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Abstract

In this paper, we give a classification of spacelike submanifolds with parallel normalised mean curvature
vector field and linear relation R = aH + b of the normalised scalar curvature R and the mean curvature H
in the de Sitter space S n+p

p (c).
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1. Introduction

Let Rn+p
p denote an (n + p)-dimensional real vector space endowed with an inner

product of index p given by

〈x, y〉 = −
p∑

i=1

xiyi +

n+p∑
j=p+1

x jy j,

where x = (x1, x2, . . . , xn+p) are the natural coordinates of Rn+p
p . The manifold Rn+p

p

is called semi-Euclidean space and it has constant curvature c = 0. We also define
the semi-Riemannian manifold S n+p

p (c), with c > 0, the so-called de Sitter space, as
follows:

S n+p
p (c) =

{
(x1, x2, . . . , xn+p) ∈ Rn+p+1

p : −
p∑

i=1

x2
i +

n+p+1∑
j=p+1

x2
j =

1
c

}
.

A smooth immersion φ : Mn→ S n+p
p (c) of an n-dimensional connected manifold Mn is

said to be a spacelike submanifold if the induced metric via φ is a Riemannian metric
on Mn. When the codimension p = 1, it is called a spacelike hypersurface.

Spacelike submanifolds usually appear in the study of questions related to causality
in general relativity. More precisely, level sets of a function of global time are
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spacelike submanifolds. Also, spacelike hypersurfaces with constant mean curvature
are convenient as initial hypersurfaces for the Cauchy problem in an arbitrary space-
time and for studying the propagation of gravitational radiation.

The initial step for the study of spacelike submanifolds in the de Sitter space
S n+p

p (c) is due to Goddard’s conjecture [11]: complete spacelike hypersurfaces with
constant mean curvature H in S n+1

1 (1) must be totally umbilical. It was proved by
Akutagawa [2] (for the case where n = 2 and H2 ≤ 1 or n ≥ 3 and H2 < 4(n − 1)/n2)
and by Montiel [15] (for the compact case) that the conjecture is true. Furthermore,
Montiel [15] exhibited examples of complete spacelike hypersurfaces with constant
H satisfying H2 ≥ 4(n − 1)/n2 but not umbilical—the so-called hyperbolic cylinders,
which are isometric to the Riemannian product H1(sinh r) × S n−1(cosh r).

Having completely settled Goddard’s conjecture, most of the research interest
turned to the study of submanifolds in S n+p

p (c) with constant scalar curvature instead
of constant mean curvature. In particular, interest focuses on characterising the totally
umbilical properties or Riemannian product structures (that is, hyperbolic cylinders)
of such submanifolds. We refer to [5, 6, 9, 14, 19] and the references therein.

More generally, Cheng [8], Li [13] and Shu [17] studied the spacelike hypersurface
M in S n+1

1 (1) under the condition that the normalised scalar curvature R and the mean
curvature H of M satisfy the linear relation R = aH for some constant a, instead
of the restriction that R or H is a constant. Such a spacelike hypersurface M is
called a Weingarten hypersurface. They obtained many sufficient conditions for such
a Weingarten hypersurface to be totally umbilical. Recently, Hou and Yang [12]
extended the linear relation R = aH to the case R = aH + b for some constants a, b,
and generalised the corresponding results of Cheng [8, Theorem 1] (when b = 0 and
a is positive), Li [13, Corollary 4.3] (when b = 0) and Zheng [19, Theorem B] (when
a = 0).

In this paper, we will study the situation of higher codimension under the more
general relation R = aH + b, and prove the following two theorems.

T 1.1. Let Mn (n ≥ 2) be a complete spacelike submanifold in the de Sitter
space S n+p

p (c) with parallel normalised mean curvature vector. Assume that the
normalised scalar curvature R and the mean curvature H of Mn satisfy R = aH + b
for some constants a , 0 and b < c, and H attains a maximum on Mn. If the squared
norm S of the second fundamental form of Mn satisfies S ≤ 2

√
n − 1c, then either

Mn is totally umbilical or S = 2
√

n − 1c and Mn is isometric to a hyperbolic cylinder
H1(sinh r) × S n−1(cosh r).

