_{f \in C(X)} (x \in X)$, and $S: \mathbb{C}^{C(X)} \to \mathbb{C}^{C(X)}$ is defined by $S((z_f)_{f \in C(X)}) = (z_f^2)_{f \in C(X)}$.

Let $\pi: S_X \to X$ be the map defined by $\pi[(x, (z_f)_{f \in C(X)})] = x$ for all $x \in X$. Then π is an open map with zero-dimensional fibers. The critical property of S_X and π is the following:

(*) for any $f \in C(X)$ there exists $g \in C(X)$ such that $f \circ \pi = g^2$. Indeed, define $g: S_X \to \mathbb{C}$ by $g[(x, (z_f)_{f \in C(X)})] = z_f$.

Note that (*) implies:

(**) π is invertible with respect to the class of square root closed compacta.

Starting with a compactum X_0 , by transfinite induction we define an inverse spectrum $\{X_{\alpha}, \pi_{\alpha}^{\beta} \colon X_{\beta} \to X_{\alpha} : \alpha \leq \beta < \omega_1\}$ as follows. If $\beta = \alpha + 1$ then $X_{\beta} = S_{X_{\alpha}}$ and $\pi_{\alpha} = \pi \colon X_{\beta} = S_{X_{\alpha}} \to X_{\alpha}$ is the map defined above. If β is a limit ordinal, then $X_{\beta} = \lim_{\leftarrow} (X_{\alpha}, \pi_{\alpha}^{\gamma} \colon X_{\gamma} \to X_{\alpha} : \alpha \leq \gamma < \beta)$ and, for $\alpha < \beta$, let $\pi_{\alpha}^{\beta} = \lim_{\leftarrow} (\pi_{\alpha}^{\gamma} \colon X_{\gamma} \to X_{\alpha} : \gamma < \beta)$.

We let $X_{\Omega} = \lim_{\leftarrow} X_{\alpha}$. The α -th limit projection is denoted by $\pi_{\alpha} : X_{\Omega} \to X_{\alpha}$. As the length of the above spectrum is ω_1 , the spectrum is factorising in the sense that each $f \in C(X_{\Omega})$ is represented as $f = f_{\alpha} \circ \pi_{\alpha}$ for some $\alpha < \omega_1$ and $f_{\alpha} \in C(X_{\alpha})$. since its length is ω_1 . This implies that $C(X_{\Omega})$ is square root closed due to the property (*).

In what follows, the unit disk in the complex plane $\{z \in \mathbb{C} : |z| \leq 1\}$ is denoted by Δ .

THEOREM 4.2. $C(\Delta_{\Omega})$ is square-root closed, dim $\Delta_{\Omega} \leq 2$, $\check{H}^{1}(\Delta_{\Omega})$ is infinitely generated and 2-divisible.

Notice that for each square root closed compactum X, $\check{H}^1(X)$ is 2-divisible. Hence, in view of the discussion above, we need only to show that $\check{H}_1(\Delta_{\Omega})$ is infinitely generated. To show this, we need the following. **THEOREM 4.3.** $\check{H}^1(S_{\Delta})$ is infinitely generated.

Note that Theorem 4.2 immediately follows from Theorems 4.1 and Theorem 4.3. The proof of Theorem 4.3 is divided into two parts.

STEP 1. If $\check{H}^1(S_{\Delta})$ is finitely generated then $\check{H}^1(S_{\Delta}) = 0$.

Step 2. $\check{H}^1(S_{\Delta}) \neq 0$.

Now we shall accomplish Steps 1 and 2.

PROPOSITION 4.4. Let Y be a closed subspace of a compactum X such that there exists a retraction $r: X \to Y$. Let also $i: Y \to X$ be the inclusion. Then there exist an embedding $\overline{i}: S_Y \to S_X$ and a retraction $\overline{\tau}: S_X \to S_Y$ such that the following diagram is commutative.

$$\begin{array}{c|c} S_Y & \xrightarrow{\overline{i}} & S_X & \xrightarrow{\overline{r}} & S_Y \\ \pi_Y & & \pi_X & & \pi_Y \\ Y & \xrightarrow{i} & X & \xrightarrow{r} & Y \end{array}$$

PROOF: Define \overline{i} by

$$\overline{i}\Big[\big(y,(\eta_g)_{g\in C(Y)}\big)\Big]=\big(y,(\xi_f)_{f\in C(X)}\big)$$

where $\xi_f = \eta_{f|Y}$ for all $f \in C(X)$. Define \overline{r} by

$$\overline{r}\left[\left(x,(\xi_f)_{f\in C(X)}\right)\right] = \left(r(x),(\eta_g)_{g\in C(X)}\right)$$

where $\eta_g = \xi_{gor}$ for all $g \in C(Y)$.

