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THE MINIMAL SIZE OF A SQUARE
WHICH INCLUDES A DIGITAL CONVEX 2JT-GON

DRAG AN M. ACKETA AND JOVISA D. ZUNIC

This paper presents a construction of a digital convex 2Jfe-gon (for a given natural
number k), which can be inscribed into a square grid of the minimal possible size
F(2k). An explicit expression for the function F(2k) is also given.

1. INTRODUCTION

Recently there have been a lot of papers which deal with some optimisation prob-
lems on digital shapes. One of such problems will be studied here. It is related to
convexity, one of the basic computational geometry properties [8].

A digital convex polygon is a polygon, all the vertices of which are points on the
integer grid and the interior angles of which are strictly less than n radians. The
diameter of a digital convex polygon is the minimal edge size of the circumscribed
digital square with the edges parallel to the coordinate axes.

This paper deals with the following optimisation problem: Given a natural number
n, determine the least possible natural number m = F(n), or given m, determine the
greatest possible natural number n = G(m), such that there exists a digital convex
polygon of diameter m with n edges. This problem is completely solved for n even
(n = 2k); an explicit expression for the function F{2k) is given and the construction
of an optimal digital convex 2A;-gon is described.

A similar problem: "what is the minimal possible area of a digital convex polygon
with a given even number of vertices ?" — has been studied in [9]. A method for the
construction of such a digital convex polygon has been given in the same paper.

Some of the other optimisation problems related to convexity on the integer grid
have been considered in a number of recent papers (see, for example, [1, 2, 3, 4]).
Motivation for considering such questions comes from several sources, in particular
from integer programming and computer graphics.

The relationship between the number of edges and the diameter of optimal digital
convex polygons was studied in the papers [10, 2, 3]. In particular, two sequences
m[i) and n(t) of natural numbers were introduced in [10], with the property that
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F(n(t)) = rn(t); this means that there exists the corresponding optimal digital convex
n(i)-gon P(t) with diameter m(t). An empirical approximation formula for F(n) was
derived in [10] as well. The exact formula for F(n) was given in [2]. An almost optimal
construction for general n was described in [4]; that construction is almost optimal in
the sense that the diameter of the constructed digital convex n-gon is not greater than
1 + F(n).

If the number k is even, then the construction of optimal digital 2fc-gons is a
generalisation of the construction of the polygons P(t). Two families of auxiliary 6-
gons are introduced in order to cover the case when the number k is odd.

2. PRELIMINARIES

The diameter of a digital convex polygon Q is equal to

max{max{|zi — XJ\, |y,- - yj\}, where ((xi,yi),(xj,yj)) is a pair of vertices of Q}.

Note that the diameter is taken in the sense of the maximum distance.
Let 2/min and xma,x respectively denote the minimal y-coordinate and the maximal

z-coordinate of the considered digital convex polygon Q. Generally, the SE-arc (south-
east arc) of Q is the sequence of consecutive edges (Vi, Vi+i), 1 ^ i ^ k — 1, where:

• Vi denotes a vertex (xj,j/i) of Q
• Xi < . . . < Xk = Z m u i J/min = Vl < • • • < Vk\

In part icular , if t he polygon Q has a lower horizontal edge (Vb> Vi)

(Vb = (xo,yi), Vi = (xi,yi), XQ < x i ) , then this edge is additionally considered to be

t h e first edge of the SE-arc. T h e NE-arc, the NW-arc and the SW-arc of a digital

convex polygon are denned in the analogous way. (If the polygon Q has a right vertical

edge, then it is considered to be the first edge of the NE-arc, and so on.)

Given an edge e — [(a5i,!/i),(a:2>!/2)] of a digital convex polygon, the edge slope of

e is defined to be the fraction:

I"1 ~ X2\ if e G NE- or SW-arc ; ) g l ~V2\ if e 6 SE- or NW-arc ,
1* 35 I

I \ if e G NE- or SW-arc ; ) \
|yi -1/2 I 1*1 -352 I

while the bd-length of the edge e is defined to be the sum \xi — a;21 + |j/i — 3/21 (length
in the sense of the block distance metrics).

A digital square DS(p,q), where p and q are relatively prime natural numbers, is
a digital convex 4-gon with the property that each arc has exactly one edge with the
edge-slope q/p.

If the corresponding arcs of the two digital convex polygons Qi and Q2 have
no common edge slopes, then there exists a uniquely determined third digital convex
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polygon Qi, called the sum (Minkowski sum) of Qx and Qi • (For more details see [7,
or 6]). Each arc of the polygon Q3 includes all edges of the corresponding arcs of Qi
and Qi, sorted so that the convexity condition is preserved. If Q3 is the sum of Qi
and Qi, then Qi is the difference of Q3 and Qi. The diameter of Qz is equal to the
sum of the diameters of Q\ and Qi.

