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We present a novel method for numerically finding quasi-isodynamic stellarator
magnetic fields with excellent fast-particle confinement and extremely small neoclassical
transport. The method works particularly well in configurations with only one field
period. We examine the properties of these newfound quasi-isodynamic configurations,
including their transport coefficients, particle confinement and available energy for
trapped-electron-instability-driven turbulence, as well as the degree to which they change
when a finite pressure profile is added. We finally discuss the differences between the
magnetic axes of the optimized solutions and their respective initial conditions, and
conclude with the prospects for future quasi-isodynamic optimization.
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1. Introduction
1.1. Stellarators

The stellarator is a class of magnetic-confinement fusion devices that uses a magnetic
field to confine plasmas inside a toroidal vessel. In order to avoid prompt losses of
fusion-produced alpha particles, and to avoid large neoclassical transport, the magnetic
field must be able to confine collisionless orbits on relatively long time scales. This can be
achieved in an ‘omnigenous’ field, in which particles drift towards the edge of the plasma
in equal measure as they drift inwards (Hall & McNamara 1975; Cary & Shasharina 1997;
Helander 2014), thus yielding zero time-averaged radial displacement. While this property
was once considered practically impossible to achieve in stellarators, recent efforts in
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stellarator design (Landreman & Paul 2022) were able to find fields with nearly perfect
omnigenity.

Stellarators have several compelling properties as fusion reactor candidates, the most
important one being the absence of plasma disruptions. In comparison with tokamaks,
the plasmas in stellarators are relatively stable to kink modes and tearing modes thanks
to the fact that the net toroidal plasma current is usually very small (Boozer 2021). It
does not vanish entirely, even in the absence of active current drive, due to the bootstrap
current arising in response to plasma density and temperature gradients. This bootstrap
current can be eliminated, however, by making the stellarator ‘quasi-isodynamic’ (QI).
A QI field is, by definition, omnigenous and has poloidally closed contours of constant
field strength. Trapped particles thus generally precess in the poloidal direction. In a QI
field, the bootstrap current vanishes in the limit of low collision frequency (Helander &
Nührenberg 2009; Helander, Geiger & Maaßberg 2011), which is helpful not only for
avoiding current-driven instabilities, but also for facilitating island-divertor operation. A
mathematical description of QI fields is given in § 1.5.

For these reasons, QI stellarators are a uniquely attractive option for a fusion reactor
design, and are partially why the largest stellarator ever constructed, Wendelstein 7-X in
Germany, was designed as an attempt at a QI stellarator.

1.2. Omnigenity and the second adiabatic invariant
Mathematically, omnigenity can be understood through the so-called ‘second adiabatic
invariant’ (J ), which is a constant of motion for magnetically trapped particles. A particle
in a toroidal magnetic field is defined as trapped if it is unable to enter regions with
magnetic field strength B ≥ B∗ within that field, and therefore will ‘bounce’ along some
field line α between points l1 and l2 at which the magnetic field strength B = B∗, and
between which B < B∗. This particle’s J can be written as

J =
∫ l2

l1

mv‖ dl, (1.1)

where m is the particle’s mass, v‖ its velocity parallel to the magnetic field line and l
is the geometric length along said field line. A trapped particle will in general be well
confined if its second adiabatic invariant J is conserved when the particle remains on the
same flux surface s = ψ/ψedge, where ψedge is the toroidal magnetic flux, ψ , at the plasma
boundary (Helander 2014). In other, words, contours of constant J should coincide with
flux surfaces. In the absence of an electric field within the flux surface, a particle with total
energy H = mv2/2 has v‖ given by

v‖= ±
√

2
H − μB

m
, (1.2)

where μ = mv2
⊥/2B is another invariant of the particle’s motion, and v⊥ is the particle’s

velocity perpendicular to the magnetic field line. Since H, μ and m are constants for
collisionless particles, and because v‖ = 0 when B = B∗, (1.2) can be substituted into (1.1)
to yield

J =
√

2Hm
∫ l2

l1

√
1 − λB dl, (1.3)
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where λ ≡ 1/B∗ = H/μ. A particle’s drift across field lines �α, and across flux surfaces
�ψ ∝ �s, are given by J as follows (Helander 2014):

�α = − 1
Ze
∂ψJ , �ψ = 1

Ze
∂αJ , (1.4a,b)

where Ze is the charge of the particle in question and e is the elementary charge. We use
the notation ∂x ≡ ∂/∂x for any variable x.

Because the prefactor in (1.3) is a constant of a particle’s motion, it is often useful to
think in terms of J̃ (s, α, λ) ≡ J /√2Hm, which can now be understood as a property of
the magnetic field, rather than a property of a particle. Note that, while J̃ is still a function
of λ (a particle property), one can also express λ = 1/B∗ (a magnetic field property).
Evaluating J̃ over various s and λ can thus be used to evaluate how well a field confines
trapped particles. We can now connect J to the concept of omnigenity: in a perfectly
omnigenous field, ∂J̃ /∂α|s,λ = 0 ∀ s, λ, α.

1.3. Maximum-J configurations
Fields with the so-called ‘maximum-J ’ property, where ∂ψJ < 0 (such that J decreases
as a function of ψ) have supressed trapped electron mode (TEM) driven turbulence. This
can be understood from the arguments from Helander et al. (2012) and Proll et al. (2022),
which consider a plasma instability which moves a particle radially by �ψ > 0. The
energy required to do so, �E, can be found through the conservation of both J and the
cumulative energy of the particle and instability (�H +�E = 0)

�J = ∂J
∂ψ

�ψ + ∂J
∂H�E = 0 → �E = − ∂J /∂ψ

∂J /∂H�ψ. (1.5)

Because ∂HJ < 0 (see (1.3)), we see that �E will be negative when ∂ψJ < 0. A
negative �E means that the instability that caused the particle’s radial displacement loses
energy, and is therefore stabilized. For this reason, maximum-J is a desirable property in
stellarators. Because J tends to be larger when B is smaller (see (1.3)), maximum-J is
often also called minimum-B.

1.4. Optimization
Stellarator designs can be extremely complicated, and thus are typically found using
numerical optimization algorithms, which require the use of a ‘target function.’ This target
function should take some input (in this case, a stellarator design) and output a number that
describes how ‘good’ this stellarator design is. A novel choice of target function, which is
described in § 2.1, was crucial to achieving the results presented.

There are many possible approaches to stellarator optimization (Henneberg et al. 2021).
For these optimizations, we employed the ideal magnetohydrodynamics (MHD) code
VMEC (Hirshman, van RIJ & Merkel 1986). In MHD, the magnetic field within a plasma
is completely described by the shape of the plasma’s boundary (as well as its current and
pressure profiles, although these quantities are set to zero in this work). VMEC is thus
able to take a plasma boundary as an input and output the corresponding magnetic field.
This boundary shape is described by Fourier coefficients, which map toroidal and poloidal
angles to physical coordinates R and Z, taking the ‘centre’ of the torus’s ‘doughnut hole’
as the origin.

These Fourier coefficients, x, are the inputs to our target function, f . We employed
a nonlinear optimization algorithm, which uses numerically calculated finite-difference
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gradients to attempt to find the values of x that result in the smallest possible target
function output.

1.5. Conditions for QI
In order to design a QI target function, one must understand the properties of a perfectly
QI magnetic field. For the purposes of these optimizations, there are three conditions that
describe the ‘ideal’ perfectly QI magnetic field, corresponding to a geometry with nfp field
periods with nfp a natural number (Cary & Shasharina 1997):

(i) There should be only one minimum in magnetic field strength along any field line
spanning a single field period. While this is not strictly necessary, it is a useful
constraint to impose on a target function.