Now we are ready to accomplish Step 1. Let $\Delta_m = \{z \in \mathbb{C} : |z| \leq 1/m\} \subset \Delta$. Let $r_n : \Delta_n \to \Delta_{n+1}$ be the radial retraction and $i_n : \Delta_{n+1} \hookrightarrow \Delta_n$ be the inclusion. Consider the following sequence of commutative diagrams.

It follows easily form the commutativity of the diagram that $\lim_{\leftarrow} S_{\Delta_n}$ is homeomorphic to the inverse limit of the sequence

$$\pi_1^{-1}(0) \xleftarrow{\overline{i_1}|} \pi_2^{-1}(0) \xleftarrow{} \pi_n^{-1}(0) \xleftarrow{} \pi_{n+1}^{-1}(0) \xleftarrow{} \dots$$

[11]

0

Since each fiber $\pi_n^{-1}(0)$ is 0-dimensional, we have dim $\lim_{\leftarrow} S_{\Delta_n} = 0$. This implies that $\check{H}^1(\lim_{\leftarrow} S_{\Delta_n}) = \lim_{\leftarrow} \check{H}^1(S_{\Delta_n}) = 0$, which is equivalent to the following observation.

PROPOSITION 4.5. For each $\alpha \in \check{H}^1(S_{\Delta_1}) = \check{H}^1(S_{\Delta})$, there exists an *n* such that $(\bar{i}_1 \circ \cdots \circ \bar{i}_n)^*(\alpha) = 0$.

Let A_n be the annulus defined by $A_n = \{z \in \mathbb{C} \mid (1/m+1) \leq |z| \leq 1/m\}$, so that $\Delta_n = \{0\} \cup (\cup \{A_j \mid j \geq n\})$. Let $h: \Delta = \Delta_1 \rightarrow \Delta_2$ be the homeomorphism which maps A_j to A_{j+1} $(j \geq 1)$ by "radial homeomorphisms" and such that h(0) = 0. Then the following diagram is commutative

Define $h_n: S_{\Delta_n} \to S_{\Delta_{n+1}}$ by $h_n\Big[(x, (u_f)_{f \in C(\Delta_n)})\Big] = (h(x), (v_g)_{g \in C(\Delta_{n+1})})$, where $v_g = u_{goh}, g \in C(\Delta_{n+1})$. Note that h_n is a homeomorphism.

PROPOSITION 4.6. The following diagram is commutative.

PROOF: For each $(x_{n+1}, (z_f)_{f \in C(\Delta_{n+1})}) \in S_{\Delta_{n+1}}$ we have

$$\bar{i}_n\Big[\big(x_{n+1},(z_f)_{f\in C(\Delta_{n+1})}\big)\Big]=\big(x_{n+1},(u_f)_{f\in C(\Delta_n)}\big)$$

where $u_f = z_{f|\Delta_n} = z_{foi_n}$, $f \in C(\Delta_n)$, and

$$h_n\Big[\big(x_{n+1},(u_f)_{f\in C(\Delta_n)}\big)\Big] = \big(h(x_{n+1}),(v_f)_{f\in C(\Delta_{n+1})}\big)$$

where $v_f = u_{foh} = z_{(foh)oin} = z_{fo(hoin)}$. On the other hand,

$$h_{n+1}\Big[\Big(x_{n+1},(z_f)_{f\in C(\Delta_{n+1})}\Big)\Big]=\Big(h(x_{n+1}),(u_g)_{g\in C(\Delta_{n+1})}\Big)$$

where $u_g = z_{goh}$, $g \in C(\Delta_{n+2})$, and

$$\left[\left(h(x_{n+1}), (u_g)_{g \in C(\Delta_{n+1})}\right)\right] = \left(h(x_{n+1}), (v_f)_{f \in C(\Delta_{n+1})}\right)$$

where $v_f = u_{f \circ i_{n+1}} = z_{(f \circ i_{n+1}) \circ h} = z_{f \circ (i_{n+1} \circ h)}$. Since $h \circ i_n = i_{n+1} \circ h$, we conclude that the diagram is commutative.