T 1.2. Let Mn (n ≥ 2) be a complete spacelike submanifold in the de Sitter
space S n+p

p (c) with parallel normalised mean curvature vector. Assume that the
normalised scalar curvature R and the mean curvature H of Mn satisfy R = aH + b
for some constants a , 0 and b < c, and H attains a maximum on Mn.

(1) When H2 ≤ c for n = 2 or H2 < 4(n − 1)c/((n − 2)2 p + 4(n − 1)) for n ≥ 3, then
Mn is totally umbilical.
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(2) When H2 = 4(n − 1)c/((n − 2)2 p + 4(n − 1)) for n ≥ 3, then Mn is totally
umbilical, or the codimension p = 1 and Mn is isometric to a hyperbolic cylinder
H1(sinh r) × S n−1(cosh r).

(3) When 4(n − 1)c/((n − 2)2 p + 4(n − 1)) < H2 ≤ c for n ≥ 3, if the squared norm
S of the second fundamental form of Mn satisfies S ≤ nH2 + (B−H)2 or S ≥
nH2 + (B+

H)2, then Mn is totally umbilical, or the codimension p = 1 and Mn

is isometric to a hyperbolic cylinder H1(sinh r) × S n−1(cosh r), where B±H are
the two real roots of the polynomial

PH(x) =
1
p

x2 −
n(n − 2)
√

n(n − 1)
Hx + n(c − H2).

R 1.3. When the constant a vanishes identically, the linear relation R = aH + b
reduces to R = b, that is, R is a constant. Therefore we restrict our attention to a , 0.

R 1.4. The parallel normalised mean curvature vector assumption was
introduced by Chen [7]. Submanifolds with nonzero parallel mean curvature vector
also have parallel normalised mean curvature vector. The condition of having a parallel
normalised mean curvature vector is much weaker than the condition of having a
parallel mean curvature vector. For instance, every hypersurface in a semi-Riemannian
manifold always has a parallel normalised mean curvature vector. In this sense,
Theorem 1.1, for p = 1, generalises [12, Theorem 1.5], and Theorem 1.2 reduces to
the result of [17] when the constant b vanishes identically and a is positive.

R 1.5. In our main Theorems 1.1 and 1.2, we assume that the mean curvature
H attains a maximum on the submanifold Mn. Use of the Cheng–Yau operator, first
used in the same sense by Cheng in [8], and then by Hou and Yang in [12], is clearly
a helpful technical condition to impose. We do not yet know whether it is necessary.
In other words, we do not have an example of a spacelike hypersurface with parallel
mean curvature vector for which the maximum of the mean curvature may occur at
infinity.

R 1.6. In fact, the results in Theorem 1.2 partially concern the reduction of
codimensions, which is an important problem in the classification of submanifolds.
When the ambient spaces are Riemannian space forms, we refer to Barbosa and
Araújo’s work [4]; the references therein include the classical results. But as we know,
there are few results in semi-Riemannian space forms.

2. Preliminaries

Let S n+p
p (c) be an (n + p)-dimensional de Sitter space of constant sectional

curvature c > 0, whose index is p, and let Mn be an n-dimensional complete spacelike
submanifold immersed in S n+p

p (c). Throughout this paper, we shall make use of the
convention on the range of indices:

1 ≤ A, B, . . . ≤ n + p; 1 ≤ i, j, . . . ≤ n; n + 1 ≤ α, β, . . . ≤ n + p.
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Choose a local field of semi-Riemannian orthonormal frames {e1, . . . , en+p} such
that, restricted to Mn, {e1, . . . , en} spans the tangent space of Mn and forms an
orthonormal frame there. Let {ω1, . . . , ωn+p} be its dual frame field so that the semi-
Riemannian metric of S n+p

p (c) is given by ds2
=

∑
A εAω

2
A, where εi = 1, εα = −1. Then

the structure equations of S n+p
p (c) are given by

dωA =
∑

B

εBωAB ∧ ωB, ωAB + ωBA = 0,

dωAB =
∑

C

εCωAC ∧ ωCB −
1
2

∑
C,D

εCεDKABCDωC ∧ ωD,

KABCD = cεAεB(δACδBD − δADδBC).