3. GREEDY LOWER BOUND FOR F(n)

A lower bound for F(n), called the greedy lower bound and denoted by gdlb{n),
can be derived from the following observations:

The number F(n) is equal to the minimal possible diameter of a digital convex
n-gon. The diameter of a digital convex n-gon P cannot be smaller than one fourth
of the perimeter of MR(P), where MR(P) denotes the minimal rectangle with edges
parallel to the axes, in which the polygon P can be included.

This perimeter is equal to the sum of bd-lengths of edges of P (Figure 1).

Figure 1. Orthogonal projections of the edges of P exactly
cover the perimeter of the rectangle MR(P).

Consequently, a lower bound for F(n) is equal to one quarter of the minimal
possible sum Minaum(n) of bd-lengths of edges of a digital convex n-gon. We proceed
with a calculation of Minsum(n):

Since the number of summands in Minsum(n) is fixed (equal to n), the minimi-
sation requires the summands to be as small as possible. Such a choice of summands is
naturally performed by the following "greedy" algorithm: choose as many summands
equal to 1 as possible, then proceed with summands equal to 2 and so on. All these
summands are of the form (p + 9), where p/q is (a candidate for) an edge slope of an
edge of P.

The following two rules must be obeyed by the edge slopes p/q:

(a) the natural numbers p and q are relatively prime;
(b) each p/q (with p + q ^ 2) can be used at most four times in P ; that is,

it has at most four associated summands (p + q) in Minsum(n).
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Let S(t) denote the set of all the different fractions p/q, where the natural numbers p
and q are relatively prime and 2 ̂  p + g ̂  i. A special family of optimal digital convex
polygons P(t) with n(t) edges and diameter m(t) can be constructed by applying the
greedy algorithm. The polygon P(t) is defined in the following way:

The edge slopes of edges of each arc of P(t) are all the different fractions of the
form q/p, where the natural numbers p and q are relatively prime and p + q < t. In
addition, the edge slope of the first edge in each arc of P(t) is equal to 0/1. Thus the
polygon P(t) uses each one of the edge slopes in S(t) exactly four times. This leads to
the following equalities [3]:

n(<)=4
P/«€S(<)

m(t) = 1 + - • Minsum(n(t)) = 1+ (p + g) = J ] Jb • <f>(k)

Here 4>(s) denotes the number of integers between 1 and s which are relatively prime
with a (the well-known Euler function from number theory;

for example ^(1) = <f>(2) = 1, tf>(3) = ^(4) = 2, ^(5) = 4.)

The summands 1 and 4 in the expressions for m(t) and n(t) correspond to the edges
of edge slope 0/1, which belong to the boundary of MR(P(t)).

As an illustration, "feasible" edge slopes for t < 5, as well as the corresponding
values of the functions m(t) and n(t), are given in Table 1.

Table 1

edge slopes -
members of S(t)

0/1

1/1
1/2

2/1

1/3

3/1

1/4

2/3

3/2

4/1

1/5

5/1

0/1

1/1
1/2

2/1

1/3

3/1

1/4

2/3

3/2

4/1

1/5

5/1

0/1

1/1
1/2

2/1

1/3

3/1

1/4

2/3

3/2

4/1

1/5

5/1

o/i
1/1
1/2

2/1

1/3

3/1

1/4

2/3

3/2

4/1

1/5

5/1

t

1

2

3

4

5

6

n(t)

4

8

16

24

40

48

m(t)

1

3

9

17

37

49
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The greedy lower bound gdlb(n) for arbitrary n can be expressed in terms of the
sequences m(t) and n(t) in the following way [2]:

LEMMA . If n(t) < n < n(t + 1) , then

gdlb{n) = m(t) + f(n - n(f)) • (t + 1)/4|

PROOF: The perimeter of a rectangle including a digital convex n-gon P cannot
be smaller than

O = 4 • m(<) + (n - n(t)) • (t + 1)

The minimal possible size of a square including P is consequently equal to the smallest
integer which is greater than or equal to 0/4.

EXAMPLE. Let ni = 42 and n2 =44. Note that n(5) < ni,n2 < n(6). The previous
statement gives that gdlb(ni) = 40 and gdlb(n2) = 43. It will turn out that F(ni) =
l+gdlb(ni) and F(n2) = gdlb(n2).

It will be shown in the remaining part of this paper that the greedy lower bound for
F(n) is a very good one. Digital convex polygons with even number n of edges either
reach this bound or (in pretty rare cases) have the value of F(n) equal to gdlb(n) + 1 .

