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Abstract

In this paper, we give a classification of spacelike submanifolds with parallel normalised mean curvature
vector field and linear relation R = aH + b of the normalised scalar curvature R and the mean curvature H
in the de Sitter space S ;ﬂ’ (¢).
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1. Introduction

Let RZ”’ denote an (n + p)-dimensional real vector space endowed with an inner
product of index p given by

P n+p
(x,yy=- Z Xiyi + Z XY,
i=1 j=p+1

where X = (X1, X2, ..., Xus,) are the natural coordinates of R},"”. The manifold R},"”
is called semi-Euclidean space and it has constant curvature ¢ =0. We also define
the semi-Riemannian manifold § ZH’ (c), with ¢ > 0, the so-called de Sitter space, as

follows:
P n+p+1 1
n+p _ n+p+l | 2 2 _
S = {( ) RGN 2 Y 2=
i=1 j=p+1

A smooth immersion ¢ : M" — S, (c) of an n-dimensional connected manifold M" is
said to be a spacelike submanifold if the induced metric via ¢ is a Riemannian metric
on M". When the codimension p = 1, it is called a spacelike hypersurface.

Spacelike submanifolds usually appear in the study of questions related to causality
in general relativity. More precisely, level sets of a function of global time are
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spacelike submanifolds. Also, spacelike hypersurfaces with constant mean curvature
are convenient as initial hypersurfaces for the Cauchy problem in an arbitrary space-
time and for studying the propagation of gravitational radiation.

The initial step for the study of spacelike submanifolds in the de Sitter space
S (c) is due to Goddard’s conjecture [11]: complete spacelike hypersurfaces with
constant mean curvature H in S ’1’”(1) must be totally umbilical. Tt was proved by
Akutagawa [2] (for the case where n =2 and H> <1 or n>3 and H?> < 4(n - 1)/n?)
and by Montiel [15] (for the compact case) that the conjecture is true. Furthermore,
Montiel [15] exhibited examples of complete spacelike hypersurfaces with constant
H satisfying H? > 4(n — 1)/n? but not umbilical—the so-called hyperbolic cylinders,
which are isometric to the Riemannian product H'(sinh r) x $"~!(cosh r).

Having completely settled Goddard’s conjecture, most of the research interest
turned to the study of submanifolds in § Z+p (c) with constant scalar curvature instead
of constant mean curvature. In particular, interest focuses on characterising the totally
umbilical properties or Riemannian product structures (that is, hyperbolic cylinders)
of such submanifolds. We refer to [5, 6, 9, 14, 19] and the references therein.

More generally, Cheng [8], Li [13] and Shu [17] studied the spacelike hypersurface
Min S ;‘*1(1) under the condition that the normalised scalar curvature R and the mean
curvature H of M satisfy the linear relation R = aH for some constant a, instead
of the restriction that R or H is a constant. Such a spacelike hypersurface M is
called a Weingarten hypersurface. They obtained many sufficient conditions for such
a Weingarten hypersurface to be totally umbilical. Recently, Hou and Yang [12]
extended the linear relation R = aH to the case R = aH + b for some constants a, b,
and generalised the corresponding results of Cheng [8, Theorem 1] (when b =0 and
a is positive), Li [13, Corollary 4.3] (when b = 0) and Zheng [19, Theorem B] (when
a=0).

In this paper, we will study the situation of higher codimension under the more
general relation R = aH + b, and prove the following two theorems.

THeEOREM 1.1. Let M" (n>?2) be a complete spacelike submanifold in the de Sitter
space S ;ﬂ’ (c) with parallel normalised mean curvature vector. Assume that the
normalised scalar curvature R and the mean curvature H of M" satisfy R=aH + b
for some constants a # 0 and b < ¢, and H attains a maximum on M". If the squared
norm S of the second fundamental form of M" satisfies S <2Vn — lc, then either
M" is totally umbilical or S =2Vn — 1c and M" is isometric to a hyperbolic cylinder
H'(sinh r) x S"!(cosh r).