Restricting these forms to Mn, then ωα = 0. By Cartan’s lemma, we can write ωαi =∑
j hαi jω j, hαi j = hαji. The connection forms of Mn are characterised by the structure

equations
dωi =

∑
j

ωi j ∧ ω j, ωi j + ω ji = 0,

dωi j =
∑

k

ωik ∧ ωk j −
1
2

∑
k,l

Ri jklωk ∧ ωl,

and
Ri jkl = c(δikδ jl − δilδ jk) −

∑
α

(hαikhαjl − hαilh
α
jk), (2.1)

where Ri jkl are the components of the curvature tensor of Mn. Denote by Rik,
n(n − 1)R and Rαβi j the components of the Ricci curvature, the scalar curvature and
the components of normal curvature of Mn, respectively. Then, from (2.1),

Ri j = c(n − 1)δi j −
∑
α,k

hαkkhαi j +
∑
α,k

hαikhαk j,

n(n − 1)R = n(n − 1)c + S − n2H2, (2.2)

Rαβi j =
∑

l

(hαilh
β
jl − hαjlh

β
il). (2.3)

Recall that h =
∑
α,i, j hαi jωi ⊗ ω j ⊗ eα is the second fundamental form; then the mean

curvature vector
−→
H, its length H, and the squared length S of h are defined by

−→
H =

1
n

∑
α,i

hαiieα, H =
1
n

√∑
α

(∑
i

hαii

)2

, S =
∑
α,i, j

(hαi j)
2.

Define the first and the second covariant derivatives of hαi j, say hαi jk and hαi jkl, by∑
k

hαi jkωk = dhαi j +
∑

k

hαjkωki +
∑

k

hαikωk j −
∑
β

hβi jωβα,∑
m

hαi jkmωm = dhαi jk +
∑

m

hαm jkωmi +
∑

m

hαimkωm j +
∑

m

hαi jmωmk −
∑
β

hβi jkωβα.
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We obtain the Codazzi equations and the Ricci identities

hαi jk = hαik j = hαjik,

hαi jkl − hαi jlk =
∑

m

hαmiRm jkl +
∑

m

hαm jRmikl +
∑
β

hβi jRαβkl. (2.4)

The Laplacian of hαi j is defined by 4hαi j =
∑

k hαi jkk. It follows from (2.4) that, for any α,

4hαi j =
∑

k

hαkki j +
∑
k,m

hαimRmk jk +
∑
k,m

hαkmRmi jk +
∑
k,β

hβikRαβ jk. (2.5)

Since the normalised mean curvature vector field is parallel, we choose
−→
H = Hen+1,

then nH =
∑

i hn+1
ii , and for any α > n + 1,

∑
i hαii = 0. Denote by Hα the matrix (hαi j).

Then
tr(Hn+1) = nH, tr(Hα) = 0 for α ≥ n + 2. (2.6)

Set Φ =
∑
α,i, j Φα

i jωi ⊗ ω j ⊗ eα, where Φn+1
i j = hn+1

i j − Hδi j, and for any α ≥ n + 2, Φα
i j =

hαi j. Let Φα denote the matrix (Φα
i j). Then

Φn+1 = Hn+1 − HI, Φα = Hα for α ≥ n + 2, (2.7)

and

|Φn+1|2 = tr(Hn+1)2 − nH2,
∑
α>n+1

|Φα|2 =
∑
α>n+1

(hαi j)
2, tr(Φα) = 0, ∀α. (2.8)

So we arrive at
S =

∑
α

|Φα|2 + nH2 = |Φ|2 + nH2 (2.9)

and 1
24S =

∑
α,i, j,k(hαi jk)2 +

∑
α,i, j hαi j4hαi j. When the normalised mean curvature vector

field of Mn is parallel, using (2.1), (2.3), (2.5) and (2.6), a direct calculation yields
(see [6])

1
2
4S =

∑
α,i, j,k

(hαi jk)2 + n
∑
α,i, j

hαi jH
α
i j + nc(S − nH2) − nH

∑
α

tr(Hn+1(Hα)2)