4. THE MAIN RESULT

The main result of the paper is the following exphcit expression for the minimal
side size m = F(2k) of a square area of the integer grid, in which a digital convex
polygon with 2k edges can be included, for each natural number k.

THEOREM 1 . .F(2Jfe) = gdlb(2k) tor each integer k > 2, except for the following

cases (a) and (b), in which F(2k) = 1+ gdlb(2k)

(a) 2fc = n(<) + 2,
(b) 2Jfe = n(< + l ) - 2 ,

where t is an odd natural number greater than 1.

The proof of this theorem will be given in the next two sections. A construction of
an optimal digital convex polygon will be described in Section 5, while the optimality
of the proposed construction will be proved in Section 6.

5. CONSTRUCTION

Throughout the remaining part of this paper, we shall assume that the integer 2k
satisfies the inequality n(<) < 2Jb < n(t + 1).

When constructing optimal digital convex 2fc-gons, we shall distinguish seven cases.
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CASE 1. k is even.
An optimal digital convex 2fc-gon can be easily constructed so that it has four

equal arcs, that is, so that all its arcs have the same number of edges with the same
corresponding edge slopes. The edge slopes q/p within an arc are chosen so that the
numbers p and q are relatively prime and so that the sums p + q are as small as
possible.

This construction can be regarded as the sum of the polygon P(t) and (2k — n(i))/4
digital squares DS(p, q), where the pairs (p, q) are different pairs of natural numbers
p and q, such that p + q = t + 1.

The remaining six cases correspond to the cases when k is odd.

CASE 2. t + 1 = 2u + 1 for some u G TV
Let Q denote an optimal digital convex (2k — 2)-gon with four equal arcs, which

is constructed as in Case 1. An optimal digital convex 2fc-gon P can be obtained from
Q by addition of two edges with edge slopes u/(u + 1), which are inserted into two
opposite arcs of Q. It is additionally required that the edge slope u/(u + 1) is not used
within Q (equivalently, that the digital square DS(u + l,u) is not used as a summand

of Q).
Such an addition augments the diameter of Q by exactly u + 1.

CASE 3. t + l = 2u for some u e N\{1} and 2fc = n(t) + 2.
The construction is performed by inserting two edges with edge slope u/(w + 1)

into two opposite arcs of P(t). In this way a digital convex 2fc-gon with diameter
m(t) + u + 1 is obtained.

CASE 4. t + l = 2u for some u e N\{1} and 2k = n(i + 1) - 2
The construction is analogous to that of Case 3. The polygon P(t) should be

replaced by an optimal digital convex (n(t + 1) — 4)-gon with four equal arcs and the
resulting diameter is m(t + 1) — u + 1.

Two families of auxiliary digital convex 6-gons Ai(w) and ^2(10), w = 2 ,3 , . . . ,
are used for Cases 5 through 7: (Figure 2).

CASE 5. t + 1 = Aw + 2 for some w £ N and 2Jb £ [n(t) + 6,n(t + 1) - 6]
An optimal digital convex 2fc-gon is constructed as the sum of an optimal digital

convex (2k — 6)-gon Q, constructed as in Case 1 and the digital convex 6-gon Ai(w),
where Q has no common edge slopes with Ai(w).

CASE 6. t + 1 = 4to for some w G N and 2fc € [n(t) + 6,n(t + 1) - 10].
This case can be solved analogously to Case 5, by replacing the 6-gon A\(w) with

the 6-gon Ai(w), the diameter of which is equal to 6w.
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2iu-3 2t/;+3 2u>+3

2u>-l

2u>+5

2io- l

2u ; - l

2w+l 4 t o - l
1

2w-l

2u,+l

2u; - l

2io-3

4io-l

2u;+l

2w-l 2w+l 2w-l 1

Figure 2. The families of auxiliary 6-gons

CASE 7. t + 1 = 4w for some w £ N and 2Jfe = n(t + 1) - 6

An optimal digital convex (n(f + 1) - 6)-gon P can be represented as the difference
of the polygon P(t + 1) andthe6-gon A2(w). The diameter of P is equal to m(t + 1 ) -
6w.

6. OPTIMALITY OF THE CONSTRUCTION

In this section we prove that the proposed construction is optimal in all the seven
cases, which is equivalent to the statement that all the constructed digital convex 2k-
gons have diameters equal to F{2k). More precisely, it will be shown that the diameter
is equal to gdlb(2k) in all the cases, except for the Cases 3 and 4, in which it is equal
to l+gdlb{2k).