The above lemma provides a commutative diagram in cohomologies:

Let $\phi = h_1^* \circ i_1^* \colon \check{H}^1(S_\Delta) \to \check{H}^1(S_\Delta)$. Since $\overline{r}_1 \circ \overline{i}_1 = \mathrm{id}_{S_\Delta}$ we have $\overline{i}_1^* \circ \overline{r}_1^* = \mathrm{id}_{\check{H}^1(S_\Delta)}$ and hence ϕ is an epimorphism. We use diagram (†) to obtain the following diagram, in which all vertical arrows are isomorphisms.

The above diagram together with Proposition 4.5 imply that, for each $\alpha \in \check{H}^1(S_{\Delta})$, there exists *n* such that $\phi^n(\alpha) = 0$. If $\check{H}^1(S_{\Delta})$ were finitely generated, we then would have $\check{H}^1(S_{\Delta}) = 0$ because of the following observation.

PROPOSITION 4.7. Let A be a finitely generated Abelian group. If there exists an epimorphism $f: A \to A$ such that for any $a \in A$ there exists n with $f^n(a) = 0$, then A is trivial.

PROOF: Note that $f \otimes 1_{\mathbb{Q}} : A \otimes \mathbb{Q} \to A \otimes \mathbb{Q}$ is an epimorphism of a vector space $A \otimes \mathbb{Q}$, which is finite-dimensional over \mathbb{Q} . Hence $f \otimes 1_{\mathbb{Q}}$ is an isomorphism with the property in the hypothesis. This implies rank A = 0 and therefore A is a finite Abelian group. Then f is an isomorphism and therefore A = 0.

Thus Step 1 is completed and we proceed to Step 2.

PROPOSITION 4.8. For a continuous function $f \in C(X)$, let

 $S_f = \{(x, z) : f(x) = z^2 \text{ for each } x \in X\} \subset X \times \mathbb{C}.$ Let also $\pi_f : S_f \to X$ be the projection. Then the natural map $p_f : S_X \to S_f$, $(x, (z_g)_{g \in C(X)}) \mapsto (x, z_f)$ is open. Thus we have the following diagram.

PROOF: Consider $g_1, g_2, \ldots, g_n \in C(X)$ and open subset $U_X \subset X$, $V_f, V_{g_1}, \ldots, V_{g_n} \subset \mathbb{C}$. It suffices to show that

$$p_f\left[\left(U_X \times V_f \times V_{g_1} \times \cdots \times V_{g_n} \times \prod_{g \neq g_1, \dots, g_n, f} \mathbb{C}\right) \cap S_X\right]$$

is open in S_f . Take a point

$$(x, z_f, (z_{g_i})_{i=1}^n, (z_g)_{g \neq f, g_1, \dots, g_n}) \in U_X \times V_f \times V_{g_1} \times \dots \times V_{g_n} \times \prod_{g \neq g_1, \dots, g_n, f} \mathbb{C}$$

and choose $\varepsilon > 0$ such that $B(z_f, \varepsilon) = \{ w \in \mathbb{C} : |w - z_f| < \varepsilon \} \subset V_f$ and $B(z_{g_i}, \varepsilon) \subset V_{g_i}$ for all i = 1, 2, ..., n. Let a = f(x), $a_i = g_i(x)$, i = 1, 2, ..., n. There exists $\delta > 0$ such that if $|b - a| < \delta$ and $|b_i - a_i| < \delta$, i = 1, ..., n, then the equations

$$z^2 - b = 0$$

$$z_i^2 - b_i = 0, i = 1, \dots, n$$

have solutions z_b and z_{b_i} respectively such that $|z_b - z_f| < \varepsilon$, $|z_{b_i} - z_{g_i}| < \varepsilon$. Choose a neighbourhood N of x such that $|f(y) - f(x)| < \delta$ and $|g_i(y) - g_i(x)| < \delta$ for all $y \in N$ and i = 1, ..., n. We claim that

$$N \times B(z_f, \varepsilon) \subset p_f \left[\left(U_X \times V_f \times V_{g_1} \times \cdots \times V_{g_n} \times \prod_{g \neq g_1, \dots, g_n, f} \mathbb{C} \right) \cap S_X \right]$$

Indeed, for each pint $(y, w) \in N \times B(z_f, \varepsilon) \subset N \times V_f$ we have $|g_i(y) - g_i(x)| < \delta$, i = 1, 2, ..., n by the choice of N. Then we can find $z_i \in B(z_{g_i}, \varepsilon)$ such that $z_i^2 = g_i(y)$. Now for arbitrary choice of z_g , where $g \neq f, g_1, g_2, ..., g_n$ with $z_g^2 = g(x)$, we have

$$(y, w, (z_i)_{i=1}^n, (z_g)) \in U_X \times V_f \times V_{g_1} \times \cdots \times V_{g_n} \times \prod_{g \neq g_1, \cdots, g_n, f} \mathbb{C}$$

and $p_f[(y, w, (z_i)_{i=1}^n, (z_g))] = (y, w)$. This proves the claim and hence completes the proof of the proposition.