+
∑
α,β

(tr(HαHβ))2 +
∑
α,β

N(HαHβ − HβHα),
(2.10)

where N(A) = tr(AA′) for an n × n matrix A, with A′ its transpose. By (2.7)–(2.9) we
can obtain

ncS − n2cH2 = nc(|Φ|2 + nH2) − n2cH2 = nc|Φ|2, (2.11)

nH
∑
α

tr(Hn+1(Hα)2) = nH
∑
α

tr(Φn+1(Φα)2) + 2nH2 tr(Φn+1)2

+ n2H4 + nH2|Φ|2,

(2.12)

∑
α,β

(tr(HαHβ))2 =
∑
α,β

(tr(ΦαΦβ))2 + n2H4 + 2nH2 tr(Φn+1)2. (2.13)
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Following Cheng and Yau [10], we introduce the second-order operator �, acting
on any C2 function f on Mn,

� f =
∑
i, j

(nHδi j − hn+1
i j ) fi j.

We will need the following algebraic lemmas.

L 2.1 [3]. Let {µi}
n
i=1 be a set of real numbers satisfying

∑
i µi = 0,

∑
i µ

2
i = β2,

β ≥ 0. Then ∣∣∣∣∣∑
i

µ3
i

∣∣∣∣∣ ≤ n − 2
√

n(n − 1)
β3,

and equality holds if and only if at least n − 1 of the µi are equal to each other.

L 2.2 [16]. Let A, B : Rn→ Rn be two symmetric linear maps such that AB −
BA = 0 and tr(A) = tr(B) = 0. Then

|tr(A2B)| ≤
n − 2
√

n(n − 1)
N(A)

√
N(B).

L 2.3 [18]. Let a1, . . . , an, b1, . . . , bn be 2n (n ≥ 2) real numbers satisfying∑
i bi = 0. Then ∑

i, j

aia j(bi − b j)2 ≤
n

√
n − 1

∑
i

a2
i

∑
j

b2
j .

Since the parallel normalised mean curvature vector assumption implies that
ωn+1α = 0 for all α, it is possible to show that Hn+1Hα = HαHn+1, for all α (see [6]).
Therefore, by definition, the traceless matrix Φn+1 commutes with the traceless
matrices Φα, for all α. Hence we can apply Lemma 2.2 and the Cauchy–Schwarz
inequality in order to obtain, respectively,∑

α

tr(Φn+1(Φα)2) ≤
n − 2
√

n(n − 1)

√
N(Φn+1)|Φ|2 ≤

n − 2
√

n(n − 1)
|Φ|3, (2.14)

∑
α,β

(tr(ΦαΦβ))2 ≥
∑
α

(N(Φα))2 ≥
1
p

(∑
α

N(Φα)
)2

≥
1
p
|Φ|4. (2.15)

3. Some lemmas

To prove the main theorems, we need the following key lemmas.

L 3.1. Let Mn be an n-dimensional spacelike submanifold immersed in the
de Sitter space S n+p

p (c) with R = aH + b. If a , 0 and b < c, then the operator
L = � + 1

2 (n − 1)a4 is elliptic.
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P. If H = 0, then R = b. It follows from (2.2) that S = n(n − 1)(b − c) < 0, which
is impossible. Therefore H > 0. From (2.2) and R = aH + b, we know that

S = n2H2 + n(n − 1)(aH + b − c), (3.1)

and then

a =
1

n(n − 1)H
(S − n2H2 + n(n − 1)(c − b)).

For any fixed α, we choose locally an appropriate orthonormal frame {e j} such that
hαi j = λαi δi j. Then nH =

∑
i hn+1

ii and
∑

i hαii = 0 for any α ≥ n + 2. For any i,

nH − λn+1
i +

n − 1
2

a

=
∑

j

λn+1
j − λn+1

i +
1

2nH
(S − n2H2 + n(n − 1)(c − b))

≥
∑

j

λn+1
j − λn+1

i +
1
2

(∑
j

(λn+1
j )2 −

(∑
j

λn+1
j

)2

+ n(n − 1)(c − b)
)
(nH)−1

=

((∑
j

λn+1
j

)2

− λn+1
i

∑
j

λn+1
j −

1
2

∑
l, j

λn+1
l λn+1

j +
1
2

n(n − 1)(c − b)
)
(nH)−1

=

(∑
j,i

(λn+1
j )2 +

1
2

∑
l, j,l, j,i

λn+1
l λn+1

j +
1
2

n(n − 1)(c − b)
)
(nH)−1

=
1
2

(∑
j,i

(λn+1
j )2 +

(∑
j,i

λn+1
j

)2

+ n(n − 1)(c − b)
)
(nH)−1.