CASE 1. The diameter of the constructed 2Jb-gon is equal to

m{t) = m(t) + \(2k - n(t)) • (t = gdlb(2k)

Note that P(t) is the unique digital convex n(<)-gon, which has diameter less or
equal to m(t). Namely, the only way to construct another digital convex n(i)-gon is to
replace an edge with edge slope not greater than t by an edge with edge slope greater
than t. Such a replacement necessarily increases the perimeter of P(t) by at least 1,
which implies that the diameter is also augmented by at least [1/4] = 1.

CASE 2. The minimal perimeter of a rectangle including some digital convex 2Jfc-gon
is equal to (perimeter of Q + 2 • (t + 1)). This implies that the diameter of a digital
convex 2fc-gon cannot be smaller than the sum of diameter of Q and the summand

It follows that the constructed polygon Pis an optimal choice.
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CASE 3. The greedy argument gives that the diameter of a digital convex (n(t) + 2)-gon
cannot be smaller than

We claim that this lower bound cannot be reached. Otherwise all the possible edges
with bd-length not greater than t must be used, together with two edges of bd-length
2u. If q + p — 2«, then max{p, q} ^ u + 1 (Figure 1); the edge slope w/w cannot be
used for u > 1, since the edge slope 1/1 has been already used. This implies that the
addition of two edges with bd-length t -f 1 to the polygon P(t) augments its diameter
m(t) at least by u + 1. (On the contrary, observe that the addition of four such edges
(with the same edge slope) can always increase the diameter by exactly 2u.)

CASE 4. This case is analogous to Case 3. A lower bound for the diameter, analogous
to the one derived in Case 3, is equal to

|"i • (4 • m(* + 1) - 2 • (* + 1))1 - \m(t + 1) - u].

This lower bound cannot be reached for the same reasons as in Case 3.

CASE 5. The diameter of a digital convex 2fc-gon cannot be smaller than

|"i • (4 • m(t) + (2k - 6 - n(t)) • (t + 1)) + 6 • (t + 1)] = diameter of Q + {6w + 3).

The second summand is equal to the diameter of Ai{w).

Note that the (2k — 6)-gon Q cannot have more than n(t + 1) — 12 edges, since
it cannot use the edges of those three digital squares DS(p,q), such that the edge
slopes q/p are used within A\(w). This construction therefore cannot be applied for

CASE 6. The 6-gon Az(w) uses four different edge-slopes, which implies that the
(2k — 6)-gon Q cannot have more than n(t + 1) — 16 edges. This was the reason for a
separate treatment of Case 7.

CASE 7. The optimality of the polygon P follows from the optimality of P(t + 1) and
from the fact that MR(P(t + 1)) and MR(A2(w)) are squares, which implies that
MR(P) is a square again.

This completes the proof of Theorem 1. D
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7. CONCLUSION

The asymptotic expressions for the functions F(n) and G(m) were given in [10]
as empirical approximation formulae.

This result was extended in [2], by proving the asymptotic estimates for F(n) and
G(m):

12
G(m) = 7 7 W m 2 / S +°(™1/Sl°s™)( 4T 2 )

Theorem 1 solves the problem of determination of the exact values of F(n) for
even natural numbers n. The analogous problem for odd natural numbers n still
remains open, although the monotonicity of the function F establishes the relatively
small intervals in which these values must be located.

More precisely,

F(2k + 1) G [F(2k) - \2

The following Table 2
derived by using Theorem

8. APPENDIX

of the values of gdlb{ri) and F(n) for even n in [4,120] is
1.

Table 2

n gdlb

4

6

8

10

12

14

16

18

20

22

24

26

28

30

1

2

3

5

6

8

9

11

13

15

17

20

22

25

F(n)

1

2

3

5

6

8

9

12

13

16

17

20

22

25

n

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

gdlb

27

30

32

35

37

40

43

46

49

53

56

60

63

67

70

F(n)

27

30

32

35

37

41

43

47

49

53

56

60

63

67

70

n

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

gdlb

74

77

81
84

88

91

95

99

103

107

111

115

119

123

128

F(n)

74

77

81
84

88

91

96

99

103

107

111

115

120

123

128

n

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

gdlb

132

137

141

146

150

155

159

164

168

173

177

182

187

192

197

F(n)

132

137

141

146

150

155

159

164

168

173

177

183

187

192

197
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The only differences between gdlb(n) and F(n) in the interval considered occur
for n = 18,22,42,46,74,86 and 114, because of

18 = n(3) + 2; 22 = n ( 4 ) - 2 ; 42 = n(5) + 2; 46 = n(6) - 2;

74 = n(7) + 2; 86 = n(8) - 2; 114 = n(9) + 2.
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