(ii) All contours of constant B must close poloidally, meaning that
(a) Bmin(s) – the minimum B on each flux surface s – must be present exactly once

on each field line along a single toroidal field period; and
(b) Bmax(s) – the maximum B on each flux surface s – must on every field line

be located at the toroidal angle ϕ = {0, 2π/nfp} in Boozer coordinates (Boozer
1981). In other words, contours of Bmax(s) must be straight, vertical lines in the
θ − ϕ plane.

(iii) The ‘bounce distance’, δ in Boozer coordinates (θ, ϕ) along a field line between
consecutive points with equal B = B∗ (‘branches’ Helander & Nührenberg 2009)
should be independent of the field line label, α, for any given flux surface s
(∂δ/∂α|B,s = 0 ∀α,B, s).

A schematic of a QI field is shown in figure 1. A frequently studied subclass of
omnigenity, known as quasisymmetry, requires that these contours be straight lines in
Boozer coordinates. If B-contours are straight lines, and close poloidally, then the field
has ‘quasi-poloidal (QP) symmetry.’ A QP symmetry is impossible close to the magnetic
axis (Helander 2014), and fields with precise QP symmetry have proven difficult to find
through optimization (Landreman & Paul 2022), but because the conditions for QI are less
strict, it offers a promising alternative.

2. Target function

In this work, we used the SIMSOPT optimization suite (Landreman et al. 2021;
SIMSOPT Development Team 2021), to interface between VMEC, our new target function,
and the trust-region reflective optimization algorithm in scipy (Virtanen et al. 2020). It is
with these tools that we are able to optimize stellarator equilibria.

2.1. Targetting QI fields
Using the conditions detailed in § 1.5, this target seeks to construct a closely related,
perfectly QI field from an input field, and then penalizes the difference between the two
(see (2.10)). At each optimization step, a new perfectly QI field is constructed.

In this work, we sample nα field lines uniformly between 0 and 2π, and nϕ values of ϕ
between 0 and 2π/nfp in Boozer space. We will call each B(ϕ)|α,s a ‘well.’ We then apply
a set of three numerical transformations to these wells to create an artificial set of closely
related, perfectly QI wells. An example of what it might look like to turn a set of non-QI
wells into a set of QI wells is shown in figure 2.

Note that there is no guarantee that the constructed QI wells (figure 2b) are physically
realizable. In fact, Cary & Shasharina (1997) points out that an analytic QI field is
impossible to achieve perfectly (although it may be possible to approach it arbitrarily
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FIGURE 1. A schematic of what contours of constant magnetic field strength (in Boozer
coordinates) look like on a perfectly QI flux surface, constructed using the mapping from
Landreman & Catto (2012). Field lines are shown as straight black lines.

(a) (b)

FIGURE 2. (a) An example of a set of non-QI wells, and (b) a schematic of what a set of QI
wells might look like. (a) Actual B along various field lines. (b) Modified QI B along various
field lines.

closely). In this case, it does not matter that these wells are non-physical; what matters
is that the difference between the original wells (figure 2a) and the constructed wells
(figure 2b) describes how far the wells deviate from a QI field. Furthermore, as the input
field becomes more QI, the target field will become closer to a ‘physical’ field. Below
are the steps taken to find a closely related set of QI wells, analogous to those shown in
figure 2.

2.1.1. Part 1: the squash
To construct a QI well from an input well, we first find the toroidal angle of its minimum

magnetic field strength, Bmin, and call it ϕmin. Note that, in this input well, Bmin is not
necessarily the same as Bmin (the global minimum B on the surface). In a perfectly
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FIGURE 3. The various transformations to get from B to BQI. Note that Bl and Br in (b) are
coloured blue and red, respectively. (a) Original, (b) squashed, (c) stretched, (d) shuffled.

QI field, condition (i) implies that Bl = B(ϕ < ϕmin) and Br = B(ϕ > ϕmin) should be
monotonically decreasing towards ϕmin.

Because each well is defined by an array of points, we can enforce this condition by
‘flattening’ any points that are non-monotonic. Specifically, if Bl[i] is the array of
field strengths for ϕ < ϕmin where i = 0 corresponds to ϕ = 0 and i = ni corresponds
to ϕ = ϕmin, we loop through Bl[i] from i={0, 1, 2, 3, . . . , ni − 1} and, if Bl[i+1]
> Bl[i], we set Bl[i+1] = Bl[i]. A similar operation for Br yields a well that is
perfectly monotonic on either side of its minimum. An example of this operation is shown
in figure 3(b).

It is worth noting that, while this transformation does create monotonic wells, it is a
very crude way of doing so. One can think of any number of ways to do this (for instance,
one could sort the points in Bl and Br in descending and ascending order respectively). It
is unclear what the ‘best’ way of doing this would be.

2.1.2. Part 2: the stretch
Our new well looks slightly more QI than the original, but further tranformations

are still needed. Condition (ii) requires that Bmin = Bmin, and B(ϕ = 0, 2π/nfp) = Bmax.
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To enforce this condition in our new well, we ‘stretch’ Bl and Br as follows:

Bl(ϕ) → Bmin + Bmax − Bmin

Bl(ϕ = 0)− Bmin
(Bl(ϕ)− Bmin),

Br(ϕ) → Bmin + Bmax − Bmin

Br(ϕ = 2π/nfp)− Bmin
(Br(ϕ)− Bmin).

(2.1)

We here define Bmin and Bmax to be the smallest and largest B that are found on the flux
surface.

After applying this transformation, these wells will satisfy condition (ii), as can be seen
in figure 3(c).

While we apply a ‘linear’ stretch in this work, one could choose a different
transformation that yields dB/dϕ = 0 at ϕ = 0, 2π/nfp, possibly resulting in more realistic
wells. It is unclear if this approach would work better.

The entirety of the nfp = 1 configuration’s optimization (§ 4.1), and the early stages of
the nfp = 2 configuration’s optimization (§ 4.2) used the approximation that Boozer ϕ = 0
was the same as VMEC φ = 0 so as to avoid a full Boozer coordinate transformation,
although this approximation failed for the nfp = 3 optimization (§ 4.3).

2.1.3. Part 3: the shuffle
Finally, we are ready to address condition (iii), which requires that all distances between

consecutive branches are equal at constant B∗ for all α. To do this, we first find the
weighted-mean bounce distance for each field line on the surface in our new well, 〈δ〉α(B∗)
for various values of B∗, which can be done numerically. The weightings w in this mean,
which were used to improve the smoothness of the optimization algorithm, are inversely
proportional to the severity of the prior squash and stretch steps

w(α) ∝ 1∫ 2π/nfp

0 dϕ
(
B(a)(α, ϕ)− B(c)(α, ϕ)

)2 (2.2)

where B(a) and B(c) are the original and stretched wells, respectively. While at first glance
these weights may appear to (possibly) diverge to infinity, which would be a problem, this
is extremely unlikely, as it would require the maxima and minimum B of the well to exactly
equal Bmax and Bmin. However, if this is a concern, one could simply modify w(α) to add
some small number to the denominator.