It follows from b < c that nH − λn+1
i + 1

2 (n − 1)a > 0. Thus L is an elliptic operator.
This completes the proof of Lemma 3.1. �

L 3.2. Let Mn be an n-dimensional spacelike submanifold in the de Sitter space
S n+p

p (c) with R = aH + b. If a , 0 and b < c, then∑
i, j,k,α

(hαi jk)2 ≥ n2|∇H|2.

P. Taking the covariant derivative of (3.1), for any k,

2
∑
i, j,α

hαi jh
α
i jk = (2n2H + n(n − 1)a)Hk.

Hence, by the Cauchy–Schwarz inequality,∑
i, j,α

(hαi j)
2

∑
i, j,k,α

(hαi jk)2 ≥

(
n2H +

1
2

n(n − 1)a
)2

|∇H|2.
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That is,

S
∑

i, j,k,α

(hαi jk)2 ≥

(
n2H +

1
2

n(n − 1)a
)2

|∇H|2.

On the other hand, it follows from (3.1) that

(n2H + 1
2 n(n − 1)a)2 − n2S = n2(n2H2 + n(n − 1)Ha − S ) + 1

4 n2(n − 1)2a2

= n3(n − 1)(c − b) + 1
4 n2(n − 1)2a2

= 1
4 n2(n − 1)((n − 1)a2 + 4n(c − b)).

Since a , 0 and b < c, we have (n2H + 1
2 n(n − 1)a)2 > n2S . Hence

S
∑

i, j,k,α

(hαi jk)2 ≥

(
n2H +

1
2

n(n − 1)a
)2

|∇H|2 ≥ n2S |∇H|2,

which implies that S = 0, or
∑

i, j,k,α(hαi jk)2 ≥ n2|∇H|2. �

L 3.3. Let Mn be an n-dimensional complete spacelike submanifold immersed in
the de Sitter space S n+p

p (c) with parallel normalised mean curvature vector field. Then

�(nH) ≥ −
1
2

n(n − 1)4R + (S − nH2)
(
nc −

n

2
√

n − 1
S
)
.

P. By the definition of the operator �,

�(nH) =
∑
i, j

(nHδi j − hn+1
i j )(nH)i j

=
1
2
4(n2H2) − n2|∇H|2 −

∑
i, j

hn+1
i j (nH)i j

=
1
2
4(S − n(n − 1)(R − c)) − n2|∇H|2 −

∑
i, j

hn+1
i j (nH)i j

= −
1
2

n(n − 1)4R +
1
2
4S − n2|∇H|2 −

∑
i, j

hn+1
i j (nH)i j.

(3.2)

Let
‖µ‖2 =

∑
i, j

(hn+1
i j − Hδi j)2, ‖τ‖2 =

∑
i, j

∑
α>n+1

(hαi j)
2.

It is clear that the functions ‖µ‖2 and ‖τ‖2 are defined on Mn globally; in other words,
they do not depend on the choice of the orthonormal frame {e1, . . . , en}. Also,

S = ‖µ‖2 + ‖τ‖2 + nH2, (3.3)
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which leads to

1
24S = 1

24‖µ‖
2 + 1

24‖τ‖
2 + 1

24(nH2) = 1
24 tr(Hn+1)2 + 1

24‖τ‖
2. (3.4)

Together with (2.1), (2.3) and (2.5),

1
2
4 tr(Hn+1)2 =

∑
i, j,k

(hn+1
i jk )2 +

∑
i, j

hn+1
i j 4hn+1

i j

=
∑
i, j,k

(hn+1
i jk )2 +

∑
i, j

hn+1
i j (nH)i j + nc tr(Hn+1)2 − n2cH2

− nH tr(Hn+1)3 + (tr(Hn+1)2)2 +
∑
β>n+1

(tr(Hn+1Hβ))2.