By Proposition 4.8 and Theorem 4.1, the statement of the Step 2 follows from the next observation.

PROPOSITION 4.9. There exists a mapping $f: \Delta \to \mathbb{C}$ such that $\check{H}^1(S_f) \neq 0$. **PROOF:** Let $f(x, y) = (-2|x| + \sqrt{1-y^2}, y)$ for all $(x, y) \in \Delta$. Then S_f is homeomorphic to cylinder $S^1 \times I$.

This completes the proof of Theorem 4.2.

The above construction is carried out word by word for disks of arbitrary dimensions. In particular, applying the above to the one-dimensional disk [-1, 1], we have the following corollary which suggests that a topological characterisation of general square root closed compacta could be rather different than the one for first-countable such compacta by [8] and [12].

COROLLARY 4.10. There exists an one-dimensional square root closed compactum X with infinitely generated first Čech cohomology.

For an infinite cardinal $\tau \ge \omega$, we consider $(\mathbb{I}^{\tau})_{\Omega}$ and the limit projection π_{Ω} : $(\mathbb{I}^{\tau})_{\Omega} \to \mathbb{I}^{\tau}$. By the invertibility property (**) of $\pi : S_X \to X$ for arbitrary compactum X and the standard spectral argument, it follows easily that π_{Ω} is also invertible with respect to the class of square root closed compacta. Hence we have

PROPOSITION 4.11. The square root closed compactum $(\mathbb{I}^{\tau})_{\Omega}$ contains every square root closed compactum of weight $\leq \tau$.

References

- L.G. Brown and G.K. Pedersen, 'C*-algebra of real rank zero', J. Functional Anal. 99 (1991), 131-149.
- [2] A. Chigogidze, 'Universal C*-algebra of real rank 0', Infin. Dimens. Anal. Quantum Probab. Related Top. 3 (2000), 445-452.
- [3] A. Chigogidze, Inverse spectra (North Holland, Amsterdam, 1996).
- [4] A. Chigogidze, 'Uncountable direct systems and a characterization of non-separable projective C*-algebras', Mat. Stud. 12 (1999), 171-204.
- [5] A. Chigogidze and V. Valov, 'Bounded rank of C*-algebras', Topology Appl. 140 (2004), 163-180.
- [6] R.S. Countryman, 'On the characterization of compact Hausdorff X for which C(X) is algebraically closed', *Pacific J. Math.* 20 (1967), 433-438.
- J. Grispolakis and E.D. Tymchatyn, 'On confluent mappings and essential mappings a survey', Rocky Mountain J. Math. 11 (1981), 131-153.
- [8] O. Hatori and T. Miura, 'On a characterization of the maximal ideal spaces commutative C*-algebras in which every element is the square of another', Proc. Amer. Math. Soc. 128 (1999), 239-242.

- [9] M.I. Karahanjan, 'On some algebraic characterization of the algebra of all continuous functions on a locally connected compactum', (in Russian), Math. Sb. (N.S.) 107 (1978), 416-434. English translation 35 (1979), 681-696.
- [10] K. Kawamura and T. Miura, 'On the existence of continuous (approximate) roots of algebraic equations', (preprint).
- [11] S. Mardešič, 'On covering dimension and inverse limit of compact spaces', *Illinois J. Math.* 4 (1960), 278-291.
- [12] T. Miura and K. Niijima, 'On a characterization of the maximal ideal spaces of algebraically closed commutative C*-algebras', Proc. Amer. Math. Soc. 131 (2003), 2869-2876.
- [13] E.L. Stout, The theory of uniform algebras (Bogden and Quigley Inc., New York, 1971).

Department of Mathematical Sciences University of North Carolina at Greensboro P.O. Box 26170 Greensboro, NC 27402-6170 United States of America e-mail: chigogidze@uncg.edu

Institute of Mathematics University of Tsukuba Tsukuba Ibaraki 305-8071 Japan e-mail: kawamura@math.tsukuba.as.jp Department of Computer Science and Mathematics Nipissing University P.O. Box 5002 North Bay, ON, P1B 8L7 Canada e-mail: alexandk@nipissingu.ca

Department of Computer Science and Mathematics Nipissing University P.O. Box 5002 North Bay, ON, P1B 8L7 Canada e-mail: veskov@nipissingu.ca