With these weights, we can now write

〈δ〉α =
∑
α

w(α)(ϕ2(Bi, α)− ϕ1(Bi, α)), (2.3)

for bounce points ϕ1(Bi, α) and ϕ2(Bi, α), where here 〈·〉α is used to denote that the average
is taken over α. To be QI, our well will satisfy δ(Bi, α) = 〈δ〉α(Bi) for all Bi and α. The
motivation for using a weighted mean is to attempt to choose 〈δ〉α such that it most closely
resembles the bounce distances of the original wells. Wells that have been stretched and
squashed significantly may no longer resemble their original forms, and so their new
bounce distances should not be as influential than bounce distances from wells that did
not require significant stretching or squashing.
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To force our new well into being perfectly QI, we define a transformation that shifts
(‘shuffles’) the bounce points left and right as follows:

ϕ1(Bi, α) → ϕ1(Bi, α)+�ϕ1,

ϕ2(Bi, α) → ϕ2(Bi, α)+�ϕ2.
(2.4)

There are many methods by which �ϕ1 and �ϕ2 can be chosen, so long as

δ(Bi, α)−�ϕ1 +�ϕ2 = 〈δ〉α(Bi), (2.5)

but they should ideally be chosen so as to minimize the difference between the shuffled
well and the stretched well. One must also take care that stellarator symmetry is preserved
(if the optimizations are stellarator symmetric), and also must ensure

ϕ1(Bi) < ϕ2(Bi), (2.6)

ϕ1(Bi) < ϕ1(Bj), (2.7)

ϕ2(Bi) > ϕ2(Bj), (2.8)

B(ϕ = 0) = B(ϕ = 2π/nfp) = Bmax, (2.9)

for Bj < Bi. In this work, we shuffled the points around Bmin first, and moved ‘up’ the
well until Bmax had also been shuffled. For each set of bounce points, we chose �ϕ1 =
�ϕ2 = (〈δ〉α − δ)/2. If this transformation violated (2.7) or (2.8), both points were shifted
by ϕ1(Bi)− ϕ1(Bj)+ 10−5 or ϕ2(Bj)− ϕ2(Bi)− 10−5, respectively, so as to correct this
violation.

After this modification, the resulting field, which we call BQI(s, α, ϕ), should be
completely QI. An example of such a well is shown in figure 3(d). We have now
constructed a ‘target field’ that is close to our input field. To penalize deviations from QI,
we finally construct our penalty function, f , as the difference between the scaled original
field and the scaled constructed, QI field

fQI(s) = nfp

4π2

1
(Bmax − Bmin)2

∫ 2π

0
dα

∫ 2π/nfp

0
dϕ

(
B̃(s, α, ϕ)− B̃QI(s, α, ϕ)

)2
, (2.10)

where the prefactor 1/(Bmax − Bmin)
2 makes the penalty dimensionless.

2.2. Elongation target
Recent efforts to find QI fields have resulted in very elongated flux surfaces, such that
the semi-minor radius (a) of a poloidal cross-section is significantly smaller than its
semi-major radius (b) (Camacho Mata, Plunk & Jorge 2022; Jorge et al. 2022). In fact,
close to the magnetic axis, QI can be achieved to arbitrary accuracy by making the
flux surfaces infinitely elongated in the direction perpendicular to the curvature vector.
The magnetic drift then becomes tangential to these surfaces almost everywhere. High
elongation is, however, undesirable in stellarators (as we discuss in § 6), and so we included
a penalty function to keep elongation under control.

Because stellarator boundaries are three-dimensional, the shape of a poloidal
cross-section depends on the toroidal angle φ. Hence, to calculate elongation, we must
sample several cylindrical angles, and expect to find a different elongation at each
angle.
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Crucially, the angle (relative to the magnetic axis) at which the poloidal cross-section is
taken is also an important factor when calculating elongation. To understand this, we first
define the vector normal to the poloidal cross-section as nx, and the vector tangent to the
magnetic axis as ta. If nx and ta are not parallel, then the shape of the cross-sections will
change. Because VMEC uses the cylindrical angle φ to define its boundary, nx and ta will
necessarily not be parallel in configurations with a non-planar magnetic axis. We hence
must take care that, for a given cross-section which intersects the magnetic axis at a point
in real space pa at VMEC angle φa, each point that defines the edge of said cross-section
px(φx) satisfies the relation

ta(φa) · [pa(φa)− px(φx)] = 0. (2.11)

We define our cross-sections by numerically finding points on the boundary at various
values of φx using (2.11) for several VMEC θ coordinates between 0 and 2π.

Because these poloidal cross-sections are not, in general, ellipses, and can take any
number of unusual shapes, the definition of a and b are somewhat ambiguous. We
address this problem by defining ‘effective’ semi-major and -minor axes by finding the
cross-section’s circumference, Cσ , and its area, Aσ , and using them find the ‘effective
elongation’ ε ≡ b/a of the ellipse with the same circumference and area. In this work, we
penalized only the maximum elongation.

2.3. Additional targets
Two other properties that the optimizer could (and did) exploit to make fQI → 0 are
arbitrarily large aspect ratios A, and/or mirror ratios

Δ = Bmax − Bmin

Bmax + Bmin
. (2.12)

These are undesirable properties in a stellarator, so we set our penalty function to be

f = wQI

∑
s

fQI(s)+ wΔ max(0,Δ−Δ∗)2 + wε max(0, ε − ε∗)2 + wA max(0,A − A∗)2,

(2.13)
where Δ∗, ε∗ and A∗ are the maximum acceptable threshold values of the mirror ratio,
maximum elongation and aspect ratio, respectively, and are chosen somewhat arbitrarily.
By setting wQI 
 wΔ ∼ wε ∼ wA, we ensure the results of these optimizations do not
exceed these thresholds.

The mirror ratio Δ is calculated by numerically finding Bmax and Bmin on flux surface
s = 1/51, as this was the innermost flux surface calculated in VMEC in the early stages of
these optimizations. The elongation ε is calculated by finding the approximate boundary
cross-sections on planes normal to the magnetic axis at various physical angles φ, and
finding the elongation of the ellipse with the same area-to-circumference ratio of each
cross-section. VMEC’s aspect ratio is taken as A.

Note that during the stretch step, (2.1) allows a built-in way to limit the mirror ratio,
which must be done when optimizing for QI. On some surface reasonably near the axis,
simply replacing Bmin and Bmax with values that result in a desired mirror ratio may suffice,
although this was not done in this work.

3. Initial conditions

The optimization method presented in this work is sensitive to the choice of initial
conditions. Because of this, we chose initial conditions by exploiting the ‘near-axis
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expansion’ (Landreman, Sengupta & Plunk 2019; Jorge, Sengupta & Landreman 2020;
Plunk, Landreman & Helander 2021), which allows us to construct a first-order plasma
boundary given by a rotating ellipse, based around a carefully chosen magnetic axis.
According to the near-axis expansion, magnetic axes in QI fields should have zero
curvature at points where the field is at its minimum or maximum (Camacho Mata et al.
2022). There is also reason to believe (Camacho Mata et al. 2022) that careful control over
the axis’ torsion can dramatically improve these constructions, although it is not accounted
for in this approach.

To find the nfp = 2 configuration presented, we looked to § 6 in Camacho Mata et al.
(2022) as a starting point, which includes a two field-period configuration constructed
from the near-axis expansion. Realizing this configuration with high fidelity requires a
large number of poloidal (mpol) and toroidal (ntor) modes in VMEC (around 10 and
90, respectively), which is problematic for optimization. Hence, we simply truncated our
Fourier spectrum to remove all Fourier coefficients with mode numbers >2. The result
was a configuration with very poor QI, but with a similar boundary and axis shape to its
high-mode counterpart. The initial condition for the nfp = 3 configuration was a VMEC
input file from the previously completed nfp = 2 optimization, with the number of field
periods increased, truncating the boundary’s Fourier spectrum to include only the first
mpol=ntor= 2.

In the next section, we describe a novel approach that was used to generate the initial
condition for the nfp = 1 configuration presented. This initial condition was effective for
nfp = 1, but not for nfp > 1.