(3.5)

Choose an appropriate orthonormal frame such that hn+1
i j = λiδi j. Since

∑
i(λi − H) = 0,

then ∑
i

(λi − H)2 =
∑

i

λ2
i − nH2 = tr(Hn+1)2 − nH2 = ‖µ‖2,∑

i

λ3
i =

∑
i

(λi − H)3 + nH3 + 3H‖µ‖2.

By Lemma 2.1,

−nH tr(Hn+1)3 = −n2H4 − 3nH2‖µ‖2 − nH
∑

i

(λi − H)3

≥ −n2H4 − 3nH2‖µ‖2 −
n(n − 2)
√

n(n − 1)
H‖µ‖3.

Putting the above three formulas into (3.5),

1
2
4 tr(Hn+1)2 ≥

∑
i, j,k

(hn+1
i jk )2 +

∑
i, j

hn+1
i j (nH)i j

+ ‖µ‖2
(
‖µ‖2 −

n(n − 2)
√

n(n − 1)
H‖µ‖ + n(c − H2)

)
.

(3.6)

Consider the quadratic form

F(x, y) = x2 −
n − 2
√

n − 1
xy − y2.

By the orthogonal transformation

u =
1
√

2n
((1 +

√
n − 1)x + (1 −

√
n − 1)y),

v =
1
√

2n
((
√

n − 1 − 1)x + (
√

n − 1 + 1)y),
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it is clear that x2 + y2 = u2 + v2 and F(x, y) = n(u2 − v2)/2
√

n − 1. Taking x = ‖µ‖,
y =
√

nH2, we obtain u2 + v2 = x2 + y2 = ‖µ‖2 + nH2. Hence

nc + F(x, y) = nc −
n

2
√

n − 1
(u2 + v2) +

n
√

n − 1
u2

≥ nc −
n

2
√

n − 1
(‖µ‖2 + nH2)

≥ nc −
n

2
√

n − 1
S ,

(3.7)

which implies that

nc + ‖µ‖2 − nH2 −
n(n − 2)
√

n(n − 1)
H‖µ‖ ≥ nc −

n

2
√

n − 1
S .

Together with (3.6),

1
2
4 tr(Hn+1)2 ≥

∑
i, j,k

(hn+1
i jk )2 +

∑
i, j

hn+1
i j (nH)i j + ‖µ‖2

(
nc −

n

2
√

n − 1
S
)
. (3.8)

For any α > n + 1,

−nH tr((Hα)2Hn+1) + (tr(Hn+1Hα))2 = −
1
2

∑
i, j

hn+1
ii hn+1

j j (hαii − hαj j)
2.

Let ai = hn+1
ii , bi = hαii. Since

∑
i hαii = 0, α > n + 1, by Lemma 2.3,

−nH tr((Hα)2Hn+1) + (tr(Hn+1Hα))2 ≥ −
n

2
√

n − 1

(∑
j

(hαj j)
2
)(∑

i

(hn+1
ii )2

)
.

Taking the sum on both sides with respect to α > n + 1,

−nH
∑
α>n+1

tr((Hα)2Hn+1) +
∑
α>n+1

(tr(Hn+1Hα))2 ≥ −
n

2
√

n − 1
‖τ‖2S . (3.9)

Then, using (2.1), (2.3) and (2.5),

1
2
4‖τ‖2 =

∑
i, j,k,α>n+1

(hαi jk)2 + nc‖τ‖2 +
∑
α>n+1

(tr(HαHn+1))2

+
∑

α,β>n+1

(tr(HαHβ))2 − nH
∑
α>n+1

(tr(Hα)2Hn+1)

+
∑

α,β>n+1

N(HαHβ − HβHα).