THEOREM 1.2. Let M"™ (n>2) be a complete spacelike submanifold in the de Sitter

space S 7,“’ (c) with parallel normalised mean curvature vector. Assume that the

normalised scalar curvature R and the mean curvature H of M" satisfy R =aH + b

for some constants a # 0 and b < ¢, and H attains a maximum on M".

(1) When H*> <c forn=2 or H> <4(n— 1)c/((n = 2)’p + 4(n — 1)) for n >3, then
M" is totally umbilical.
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(2) When H>=4(n—1)c/(n—-2°p+4m—1)) for n>3, then M" is totally
umbilical, or the codimension p = 1 and M" is isometric to a hyperbolic cylinder
H'(sinh r) x S"!(cosh r).

(3) When 4(n— 1)c/((n—2)>p +4(n — 1)) < H> < ¢ for n> 3, if the squared norm
S of the second fundamental form of M" satisfies S <nH?* + (BI_{)2 or § >
nH?* + (B;;)z, then M" is totally umbilical, or the codimension p=1 and M"
is isometric to a hyperbolic cylinder H'(sinh r) x $"~!(cosh r), where By, are
the two real roots of the polynomial

n(n—12)

a2
n(n_])Hx+n(c H").

1
Pi(x) =~ -
p
Remark 1.3. When the constant a vanishes identically, the linear relation R = aH + b
reduces to R = b, that is, R is a constant. Therefore we restrict our attention to a # 0.

Remark 1.4. The parallel normalised mean curvature vector assumption was
introduced by Chen [7]. Submanifolds with nonzero parallel mean curvature vector
also have parallel normalised mean curvature vector. The condition of having a parallel
normalised mean curvature vector is much weaker than the condition of having a
parallel mean curvature vector. For instance, every hypersurface in a semi-Riemannian
manifold always has a parallel normalised mean curvature vector. In this sense,
Theorem 1.1, for p = 1, generalises [12, Theorem 1.5], and Theorem 1.2 reduces to
the result of [17] when the constant b vanishes identically and a is positive.

Remark 1.5. In our main Theorems 1.1 and 1.2, we assume that the mean curvature
H attains a maximum on the submanifold M". Use of the Cheng—Yau operator, first
used in the same sense by Cheng in [8], and then by Hou and Yang in [12], is clearly
a helpful technical condition to impose. We do not yet know whether it is necessary.
In other words, we do not have an example of a spacelike hypersurface with parallel
mean curvature vector for which the maximum of the mean curvature may occur at
infinity.

REmMARK 1.6. In fact, the results in Theorem 1.2 partially concern the reduction of
codimensions, which is an important problem in the classification of submanifolds.
When the ambient spaces are Riemannian space forms, we refer to Barbosa and
Aratijo’s work [4]; the references therein include the classical results. But as we know,
there are few results in semi-Riemannian space forms.

2. Preliminaries

Let S Z“’ (¢) be an (n+ p)-dimensional de Sitter space of constant sectional
curvature ¢ > 0, whose index is p, and let M" be an n-dimensional complete spacelike
submanifold immersed in S’,"’(c). Throughout this paper, we shall make use of the
convention on the range of indices:

1<A,B,...<n+p; 1<ij,...<n; n+l1<apB,...<n+p.
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Choose a local field of semi-Riemannian orthonormal frames {ey, ..., e, ,} such
that, restricted to M", {ej,...,e,} spans the tangent space of M" and forms an
orthonormal frame there. Let {wy, . . ., w,4,} be its dual frame field so that the semi-
Riemannian metric of §’,7(c) is given by ds° = ¥, eaw?, where &; = 1, &, = —1. Then
the structure equations of S,"”(c) are given by

dwy = Z gpwap A wp, wap + wpa =0,
B

1
dwap = Z gcwac N wep — 3 Z ecepKapcpwe A wp,
C CD

Kapcp = ceaep(6acdpp — 6ap0BC)-
Restricting these forms to M", then w, = 0. By Cartan’s lemma, we can write wg,; =
2 h?jw s h;; = h‘; The connection forms of M" are characterised by the structure

equations
dw,-sz,-j/\wj, a),-j+wj,-=0,
J
1
dw;j = Z Wik N Wrj— 3 Z Rijuwy A wy,
3 &l
and