3.1. Heuristic construction
In this section, we present a heuristic model for the boundary shape of a configuration
that is close to QI or QP symmetry. The goal is to find a boundary shape with very small
number of Fourier modes in the usual representation in cylindrical coordinates, which
could be used to initialize optimization. At the same time, the model may give some insight
as to the character of the space of solutions, e.g. how they could be parameterized. It also
indicates the minimal set of Fourier modes to use for the first optimization stage. The
approach here is not rigorous, as the method in Plunk, Landreman & Helander (2019) is,
but has the advantages of having no differential equations to solve and giving a boundary
shape described by very few Fourier modes. The principles of the model are as follows:

(i) The maximum B will occur at φ = 0 and the minimum B will occur at φ = π/nfp.
(ii) The curvature of the magnetic axis will need to vanish at these values of φ, or

else Bmax and Bmin on flux surfaces to first order in
√
ψ would be points instead

of poloidally closed curves.
(iii) The flux surface shapes surrounding the axis will be ellipses that rotate as φ

increases. The minor axis of the ellipse will approximately align with the axis
curvature vector, to minimize the poloidal variation of B. This can be understood
from the near-axis relation B1 = κX1B0, derived in Garren & Boozer (1991), where
B = B0 + rB1 + O(r2), B0(ϕ) is the field strength on axis, r ∝ √

ψ is a surface label,
κ(ϕ) is the axis curvature and rX1(θ, ϕ) is the extent of the surfaces in the direction
of the axis normal vector. We want B1 to be small so it does not strongly modify the
quasi-poloidally symmetric field associated with the mirror in B0.

(iv) The magnetic axis will have some torsion, and this torsion and the rotating
elongation will contribute constructively to ι.

(v) The cross-sectional area of the flux surfaces will vary toroidally, in such a way as to
give the desired mirror ratio.
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We proceed by first finding a magnetic axis with the desired points of vanishing curvature,
then defining a surface surrounding it with the appropriate rotating elongation, and finally
adjusting this surface to provide a mirror term.

First, for the magnetic axis shape, we adopt the minimal model

Rax (φ) = R0,0 + R0,2 cos
(
2nfpφ

)
, Zax (φ) = Z0,2 sin

(
2nfpφ

)
. (3.1a,b)

Note the factors of 2, introduced here because the symmetry of the flux surface shapes will
be different from the symmetry of the axis itself. For instance a configuration with nfp = 1
has a single Bmax and single Bmin, meaning there are two points of vanishing curvature
on the axis, and so generally the axis can be symmetric under rotation by π. Let r(φ) =
[Rax cosφ,Rax sinφ,Zax] denote the position vector along the axis. The axis curvature can
be computed from κ = |r′ × r′′|/|r′|3, where primes denote d/dφ. For the curve described
by (3.1a,b), the curvature at φ = 0 and φ = π/nfp is

κ =
∣∣R0,0 + (

1 + 4n2
fp

)
R0,2

∣∣
(
R0,0 + R0,2

)2 + 4n2
fpZ2

0,2

. (3.2)

Therefore the curvature vanishes at these points when

R0,2 = − R0,0

1 + 4n2
fp
. (3.3)

Note that there is no constraint on the coefficient Z0,2, which can be adjusted to vary the
axis torsion and hence vary ι. If desired, the number of Fourier modes in the axis shape
(3.1a,b) could be increased, and κ(φ) could be made to vanish to higher order (Camacho
Mata et al. 2022; Jorge et al. 2022), but the expressions here are sufficient for the minimal
model here.

Next, we establish a rotating ellipse surrounding the axis

R (ϑ, φ) = Rax (φ)+ R̂ (ϑ) cos
(
knfpφ

) + Ẑ (ϑ) sin
(
knfpφ

)
, (3.4)

Z (ϑ, φ) = Zax (φ)− R̂ (ϑ) sin
(
knfpφ

) + Ẑ (ϑ) cos
(
knfpφ

)
, (3.5)

where R̂ = a cosϑ , Ẑ(ϑ) = b sinϑ , a is the semi-major radius of the ellipse (half the
major diameter) and b is the semi-minor radius of the ellipse. The variable ϑ used is not
a true poloidal angle, and can be understood as the angle about the rotating ellipse, in
the ellipse’s ‘rest frame’, such that ϑ = 0 and ϑ = π/2 are always along its semi-major
and -minor axes, respectively. The constant k describes the number of rotations of the
ellipse per field period; we will consider k = 1 for simplicity, but other values could be
considered. Also for simplicity we have assumed in this construction that the ellipse rotates
at a uniform speed with respect to φ, and that the elongation is independent of φ. Neither of
these choices is likely to be precisely optimal, but they are good enough for this simplistic
model.

We now switch to a true poloidal angle θ = ϑ − nfpφ, and introduce the elongation
ε = a/b. If ε > 1, then the ellipses will be oriented so the thin dimension is roughly
aligned with the curvature vector, which will minimize B1. Applying some trigonometric
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identities, we arrive at

R (θ, φ) = Rax (φ)+ (ε − 1) b
2

cos
(
θ + 2nfpφ

) + (ε + 1) b
2

cos θ, (3.6)

Z (θ, φ) = Zax (φ)− (ε − 1) b
2

sin
(
θ + 2nfpφ

) + (ε + 1) b
2

sin θ. (3.7)

It is convenient to compute a and b in terms of an effective aspect ratio A. The average
minor radius conventionally used in the stellarator community, aeff, is defined such that
πa2

eff equals the toroidal average of the cross-sectional area in the R–Z plane. In our case,
this area is πab, so aeff = √

ab. Then the aspect ratio A is approximately A = R0,0/aeff =
R0,0/(b

√
ε), so

b = R0,0

A
√
ε
, a = R0,0

√
ε

A
. (3.8a,b)

The remaining task is to adjust the surface shape to create a mirror term. This is
achieved by adding a toroidal variation to the size of the ellipse; flux conservation then
implies that an increase in the area of the ellipse corresponds to a proportional decrease
in B. Specifically, we add the term −ξa cos θ cos(nfpφ) to R, and add −ξb sin θ cos(nfpφ)

to Z, for a constant ξ . The motivation for these terms is that they result in the φ = 0
cross-sectional dimensions being reduced by a factor (1 − ξ)

R (θ, 0) = Rax (0)+ a (1 − ξ) cos θ, Z (θ, 0) = b (1 − ξ) sin θ, (3.9a,b)

while the φ = π/nfp cross-sectional dimensions are increased by a factor (1 + ξ)

R
(
θ,π/nfp

) = Rax
(
π/nfp

) + a (1 + ξ) cos θ, Z
(
θ,π/nfp

) = b (1 + ξ) sin θ.
(3.10a,b)

(The choice of terms to add to R and Z to achieve this kind of effect is not unique, but the
choice here is convenient as it introduces no θ − 3nfpφ Fourier modes.) Flux conservation
gives

Bmaxab (1 − ξ)2 = Bminab (1 + ξ)2 . (3.11)

Rearranging, we can write the relative size of the mirror term (see (2.12)) as

Δ = 2ξ
1 + ξ 2

, (3.12)

which can be inverted to give

ξ = 1 − √
1 −Δ2

Δ
. (3.13)

Applying a trigonometric identity for the new terms associated with the mirror field, we
finally arrive at

R (θ, φ) = R0,0 + R0,2 cos
(
2nfpφ

) + (ε − 1) b
2

cos
(
θ + 2nfpφ

) + (ε + 1) b
2

cos θ

−ξa
2

cos
(
θ + nfpφ

) − ξa
2

cos
(
θ − nfpφ

)
, (3.14)

Z (θ, φ) = Z0,2 sin
(
2nfpφ

) − (ε − 1) b
2

sin
(
θ + 2nfpφ

) + (ε + 1) b
2

sin θ

−ξb
2

sin
(
θ + nfpφ

) − ξb
2

sin
(
θ − nfpφ

)
. (3.15)
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Constructing precisely quasi-isodynamic magnetic fields 13

This expression is supplemented with (3.8a,b) and (3.13) to compute a, b and ξ in terms
of A, ε, Δ and R0,0.