(3.10)

Since
∑
α,β>n+1(tr(HαHβ))2 ≥ 0 and

∑
α,β>n+1 N(HαHβ − HβHα) ≥ 0, from (3.9)

and (3.10)
1
2
4‖τ‖2 ≥

∑
i, j,k,α>n+1

(hαi jk)2 + ‖τ‖2
(
nc −

n

2
√

n − 1
S
)
. (3.11)
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Putting (3.8) and (3.11) into (3.2), and combining (3.3), (3.4) and Lemma 3.2, we
complete the proof of Lemma 3.3. �

4. Proofs of main theorems

P  T 1.1. Applying Lemmas 3.1 and 3.3,

L(nH) = �(nH) +
n − 1

2
a4(nH) = �(nH) +

1
2

n(n − 1)4R

≥ (S − nH2)
(
nc −

n

2
√

n − 1
S
)
.

It is clear that S ≥ nH2 from (3.3). Together with the assumption S ≤ 2
√

n − 1c in
Theorem 1.1, we obtain L(nH) ≥ 0. Since L is elliptic and H obtains a maximum on
Mn, we deduce that H is a constant. Hence

(S − nH2)
(
nc −

n

2
√

n − 1
S
)

= 0.

If S < 2
√

n − 1c then S = nH2, and Mn is totally umbilical.
If S = 2

√
n − 1c, the inequalities in (3.7) and in Lemma 2.1 become equalities. If

the inequalities in (3.7) hold, then ‖τ‖2 = 0. Since en+1 is parallel on the normal bundle
T⊥(Mn) of Mn, we know that Mn lies in a totally geodesic submanifold S n+1

1 (c) of
S n+p

p (c). If equality holds in Lemma 2.1, then Mn has n − 1 principal curvatures which
are equal and constant. As H is a constant, the other principal curvature is a constant
as well. So Mn is isometric to a hyperbolic cylinder H1(sinh r) × S n−1(cosh r) from
the congruence theorem in [1]. This completes the proof of Theorem 1.1. �

P  T 1.2. By the definition of operator �, and using Lemma 3.2
and (2.10),

�(nH) = −
1
2

n(n − 1)4R +
1
2
4S − n2|∇H|2 −

∑
i, j

hn+1
i j (nH)i j

= −
1
2

n(n − 1)4R +
∑
α,i, j,k

(hαi jk)2 +
∑
i, j

hn+1
i j (nH)i j + nc(S − nH2)

− nH
∑
α

tr(Hn+1(Hα)2) +
∑
α,β

(tr(HαHβ))2

+
∑
α,β

N(HαHβ − HβHα) − n2|∇H|2 −
∑
i, j

hn+1
i j (nH)i j

≥ −
1
2

n(n − 1)4R + nc(S − nH2) − nH
∑
α

tr(Hn+1(Hα)2)

+
∑
α,β

N(HαHβ − HβHα) +
∑
α,β

(tr(HαHβ))2.

(4.1)

https://doi.org/10.1017/S0004972712001141 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712001141


[12] Complete spacelike submanifolds in de Sitter spaces 397

Notice that
∑
α,β N(HαHβ − HβHα) ≥ 0. Together with (2.11)–(2.13), then (4.1)

becomes

�(nH) ≥ −
1
2

n(n − 1)4R + (nc − nH2)|Φ|2

− nH
∑
α

tr(Φn+1(Φα)2) +
∑
α,β

(tr(ΦαΦβ))2.
(4.2)

Substituting (2.14), (2.15) into (4.2),

�(nH) ≥ −
1
2

n(n − 1)4R + |Φ|2
(
|Φ|2

p
−

n(n − 2)
√

n(n − 1)
H|Φ| + n(c − H2)

)
.

Furthermore, note that R = aH + b. Then

L(nH) = �(nH) +
n − 1

2
a4(nH) = �(nH) +

1
2

n(n − 1)4R

≥ |Φ|2
(
|Φ|2

p
−

n(n − 2)
√

n(n − 1)
H|Φ| + n(c − H2)

)
.

(4.3)

Put

PH(|Φ|) =
|Φ|2

p
−

n(n − 2)
√

n(n − 1)
H|Φ| + n(c − H2).