Rijii = c(6idji — 6id j) — Z(hﬁih(ﬁ = hyhy), 2.1

where R;j; are the components of the curvature tensor of M". Denote by Ry,
n(n — 1)R and R,;; the components of the Ricci curvature, the scalar curvature and
the components of normal curvature of M", respectively. Then, from (2.1),

Rij=cln—1)6ij— > hghii+ > hhg,
a.k ak

n(n-1DR=nn-c+S - n*H?, (2.2)
Ropij = ) (H5H) = 1)), 23)
1

Recall that h = 3, ; ; hw; ® w; ® e, is the second fundamental form; then the mean

curvature vector ?], its length H, and the squared length S of / are defined by

(Z h;;)z, 5= ().

a,i,j

Define the first and the second covariant derivatives of h;’,., say h?jk and h?, , by

ijkl®
(07 — (07 (03 (07
D =i+ > W+ ) Mok = > W,
X 3 3 B
(03 — a a a (03
Z W sn@m = dhiy + Z B i Omi + Z PipgeOmij + Z B Omic = Z hlﬁjk“’ﬁa-
m m m B

m
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We obtain the Codazzi equations and the Ricci identities

a _ pa @
hl}k hlkj hjlk’

ljkl ljlk - Z hmszjkl + Z hm]lekl + Z O/ﬁkl' (2.4)

The Laplacian of h?. is defined by Ahf =% h:?“.kk. It follows from (2.4) that, for any «,
AR = Z B + Z hS Ry + Z RS Ry + Z Ropik. (2.5)

Since the normalised mean curvature vector field is parallel, we choose ?I =He,,1,
then nH = }; hl’;“, and for any @ >n + 1, }; h = 0. Denote by H* the matrix (hf‘j).
Then

tr(H"""y=nH, tw(H")=0 fora>n+2. (2.6)

Set® =3, ; Pfiwi ® w; ® eq, where d)”’“ h;’j” — Héjj, and forany a > n +2, ®f, =
h” Let ®¢ denote the matrix (d)") Then

Ot =" —HI, ®*=HY fora>n+?2, (2.7)
and
"R = w(H Y -, T 0= Y )R a(@0) =0, VYa.  (28)
a>n+1 a>n+1
So we arrive at
S = Z |0 + nH? = |0 + nH> 2.9)

and 1 308 =X, ]k(h" k)2 + Do) h” Ah“ When the normalised mean curvature vector
field of M" is parallel using (2. l) (2 3), (2.5) and (2.6), a direct calculation yields

(see [6])
—AS = > (B +n Y HGHS +ne(S = nH?) = nH )" te(H" (H")?)
a,i,j.k a,i,j a (210)
+ Z(tr(H“Hﬁ))z + Z N(HHP — HPH™),
af ap
where N(A) = tr(AA’) for an n X n matrix A, with A’ its transpose. By (2.7)-(2.9) we
can obtain
neS — n*cH?* = ne(|®) + nH?) — n*cH? = nc|®), 2.11)
nH Z tr(H"™ (H")?) = nH Z tr( @™ (D)2) + 2nH? tr(D")?
a @ (2.12)
+ n’H* + nH?*| 0,
Z(tr(H"Hﬁ))z = Z(tr(@pf’epﬁ))2 + n2H* + 2nH? (@2, 2.13)
af B
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Following Cheng and Yau [10], we introduce the second-order operator O, acting
on any C? function f on M",

Of = Z(an — WY fige

We will need the following algebraic lemmas.