The basic input parameters to this boundary shape are the average major radius R0,0,
the aspect ratio A, the elongation ε, the mirror ratio Δ and the vertical extent of the axis
Z0,2. Presumably, larger Δ helps with obtaining a good quality of QP symmetry, since for
a larger mirror ratio, B1 will distort the vertical B contours less. But if Δ is too large,
the reduced B at φ = π/nfp becomes low enough that the confinement degrades there.
Increasing ε helps with reducing B1, thereby improving the QP symmetry. Also, increasing
ε and Z0,2 will increase ι, which is good since it presumably increases the β limit, but at the
expense of increased shaping which may degrade the QP symmetry and make coils more
difficult. Since both ε and Z0,2 should strongly affect ι, it appears that there is significant
flexibility in ι.

One property of this construction that is noteworthy is that n = 2nfp modes are required,
both for m = 0 and m = 1. This means that if one tries to initially optimize in a small
parameter space, consisting of very few Fourier modes, at least these modes must be
included. In particular one should not truncate the parameter space to only modes with
n ≤ nfp.

A natural generalization of this model is the following. The surfaces can be ellipses in
the plane perpendicular to the magnetic axis, with the minor axis of the ellipse oriented
along the normal vector of the magnetic axis. The boundary surface can then be computed
in standard cylindrical coordinates using the method of § 4.2 in Landreman et al. (2019).
This variant of the procedure has the advantage of being slightly more rigorous in the
minimization of B1 and in the determination of the ellipse’s rotation at each φ, but at the
cost of more Fourier modes in the boundary shape.

4. Results

To demonstrate the robustness of this approach, we present three different optimized
vacuum configurations which show excellent QI properties. The three-dimensional
representation of these configurations’ boundaries and the corresponding magnetic field
strength can be seen in figure 4. We evaluated all of these fields using the code SPEC
(Hudson et al. 2012; Qu et al. 2012) and found that the VMEC solutions are undisturbed by
magnetic islands. In all cases, the rotational transform ι is larger at the magnetic axis than
at the plasma boundary.

When performing these optimizations, we began by optimizing the non-zero modes
of the initial condition. We then gradually optimized larger VMEC modes, increasing the
toroidal mode number ntor twice as quickly as the poloidal mode number mpol. This
is motivated by the fact that QI equilibria generated from near-axis expansion solutions
generally require more toroidal modes than poloidal modes.

All configurations presented in this paper, the QI target function presented above, and
most of the codes used to create this paper’s figures can be found at Goodman (2022).
Some plotting routines included were taken from Landreman (2021).

4.1. One field period
We first present a precisely QI configuration with a single field period, inspired by the
success of the configuration published in Jorge et al. (2022). At first, this configuration
was optimized with no rotational transform target, but the resulting field was found to
have magnetic islands when run through SPEC, due to its rotational transform passing
through the low-order rational 3/5. Further optimizing to avoid this resulted in a nearly flat
rotational transform profile just above ι = 0.601. To generate a starting point, we used the
method detailed in § 3.1.
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FIGURE 4. New QI configurations with one (top), two (middle) and three (bottom) field periods.
Left: two views (top/bottom) of the boundary of QI configurations. The colour map represents a
normalized magnetic field strength, with field lines shown in black. Right: magnetic field strength
contours on four flux surfaces, in Boozer coordinates, for each corresponding configuration.
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The aspect ratio of this configuration, calculated in VMEC, is around A = 10, the mirror
ratio Δ is just below 0.19 and the maximum flux surface elongation of this configuration
is just above ε = 5.5. These values match their respective threshold values A∗, Δ∗ and ε∗
very closely.

4.2. Two field periods
This optimized configuration has Δ = 0.22, A = 10 and maximum ε = 6. Optimizing
with no target for ι resulted for ι ∈ [0.45, 0.55]. While SPEC did not detect any islands in
this configuration, we nonetheless continued to optimize this configuration with an explicit
penalty for low-order rationals in ι to find ι ∈ [0.61, 0.62] to avoid rational surfaces. These
are both significant departures from the rotational transform of the configuration used as an
initial condition, which sat around ι = 0.1, although the shape of the axis looks extremely
similar. We discuss this change in § 5.5.

4.3. Three field periods
This configuration has Δ = 0.2, A = 8 and maximum ε = 6.2. The rotational transform
ι lies between 0.75 and 0.8, chosen to avoid low-order rational surfaces. As an initial
condition, we used the fully optimized nfp = 2 configuration, with an increased nfp and
decreased number of VMEC modes (mpol=ntor= 2).

5. Analysis
5.1. Confinement

Compared with most earlier stellarators, all three configurations presented in this work
have excellent confinement properties, both in vacuum and with finite pressure. In
figure 5, we show both the neoclassical transport magnitude at low collisionality ε3/2

eff
as described in Beidler et al. (2011) (calculated using the method from Drevlak et al.
2003), and their fusion-born alpha particle confinement (calculated using the SIMPLE
code Albert, Kasilov & Kernbichler 2020), of the optimized vacuum configurations. To be
consistent with Landreman & Paul (2022), we scaled these configurations to the size of the
ARIES-CS device, i.e. to have an effective minor radius of 1.7 m (as calculated by VMEC)
and field strength B0,0(s = 0) = 5.7 T, and simulated 5000 collisionless alpha particles
with energy 3.5 MeV started isotropically on the s = 0.25 surface using the SIMPLE
code (Albert et al. 2020).

It is interesting to understand how these configurations, and their confinement
properties, change when a pressure profile p(ψ) is added to them. In this work, we use
a linear pressure profile p(s) ∝ 1 − s, and use volume (V) averaged β,

β = 1
V(s = 1)

∫ 1

0

2μ0

B(s)2
p(s)

dV(s)
ds

ds, (5.1)

to describe differences in pressure normalization, where μ0 is the vacuum permeability
constant.

Because they were optimized in vacuum, we expect neoclassical transport to worsen
when more pressure is added (which matches the observed trends in figure 6). For the
same reason, ∂αJ will increase at higher β, which would lead to more fast particles being
lost, all else being equal. However, other competing factors create a non-trivial correlation
between fast-particle losses and β. This can be understood by first noting that the plasma is,
broadly speaking, diamagnetic, meaning that the magnetic field strength roughly decreases
with added plasma pressure, and thus also tends to increase with radius (in some average
sense) when dp/ds < 0. Because J increases when B decreases, we thus expect ∂sJ to
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(a) (b)

FIGURE 5. Figures showcasing the confinement properties of these configurations in vacuum,
labelled ‘New QI’, juxtaposed with the same metrics for other configurations. Dashed lines
describe ‘legacy’ configurations Wendelstein 7-X (Klinger et al. 2016), QIPC (Mikhailov et al.
2002) and QPS (Nelson et al. 2003), dotted lines describe newer configurations constructed
using the near-axis expansion (Camacho Mata et al. 2022; Jorge et al. 2022) and thick solid
lines are from this work. (a) Neoclassical transport coefficient ε3/2

eff . (b) Collisionless losses of
fusion-generated alpha particles initialized at s = 0.25 in an ARIES-CS-scale reactor Najmabadi
et al. (2008).

become more negative as plasma pressure builds up. In other words, increased pressure,
in general, makes it easier to find maximum-J configurations, in which ∂sJ < 0.