(1) When n = 2 and H2 ≤ c, PH(|Φ|) ≥ 0. Hence, the right-hand side of (4.3) is
nonnegative. Since L is elliptic and H obtains a maximum on Mn, we deduce that H is
a constant and (4.3) becomes

|Φ|2
(
|Φ|2

p
+ 2(c − H2)

)
= 0,

which implies that |Φ|2 = 0 and Mn is totally umbilical.
When n ≥ 3 and H2 < 4(n − 1)c/((n − 2)2 p + 4(n − 1)), the discriminant of PH(|Φ|)

is negative. Then PH(|Φ|) > 0 and

L(nH) ≥ |Φ|2
(
|Φ|2

p
−

n(n − 2)
√

n(n − 1)
H|Φ| + n(c − H2)

)
≥ 0.

Using again the facts that L is elliptic and H obtains a maximum on Mn, we deduce
that H is a constant and then (4.3) yields

|Φ|2
(
|Φ|2

p
−

n(n − 2)
√

n(n − 1)
H|Φ| + n(c − H2)

)
= 0.

Since PH(|Φ|) > 0, we obtain that |Φ|2 = 0 and Mn is totally umbilical.
(2) When n ≥ 3 and H2 = 4(n − 1)c/((n − 2)2 p + 4(n − 1)), the discriminant of

PH(|Φ|) vanishes and PH(|Φ|) ≥ 0. If PH(|Φ|) > 0, by making use of the same assertion
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as in the proof of (1) above, we infer that |Φ|2 = 0 and Mn is totally umbilical. If
PH(|Φ|) = 0, then the inequalities in (2.14) and (2.15) become equalities. That is,√

N(Φn+1)|Φ|2 = |Φ|3, |Φ|4 = p
∑
α

N2(Φα). (4.4)

Since

|Φ| =

√
c

(n − 2)2 p + 4(n − 1)
n(n − 2)
√

n
p > 0,

using (4.4) we get N(Φn+1) = |Φ|2. On the one hand, by |Φ|2 =
∑
α N(Φα) we have

N(Φα) = 0, α ≥ n + 2, so |Φ|4 = p
∑
α(N(Φα))2 = p(N(Φn+1))2 = p|Φ|4. Hence p = 1.

On the other hand, if equality holds in Lemma 2.1, then Mn has n − 1 principal
curvatures which are equal and constant. As H is a constant, the other principal
curvature is a constant as well. According to the congruence theorem due to Abe
et al. [1], Mn is isometric to a hyperbolic cylinder H1(sinh r) × S n−1(cosh r).

(3) When n ≥ 3 and 4(n − 1)c/((n − 2)2 p + 4(n − 1)) < H2 ≤ c, the discriminant of
PH(|Φ|) is positive. Then PH(|Φ|) has two real roots:

B±H = p
√

n
4(n − 1)

(
(n − 2)H ±

√
((n − 2)2 p + 4(n − 1))H2 + 4(n − 1)c

p

)
.

The assumption S ≤ nH2 + (B−H)2 or S ≥ nH2 + (B+
H)2 on Mn implies that |Φ| ≤ B−H or

|Φ| ≥ B+
H on Mn. Therefore we know that PH(|Φ|) ≥ 0.

Clearly, B+
H is always positive. On the other hand, B−H > 0 if and only if H2 < c,

while B−H = 0 if and only if H2 = c.
When 4(n − 1)c/((n − 2)2 p + 4(n − 1)) < H2 < c, we have B−H > 0. If S < nH2 +

(B−H)2 or S > nH2 + (B+
H)2, then we obtain PH(|Φ|) > 0. By making use of the same

assertion as in the proof of (1) above, we infer that |Φ|2 = 0 and Mn is totally umbilical.
If S = nH2 + (B−H)2 or S = nH2 + (B+

H)2, then we obtain PH(|Φ|) = 0. By the same
arguments as in the proof of (2) above, we infer that Mn is isometric to a hyperbolic
cylinder H1(sinh r) × S n−1(cosh r).

When 4(n − 1)c/((n − 2)2 p + 4(n − 1)) < H2 = c, we have B−H = 0. If S > nH2 +

(B+
H)2, we obtain PH(|Φ|) > 0; and if S = nH2 + (B+

H)2, we get PH(|Φ|) = 0. The rest of
the proof is the same as that in case (2), and this completes the proof of Theorem 1.2. �
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