Lemma 2.1 [3]. Let {u;}i, be a set of real numbers satisfying %.; p; =0, Zl»,uiz =52

B=>0. Then
S

and equality holds if and only if at least n — 1 of the u; are equal to each other.

n(n — 1)

Lemma 2.2 [16]. Let A, B:R" - R" be two symmetric linear maps such that AB —
BA =0 and tr(A) = tr(B) = 0. Then

[tr(A%B)| < N(A)\/N(B
Vn (
Lemwma 2.3 [18]. Let ay,...,a, bi,...,b, be 2n (n>2) real numbers satisfying

>ibi=0. Then

n
Z]: aiaj(bi —b)* < — Z o’ Z]" b2,

Since the parallel normalised mean curvature vector assumption implies that
Wni1q = 0 for all @, it is possible to show that H"*'H* = H*H™*! for all a (see [6]).
Therefore, by definition, the traceless matrix @1 commutes with the traceless
matrices @, for all @. Hence we can apply Lemma 2.2 and the Cauchy—Schwarz
inequality in order to obtain, respectively,

tr(d" 1 (D)%) < N(@D)|D < ———|DP, 2.14
Z r( ) v ( m (2.14)

(@ D))* > ¥ (N(®M))* > —( N(@“)) > —|c1>|4. (2.15)
3. Some lemmas
To prove the main theorems, we need the following key lemmas.

Lemma 3.1. Let M" be an n-dimensional spacelike submanifold immersed in the
de Sitter space S,(c) with R=aH +b. If a#0 and b<c, then the operator
L=0+ 3(n - Daa is elliptic.
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Proor. If H =0, then R = b. It follows from (2.2) that S = n(n — 1)(b — ¢) < 0, which
is impossible. Therefore H > 0. From (2.2) and R = aH + b, we know that

S =n’H?> +n(n—1)aH +b - ¢), (3.1)

and then :

" n(n—- DH
For any fixed @, we choose locally an appropriate orthonormal frame {e;} such that
h;’j = A76;;. Then nH = }; hl’;.“ and }’; h; = 0 for any @ > n + 2. For any i,

(S = n*H? + n(n - D)(c - b)).

-1
nH - '+ nTa

:Z,v!“ — Ay ﬁ(s —n?H? + n(n - 1)(c - b))
> Z P /ln+1 (Z(/ln+1)2 (Z /1;!”)2 +n(n—1)(c - b))(l’lH)_1
j
- ((Z /1;%“) T Z plasy Z APt %n(n ~ e - b))(nH)"
; I#]

= (Z(A’;*‘f DI A e %n(n ~ 1) - b))(nH)’l

J#i 1)1, j#i
(Zw”) (> /1’}“)2 +n0n = Dle = ) Jou .
J#i J#L

It follows from b < ¢ that nH — A7*! + %(n — 1)a>0. Thus L is an elliptic operator.
This completes the proof of Lemma 3.1. O

LevmMma 3.2. Let M" be an n-dimensional spacelike submanifold in the de Sitter space
SZ“’(C) withR=aH + b. Ifa#0and b < c, then

D Ui5)? = IVHP.

i, jk.a

Proor. Taking the covariant derivative of (3.1), for any &,

2" Wk = 2n?H + n(n = 1a)Hy.

i,j.a

Hence, by the Cauchy—Schwarz inequality,

Sy )= (nzH N %n(n - 1)a)2|VH|2.

i,ja i, .k,
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That is,
s zk: ) = (nzH + %n(n - 1)a)2|VH|2.
i joa
On the other hand, it follows from (3.1) that
(n*H + %n(n - Da)? = n?S = n*(n*H? + n(n— DHa - S) + %nz(n - 1%
=n’n-1D(c-b)+ inz(n -

1n*(n = 1)((n — )a* + 4n(c - b)).