Now consider a configuration which is minimum-J in vacuum (as is typically the case),
meaning that J (s1) < J (s2)∀α, λ, s1 < s2. If enough pressure is added, we expect the
configuration to change such that J (s1) > J (s2). Due to the intermediate value theorem,
there must therefore be some ‘catastrophic’ β at which J (s1) = J (s2). At this β, we thus
expect more particles to be lost, since particles can drift radially whilst conserving J , even
if ∂αJ is small.

Despite increased ∂αJ (see figure 7), we still see an improvement in fast-particle
confinement when β is sufficiently large (around 2 % and 3.5 % for the nfp = 2 and nfp = 3
configurations respectively), as shown in figure 6. This is again caused by the plasma being
essentially diamagnetic, such that an increase in p(s) on some flux surface s generally
results in decreased B(s). Thus, increased β tends to increase |∂sB|. This creates a ‘grad-B’
drift (with a non-zero poloidal component) given by

v∇B ∝ B × ∇B
B3

. (5.2)

Thus, increased β generally causes the particles’ poloidal precession to increase. This
means that particles that may otherwise drift outwards radially and be lost, can – at high
enough β – poloidally precess quickly enough that their inwards drifts and outwards drifts
can negate each other, and the particle can remain confined. For this reason, one can
generally expect better fast-particle confinement at high β (Lotz et al. 1992; Velasco et al.
2021). Physically, changes in poloidal precession are also the cause of the aforementioned
catastrophic β, but it is instructive to think of these two phenomena separately in this case.
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(a) (b) (c)

(d) (e)

FIGURE 6. (a–c) Neoclassical transport coefficient ε3/2
eff for the three new configurations

presented at various β. (d,e) Fraction of 3.5 MeV alpha particles lost, initialized at s = 0.25,
for various values of β for the two and three field-period configurations.

To summarize, there are three competing phenomena at play:

(↑ β) =⇒
(

↑ ∂J
∂α

)
=⇒ (↑ fast-particle losses),

=⇒
(

↓ ∂J
∂s

)
=⇒ (� fast-particle losses),

=⇒
(

↑ B × ∇B
B3

)
=⇒ (↓ fast-particle losses). (5.3)

Due to these three factors, the relationship between β and fast-particle confinement is
therefore non-trivial and worth investigating.

5.2. Properties of J
For the above reasons, it is instructive to understand how J̃ varies with respect to s, α
and λ. To extract this information from a VMEC configuration, we begin by finding the
VMEC coordinates corresponding to various field lines on a single flux surface using an
algorithm used in the stella code Barnes, Parra & Landreman (2019). With these, we
linearly interpolate the magnetic field strength along each field line, and use a numerical
root-finding algorithm to find bounce points φ1 and φ2 at which B = B∗ for some Bmin <

B∗ < Bmax. For a single pair of bounce points along a single field line, we rewrite (1.3) in
terms of parameters available in VMEC

J̃ (s, α,B∗) =
∫ φ2(s,α,B∗)

φ1(s,α,B∗)

B
√

1 − λB
B · ∇φ dφ. (5.4)

Our algorithm to compute J̃ takes care to consider which wells along neighbouring field
lines are ‘connected’ to each other, which allows us to trace field lines over several toroidal
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FIGURE 7. Contours of constant B∗ at various s and J̃ for the three new configurations
(left-to-right) at various β (top-to-bottom). Important features are (i) the width of these lines,
which is bounded by the maximum and minimum J̃ for each B∗ and s, hence, thinner lines
means better QI; (ii) the slope of these lines ∂J /∂s, which is negative for maximum-J ; (iii) the
range of values of J̃ for which particles initialized at various surfaces s are lost, shown by the
shaded regions.
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turns. It also means that the possibility of transitioning particles is accounted for in our
calculation of J̃ along various field lines.

Although ∂αJ̃ is small for these configurations, it is not exactly zero, and thus a single
B∗ on a flux surface will be associated with various values of J̃, each corresponding to
a different field line. In figure 7, we plot J̃ as a function of s, for various bounce field
strengths B∗ ≡ 1/λ.

From figure 7, one can deduce three important properties:

(i) The variation of J̃ between various field lines on a single flux surface can be
seen by the width of the line, which is bounded between maxα(J̃ (s,B∗)) and
minα(J̃ (s,B∗)). In a perfectly omnigenous field, these lines would therefore have
zero thickness.

(ii) The degree to which a configuration is maximum-J can be seen by the slope of the
lines. In a completely maximum-J configuration, all lines on these plots would have
negative slopes.

(iii) Particularly large losses occur when ∂sJ = 0. In this plot, the particles that are lost
through this mechanism are those whose B∗ ≡ 1/λ lines have slopes around zero.
The shaded grey (often elephant-shaped) regions show which values of J̃ have
particle losses, which, for these plots, coincide with regions where ∂sJ = 0.

It is worth mentioning that the size of the grey region is not necessarily proportional
to the number of fast particles lost. For instance, it may be the case that all particles are
confined, except for a small number of those with J̃ � 0, and a small number with J̃ � 1.
This would result in a grey region that fully covers the plot, despite only a small number
of particles being lost.

Note in figure 7 that the nfp = 1 configuration degrades much more quickly when the
pressure is increased to β = 1 % (as shown by the dramatically increased thickness of the
lines of constant B∗), and it fails converge in VMEC for β > 1 %. Its magnetic field is,
apparently, sensitive to perturbations arising from the diamagnetic and Pfirsch–Schlüter
(PS) currents arising from the pressure gradient. Configurations with a larger number of
field periods are less sensitive to the PS current, the reason for which can be qualitatively
understood from the fact that this current closes within one field period of any QI device
(Helander 2014). In a tokamak, the PS current runs in one direction on the outboard side
of the torus and in the other direction on the inboard side. In contrast, it ‘turns around’
in each field period of a QI stellarator and never crosses the Bmax contour. If the number
of periods is large, the current thus has to change direction frequently and therefore does
not affect the magnetic geometry very much. In a configuration with only one field period,
the PS current traverses one full toroidal turn around the torus before changing directions,
and therefore has a larger effect on the magnetic geometry than if nfp > 1. The other two
configurations, therefore, are much more resilient to changes in pressure.

Another interesting phenomenon that can be seen from figures 6 and 7 is that there can
exist in QI configurations a catastrophic value of β at which ∂sJ (λ) → 0 for a wide range
of λ, resulting in significant fast-particle losses. From figures 6 and 7, we see that this
happens at β � 1 % in the new nfp = 2 configuration, and at β � 2 % in the new nfp = 3
configuration. In a practical stellarator design, one may want to ensure this catastrophic β
has a small value, so that (i) the field transitions to maximum-J quickly, and (ii) that the
increase in alpha particle losses happens well before thermonuclear ignition.
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(a) (b) (c)

FIGURE 8. The mono-energetic bootstrap current coefficient D�31 for the three QI configurations
as a function of collisionality ν� (blue) calculated for E = 0 by the DKES code (van Riij &
Hirshman 1989), juxtaposed with these coefficients for a tokamak with the same ι, aspect ratio
and elongation (orange). These results include error bars, although some are not large enough to
be visible.

5.3. Neoclassical mono-energetic transport coefficients
In this section, we investigate the neoclassical mono-energetic coefficients for radial
transport, D�

11, and bootstrap current, D�
31 (as defined in Beidler et al. 2011). The authors

of Helander & Nührenberg (2009) and Helander et al. (2011) show that exactly QI
configurations have a very small bootstrap current. The bootstrap coefficient for all three
new QI configurations is shown in figure 8 at half-minor radius. As expected, it is very
small compared with an equivalent tokamak with the same aspect ratio, elongation and ι
for a wide range of collisionalities ν� ≡ Rmajν/(ιv). They are also smaller than the non-QI
configurations in Beidler et al. (2011), and are comparable to the QIPC configuration
(Mikhailov et al. 2002). Here, Rmaj is the stellarator’s effective major radius, and ν is
the collision frequency of a particle with velocity v.

The radial transport coefficient D�
11 is shown in figure 9 for the one field-period QI

configuration at half-minor radius. The E = 0 curve shows how far the transport has
been reduced in the D�

11 ∝ 1/ν� regime, reflecting the low value of εeff. In addition, for
relatively low normalized radial electric fields, E/vB, in comparison with existing devices,
the transport is reduced even further. These regimes where transport is much affected by
the radial electric field (approaching D�

11 ∝ √
ν or D�

11 ∝ ν� at low ν�) mainly affect the
ion transport, because the thermal speed of ions is much lower than that of electrons,
so that E/vB is larger for ions. There is also very little sign of a plateau regime. The
high-collisionality PS regime (ν� � 1) can almost be extrapolated down to the low values
of D�

11 appearing at ν� ∼ 10−3 where the D�
11 ∝ 1/ν� regime begins. In combination, all

these properties of D�
11 mean that one can have a situation for ions where (with the usual

signs of the gradients, dni/dr < 0 and dTi/dr < 0) thermo-diffusion drives the particles
inwards, and the energy flux is more strongly driven by the logarithmic density gradient
d ln ni/dr than by the logarithmic temperature gradient d ln Ti/dr.

5.4. Trapped electron modes and available energy
In configurations that are both perfectly QI and maximum-J (meaning ∂ψJ < 0,∀ψ),
it has been shown that density-gradient-driven collisionless TEMs are both linearly and
nonlinearly stable. The linear stability criterion, derived from the gyrokinetic equations
in Proll et al. (2012) and Helander, Proll & Plunk (2013), reduces to the condition that
precessing trapped particles should not be in resonance with a drift wave.

Following the method of Proll (2014), this phenomenon can be understood by first
using (1.4a,b), which tells us that the bounce-averaged presessional frequency of trapped
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FIGURE 9. The mono-energetic radial transport coefficient D�11 for the new nfp = 1
configuration as a function of collisionality ν� calculated by the DKES code (van Riij &
Hirshman 1989). These results include error bars, although some are not large enough to be
visible.

particles dα/dt in an omnigenous field is

ω̄bnc = − 1
Zeτb

∂ψJ , (5.5)

where τb is the particle’s bounce time.
Drift waves are driven by density or temperature perturbations in the plasma and

propagate with a frequency proportional to

ωdia ∝ T
e

d ln(n)
dψ

, (5.6)

where n denotes the number density and T the plasma temperature. Because plasma
density tends to decrease as a function of ψ , it is usually the case that d ln(n)/ds < 0.
Hence, we find that

ω̄bncωdia ∝ − T
Ze2τbnc

d ln(n)
dψ

∂ψJ , (5.7)

sign(ω̄bncωdia) = sign
(
∂ψJ

)
. (5.8)

TEM-driven turbulence occurs when ω̄bnc and ωdia are in resonance. This resonance is
impossible if (5.8) is negative, which occurs in a maximum-J (∂ψJ < 0) omnigenous
field.1 The configurations presented become completely maximum-J at high β, and we
may expect trapped electron-driven turbulence to decrease as a function of β (Connor,
Hastie & Martin 1983).

The relationship between TEM turbulence and maximum-J configurations was
expanded upon in Helander (2020), where the so-called ‘available energy’ (Æ) of trapped

1Note that this stability criterion only holds when the ratio of the electron temperature gradient to the density gradient
is in the range 0 ≤ ∂ψ ln Te/∂ψ ln n < 2/3, as shown in Proll et al. (2012), Helander et al. (2013) and Helander (2017).
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electrons was calculated. Æ measures the maximal amount of thermal energy that may be
liberated from the plasma distribution function, subject to some constraints.

In order to compare the devices fairly, we opt to calculate the fraction of the total thermal
energy of the electrons that is available. The expression for the Æ per unit volume in a flux
tube may be extracted from Mackenbach, Proll & Helander (2022), and we shall denote
it as æ(s). Importantly, this quantity is dependent on the geometry, and the profiles of
both temperature and density at each flux surface s. If one multiplies æ(s) by dV/ds, we
have constructed the Æ per s, the integral of which assigns a single scalar Æ to each
device. Finally, upon normalizing by the total thermal energy of the device, we have
constructed a dimensionless scalar which measures the fraction of total thermal energy
which is available

Æ
Eth

≡
∫

æ(s)
dV
ds

ds

∫ 3
2

n(s)Te(s)
dV
ds

ds
. (5.9)

Importantly, there is one free parameter in Æ, namely the length scale over which energy
is available. Following arguments of (Mackenbach et al. 2022), we take this to be the
standard gyroradius (although formally it may have additional dependencies), given by

ρgyro =
√

2 mTe(s)
ZeB0

, (5.10)

where B0 is a reference magnetic field strength.
To compare devices across various types of TEM turbulence, we choose to analyse three

different profiles for the density and temperature. One corresponds to a purely density
gradient driven TEM with a flat temperature profile, for which the aforementioned stability
criterion holds. We furthermore construct another set of temperature and density profiles,
for which we have

η ≡ ∂r ln T
∂r ln n

= 2
3
. (5.11)

It is known that at η > 2/3 the stability criterion for density gradient driven TEMs no
longer holds, and maximum-J devices no longer enjoy (non)linear stability (at η = 2/3
we thus operate at marginality). To go far beyond marginality, we investigate a pure
temperature-gradient-driven TEM as well, in which the density profile is flat.

The result may be seen in figure 10, where highly non-trivial behaviour of the various
devices may be seen as we increase β and change the plasma profiles. All devices
experience stabilizing effects (as measured by this quantity) as one increases the plasma
β, which makes the device more maximum-J . Interestingly, this trend downwards is
not monotonic, as some devices experience a rise in Æ/Eth beyond some β. Upon a
closer investigation, this can be attributed to the breaking of omnigeneity, which generally
increases Æ. Hence there seems to exist a certain Æ-optimum for some devices, beyond
which increasing the plasma-β degrades the omnigenous properties to an extent that it
outweighs the increase in the maximum-J property.

It is furthermore of interest to notice that the nfp = 2 device seems to enjoy the lowest
Æ/Eth across the widest range of profiles and plasma-βs. This is partly due to the
magnitude of the bounce-averaged precessional drift in this device, which we have found
to be lower than in a comparable device such a nfp = 3. Æ is weighted by this magnitude,
which partly explains this phenomenon. A second device which exhibits favourable
behaviour across the chosen profiles and β values is the precise-QA (quasi-axisymmetric)
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(a) (b) (c)

FIGURE 10. The fraction of thermal energy available for TEM-driven turbulence, Æ/Eth, at
various values of β, for the new configurations presented in this paper (‘New QI’), Wendelstein
7-X (W7-X), a precise quasi-axisymmetric configuration with a magnetic well (PQA+well) and
a precise quasi-helically symmetric configuration (PQH) (Landreman & Paul 2022). Constants
n0 and T0 are chosen arbitrarily, and plots from left to right are for η = 0, η = 2/3 and η → ∞.

device, which has a so-called ‘vacuum magnetic well’, which is beneficial for MHD
stability (Greene 1998; Mercier 2011), and should not be confused with the wells described
in § 2.1. Although this device’s low Æ may be initially surprising, one can show that,
in certain asymptotic regimes, Æ decreases with vertical elongation and furthermore
decreases with increased magnetic well (Rodriguez & Mackenbach 2023). Since this
configuration exhibits large vertical elongation and a magnetic well, it enjoys this reduction
in Æ.