Since a # 0 and b < ¢, we have (n*H + %n(n — 1)a)?> > n*S. Hence
a \2 2 1 : 2. .2 2
ONCAE (n H o+ Sn(n- l)a) VHP > n®S |VHP,
i,k
which implies that § =0, or 3 jx o (hf;)* > n*|VHP. O

LemMma 3.3. Let M" be an n-dimensional complete spacelike submanifold immersed in
the de Sitter space S ;’,er (¢) with parallel normalised mean curvature vector field. Then

1 n
O(nH) > —=n(n — 1)AR + (S — nHz)(nc - S).
2 2Vn -1
Proor. By the definition of the operator 0O,
O(nH) = Z(nH(si j— W(nH);;
iJ
1
= S AW H?) = w’|VHF - Z N (nH),
LJ
1 2 2 e+l (3-2)
= 548 —n(n~ 1R - ) =’ |VHF - Z R ()
L]

1 1
= —5n(n = DaR + 748 ~ w*|VHP - Z R (nH)j.

2Y)

Let

P = > i = Hop?, NP =" > (k2.
iJ

i,j a>n+l

It is clear that the functions ||u||> and ||7]|> are defined on M" globally; in other words,
they do not depend on the choice of the orthonormal frame {e, . . ., e,}. Also,

S =lull* + lI7I* + nH?, (3.3)
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which leads to
1aS = Lalull + Lalldl? + $amH?) = Lo w@ ™) + Lalldl. (3.4)

Together with (2.1), (2.3) and (2.5),

1
EA tr(Hn-H)Z — Z(h:l;];l)z + Z h:l;—lAh:L;—l
Ly

i,jk
= Zk(h:’lj;l)z + Z h:l]+1(nH)lj +ne tr(Hn+1)2 _ n2CH2 (35)
i,j, 0

—nH tr(H™") + (tr(H™ 1)) + Z (tr(H™ ' HP))?.

p>n+1

Choose an appropriate orthonormal frame such that h;'j“ = A;6;;. Since 3;(4; — H) =0,
then

D= HY =Y A7 = nH? = w(H™) - nH? = ||,
i

i

1

D04 =D (i = HY + nH + 3H |l
By Lemma 2.1,

—nH te(H™")? = —n>H* = 3nH?||ul* - nH Z(ai ~H)
i

nn-2
> —n*H* - 3nH?||jull* - =2

B Vnn =1)

Putting the above three formulas into (3.5),

HilulP.

1
EA tr(H"™)? > Z(h;ﬁl)z + Z h;';l(nH)ij
i

i,jk

n-2) (3.6)
ooz B — 2 )
+ — ————H||u|| + n(c — H)).
P e Hll + (e = H)
Consider the quadratic form
n—2
F(x,y):xz— xy—yz.

Vn—-1

By the orthogonal transformation

u= L((1 +Vo—1Dx+(1-Vn-1)y),

V2n
v:\/%((\/n—1—1)x+(Vn—1+l)y)7
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it is clear that x> + y?> = u?> +v* and F(x,y) =n(u? —v?*)/2V¥n — 1. Taking x = ||ul|,
y = VnH?, we obtain u”> + v* = x> + y* = ||ul|> + nH?. Hence

n
W +?) + ——u?

n
2Vn -1 Vn-1
n
(lull* + nH?) 3.7
2Vn -1 3.7)
n
S9
2Vn -1

nc + F(x,y)=nc —

>nc —

> nc —

which implies that

ne + il - nt? = = pig s ne - — s,
va(n — 1) 2Vn -1

Together with (3.6),

n
—A w(H™? 2 ) (D + > K (nH); + ||,u||2(nc - S). (3.8)
; " Z ! 2Vn -1
Foranya>n+1,
-nH tr((Ha/)QHrHl) + (tr(Hn+1Ha/))2 - _ Z hn+lhn+l(ha/ h(JyJ)Z

Leta; = hz.”, bi = h{. Since },; h; =0, @ >n + 1, by Lemma 2.3,

(o)

Taking the sum on both sides with respect to a > n + 1,

n
-nH § tr((HY)?H™ ") + § (tr(H" " HY))? > ————|17I’S.  (3.9)
a>n+1 a>n+1 2 Vi — 1

Then, using (2.1), (2.3) and (2.5),

—nH tr((H*H"™") + (t(H"™ ' HY))? >

_A”T“z Z (h k)2 + nc||T||2 Z (tr(H(IHn+l))2

i,j.k,a>n+1 a>n+1
+ L @HUHA? —nH Y (HDH™) (310
a,B>n+1 a>n+l
+ Z N(H*HP — HPH").
a,Bf>n+1
Since Y, ponsi (t(HHP)? >0 and Y, popet N(HHP — HPH) >0, from (3.9)

and (3.10)

I
SARIP =Y g+ IelP(ne - 3.11)

n
S).
i,jk,a>n+1 2Vn -1
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Putting (3.8) and (3.11) into (3.2), and combining (3.3), (3.4) and Lemma 3.2, we
complete the proof of Lemma 3.3. O

4. Proofs of main theorems

Proor oF THEorREM 1.1. Applying Lemmas 3.1 and 3.3,

LnH) = o(nH) + *=

1aA(nH) =0nH) + %n(n - 1DAR

n
> (S — nHZ)(nc - S).
2Vn -1
It is clear that S > nH? from (3.3). Together with the assumption § <2Vn — 1c in
Theorem 1.1, we obtain L(nH) > 0. Since L is elliptic and H obtains a maximum on
M", we deduce that H is a constant. Hence

S - nHz)(nc - S) =0.

2Vn -1

If S <2Vn —1cthen S = nH?, and M" is totally umbilical.

If § =2vVn — 1c, the inequalities in (3.7) and in Lemma 2.1 become equalities. If
the inequalities in (3.7) hold, then ||7||*> = 0. Since e, is parallel on the normal bundle
T+(M™) of M", we know that M" lies in a totally geodesic submanifold S 'l’”(c) of
S Zﬂ’ (c). If equality holds in Lemma 2.1, then M" has n — 1 principal curvatures which
are equal and constant. As H is a constant, the other principal curvature is a constant
as well. So M" is isometric to a hyperbolic cylinder H'(sinh r) x S"~!(cosh r) from
the congruence theorem in [1]. This completes the proof of Theorem 1.1. O

Proor or THeorem 1.2. By the definition of operator O, and using Lemma 3.2
and (2.10),

1 1
O(rH) = = 5n(n = DAR + 548 ~ n2VH? - Z R ()
i,j
= —n(n —1)AR + Z () + Z K (nH)ij + ne(S — nH?)
a,i, jk i,j
- nH Z tr(H™ (H)?) + Z(tr(H“Hﬁ))z
4.1)
+ ) N(H"H - HPH") - 2|VH|2 Z N (nH),j
B

1
>~ 3n(n— DAR + ne(S ~ nH?) — nH Z twr(H™ (HY)?)

n Z N(H*HP — HPH") + Z(tr(H“Hﬁ))z.
af B
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Notice that Y, N(H*HP — HPH®) > 0. Together with (2.11)—(2.13), then (4.1)
becomes

1
O(nH) 2 = Zn(n = DAR + (nc - nH*)|®?

4.2
- nH Z (@™ (D)) + Z(tr((l)“d)ﬁ))z. 2
a aB
Substituting (2.14), (2.15) into (4.2),
2 _
o(nH) > ——n(n — AR + |O| (Id>| :(1\/?—21))}1@' + e - HQ)).
Furthermore, note that R = aH + b. Then
L(nH)=0nH) + n- 1aA(nH) =0(nH) + %n(n — 1)AR
4.3)