We finally note that a closer comparison could take variations of the length scale over
which energy is available into account, which may alter some found trends. Seeing the
stark difference in performance at β ∼ 2 %, one could reasonably expect the trends to be
robust, as long as the variation of this length scale is of order unity.

5.5. Axis modifications
Because optimizations with nfp > 1 were extremely sensitive to initial conditions, it is
useful to understand how these optimizations shaped the magnetic axis, such that we
can learn to construct better QI configurations using the near-axis expansion (NAE). In
this section, we showcase comparisons between the axis used for the NAE construction,
the axis shapes in the optimized VMEC equilibria, and the axis of the optimization’s
starting point. For brevity, we compare these properties only for the nfp = 2 configuration
presented, as its optimized properties (namely, its rotational transform) deviated most
significantly from its initial condition.

The shape of a magnetic axis can be understood through either (i) the axes’ curvatures
κ and torsions τ , or (ii) the R and Z coordinates of the axes at various toroidal angles. As
in Camacho Mata et al. (2022), we define curvature and torsion as

κna = dta

dla
,

τna = −dba

dla
,

⎫⎪⎪⎬
⎪⎪⎭

(5.12)

where ta, ba, na and la are the axis’ tangent vector, binormal vector, normal vector, and
arclength, respectively. We also define the relative R and Z differences between two

https://doi.org/10.1017/S002237782300065X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782300065X


24 A.G. Goodman and others

(a) (b) (c)

FIGURE 11. (a) Torsion of the optimized magnetic axis (opt), the near-axis construction with
a large number of VMEC poloidal and toroidal modes (full), the optimization’s initial condition
(init) and the axis found using the NAE before being run through VMEC (NA). (b) The curvature
of these same magnetic axes. (c) The relative difference between the R and Z coordinates of the
optimized configuration’s axis and the initial condition’s axis.

magnetic axes as

�R̃(φ) = R(opt)
ax (φ)− R(init)

ax (φ)

R(opt)
ax (φ)+ R(init)

ax (φ)
,

�Z̃(φ) = Z(opt)
ax (φ)− Z(init)

ax (φ)

Z(opt)
ax (φ)+ Z(init)

ax (φ)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.13)

where (opt) and (init) correspond to the optimized configuration’s axis and the initial
condition’s axis respectively. Plots showcasing these differences are shown in figure 11.
The presence of zeros of curvature is an intrinsic requirement for QI configurations in the
near-axis formalism (Plunk et al. 2019). Although Fourier mode truncation results in this
property being lacking in the configuration used as an initial point for the optimization,
the resulting optimized configurations have a curvature function that is approximately zero
at points of maxima and minima of B (φ = 0,π/nfp). This indicates that the near-axis
solutions, which impose this feature analytically, are optimal configurations in this region
of the solution space. The curvature is made small over a wider interval, which should
help with the reduction of the first-order correction to the magnetic field B1, according to
the near-axis theory.

Another striking feature on the axis shapes of the optimized configurations is the
presence of regions where torsion increases sharply. This behaviour is expected where
curvature approaches zero, but in these cases it is also present in regions of non-zero
curvature. We suspect that this is because, at finite aspect ratio, the configurations
constructed using the NAE do not exactly represent an MHD equilibrium, and thus are
only approximately reconstructed when using an equilibrium solver. As a consequence,
the axis shape used for the construction before being run through VMEC (labelled ‘NA’
in figure 11) and the one found by VMEC (labelled ‘full’ in figure 11) are not identical
even when a large number of Fourier modes are used in VMEC. This is evident when
comparing their curvature and torsion. Peaked torsion profiles, like the ones observed
in figure 11, are thus commonly observed when using numerical equilibrium solvers.
According to near-axis theory a sign change is expected in the Frenet frame at locations
of zero curvature (Camacho Mata et al. 2022). Numerical approximations of such curves
achieve this flip by a rapid ‘rotation’ of the axis, explaining the large torsion where the
curvature approaches zero. We also observe an increase in the optimized configuration’s
integrated torsion (it is more negative) compared with the initial condition, even when
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ignoring the regions of peaked torsion around Bmax and Bmin. This explains the large
increase in rotational transform seen in the optimized nfp = 2 configuration (ι ∼ 0.6)
compared with the rotational transform of the near-axis construction (ι ∼ 0.1).

6. Discussion

We have demonstrated that, using our novel target function, excellent QI quality is
achievable in stellarators with reasonable aspect ratios, mirror ratios and elongations. To
our knowledge, the property of quasi-isodynamicity is satisfied to higher accuracy than in
any previous publications. As a result, our configurations have extremely low neoclassical
transport, fast particles simulated in them are well confined and their bootstrap currents
are extremely small. When enough pressure is added, the two and three field-period
configurations become maximum-J while maintaining excellent omnigenity, and should
thus benefit from TEM stability and little turbulence associated with such modes. We have
also found that this maximum-J transition can lead to significant fast-particle losses, and
so it is beneficial to ensure it happens at a low plasma β, as was done in Sánchez et al.
(2022).

The three stellarators presented are visually very different from each other, and have
different numbers of field periods, nfp, indicating the robustness of this target function.
When optimizing configurations with nfp = 1, we had very good results with every initial
condition we tried, but the success of optimizations with nfp > 1 was quite sensitive to the
chosen initial conditions. Future investigation into this phenomenon is warranted, since
this trend is consistent with near-axis construction results, which seem to degrade with
increased field periods (Camacho Mata et al. 2022; Jorge et al. 2022). These near-axis
constructions of this nature seem to work as promising initial conditions for optimization
for nfp > 1.

In this work, we directly penalized mirror ratio and elongation, as excessive values of
these quantities are undesirable for fusion reactors. However, it is not clear what exactly
the highest allowable value of these parameters should be, and if this is the best way to
penalize them. High mirror ratios are undesirable because they imply an inefficient use of
magnetic energy (much of it concentrated in small regions) and lead to large forces on the
coils that generate the fields. A target function that directly accounts for these parameters,
or simply penalizing εeff, may be preferable alternatives. High flux surface elongations
are undesirable because they increase the plasma’s area-to-volume ratio. Further, they
also tend to increase flux surface compression which increases instability growth rates
(Helander & Plunk 2021; Stroteich et al. 2022). High elongation also complicates coil
optimization. More carefully chosen targets which do not rely on arbitrary threshold values
may be better suited to future stellarator designs.

Our nfp = 1 configuration has almost zero shear. The other two have some positive
shear, but still very little, which is detrimental to MHD stability. More troublingly, if left
unchecked, all optimizations attempted would converge on rotational transform profiles
centred on low-order rationals. Thankfully, these configurations seemed to be fairly robust
to changes in ι, and so these low-order rationals were fairly easy to avoid with additional
target functions, even after optimizations had already converged reasonably well.

Applications and extensions of this approach to optimization are boundless. Including
both MHD and gyrokinetic stability metrics in the target function will be necessary when
designing a viable fusion reactor. Finding a set of coils with reasonable properties would
also be a valuable project, as was done in Jorge et al. (2023). The optimization approach
in this paper also seems to be sensitive to initial conditions: we were unable to find any
good configurations nfp > 1, except for those initialized from a solution found using NAE.
However, not all near-axis solutions were effective initial conditions. Hence, a more robust

https://doi.org/10.1017/S002237782300065X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782300065X


26 A.G. Goodman and others

and reliable way to generate near-axis solutions as starting points for optimization would
be a valuable asset.

Supplementary material

Supplementary material is available at https://zenodo.org/record/7220257.
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