2 —
> 1| (l(DI n(n—2)

———H|D - H%)).
> Fn(n—l)H| | + n(c H))

Put
I<I>|2 n(n —2)

Vn(n—1)
(1) When n=2 and H?> <c, Py(|®|) > 0. Hence, the right-hand side of (4.3) is

nonnegative. Since L is elliptic and H obtains a maximum on M", we deduce that H is
a constant and (4.3) becomes

Py(|OD]) = H|D| + n(c — H?).

|c1>|2(% + 2 - Hz)) 0,

which implies that |®> = 0 and M" is totally umbilical.
When n >3 and H?> <4(n — 1)c/((n — 2)*p + 4(n — 1)), the discriminant of Py (|®|)
is negative. Then Py (|®]) > 0 and

n(n—2)
vn(n—1)

Using again the facts that L is elliptic and H obtains a maximum on M", we deduce
that H is a constant and then (4.3) yields

O 2
Lout = o2 - HIOL+ e — ) 20,
p

| <p|2('q"2 n(n=2)
p vn(n —1)
Since Py(|®[) > 0, we obtain that |®|* = 0 and M" is totally umbilical.

(2) When n>3 and H?>=4(n - 1)c/((n—2)*p +4(n - 1)), the discriminant of
Py (|®|) vanishes and Py (|®|) > 0. If Py(|®|) > 0, by making use of the same assertion

HI®| + n(c - HZ)) 0.
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as in the proof of (1) above, we infer that |®> =0 and M" is totally umbilical. If
Py(|0]) = 0, then the inequalities in (2.14) and (2.15) become equalities. That is,

VN@DoP =|of, |0 =p > N(@). (44)

Since

3 c nn—2)
_\/(n—2)2p+4(n— RV
using (4.4) we get N(®"*') = |®]>. On the one hand, by [®* = 3, N(®%) we have
N@) =0, a>n+2,s0 |®*=p Y, (N@))? = p(N(@"*))? = p|®|*. Hence p=1.
On the other hand, if equality holds in Lemma 2.1, then M" has n — 1 principal
curvatures which are equal and constant. As H is a constant, the other principal
curvature is a constant as well. According to the congruence theorem due to Abe
et al. [1], M" is isometric to a hyperbolic cylinder H'(sinh r) x §"~!(cosh r).

(3) When n >3 and 4(n — 1)c/((n — 2)*p + 4(n — 1)) < H? < ¢, the discriminant of
Py(|®]) is positive. Then Py (|®]) has two real roots:

. [ n (n=22p+4(n—-1)H?+4(n-1)c
By =p 4(n_1)((n—2)Hi\/ » )

The assumption S < nH? + (By)* or S > nH* + (B};)* on M" implies that |®| < B}, or
|®| > B}, on M". Therefore we know that Py (|®|) > 0.

Clearly, B}, is always positive. On the other hand, B}, > 0 if and only if H? <c,
while By, = 0 if and only if H? =c.

When 4(n — 1)c/((n —2)*p + 4(n— 1)) < H> < ¢, we have By, >0. If S < nH?* +
(By)* or S >nH? + (Bj},)*, then we obtain Py(|®]) > 0. By making use of the same
assertion as in the proof of (1) above, we infer that |®|> = 0 and M" is totally umbilical.
If $ =nH*+ (By)* or S =nH* + (B},)?, then we obtain Py(/®|) =0. By the same
arguments as in the proof of (2) above, we infer that M" is isometric to a hyperbolic
cylinder H!(sinh r) x $"~!(cosh r).

When 4(n — 1)c/((n = 2)*p +4(n— 1)) < H* = ¢, we have B, =0. If S >nH*+
(B},)*, we obtain Py(|®]) > 0; and if S = nH? + (B};)?, we get Py(|®]) = 0. The rest of
the proof is the same as that in case (2), and this completes the proof of Theorem 1.2. O

|D|

>0,
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