6

Parabolic G-Bundles and Equivariant
G-Bundles

Let G be a simple, simply-connected algebraic group with maximal torus H
and let (Z,p = (p1,...,ps)) be an s-pointed smooth projective irreducible
curve (of any genus g). Fix a maximal compact subgroup K of G. Then the
set of K-orbits K/ Ad K in K under the adjoint action is parameterized by the
fundamental alcove @, (cf. Lemma 6.1.1). Recall that a parabolic G-bundle
(E,7,0) consists of a principal G-bundle E — X together with markings
T = (t1,...,15), for 7j € ®,, and a section o; of Epj/Pj over p;j, for
each1 < j < s, where P; := P(z;) is the standard parabolic subgroup
such that its Levi subgroup L(t;) containing H has for its simple roots
S,j = {a; : a;j(7j) = 0}. We define the parabolic semistability (and parabolic
stability) of (E,7,0) in Definition 6.1.4(d). This definition generalizes the
standard definition of parabolic semistability (and stability) for parabolic
vector bundles (cf. Exercise 6.1.E.7). In particular, when s = 0, we recover
the definition of semistability and stability of the G-bundle E — X (cf.
Definition 6.1.4(b)) generalizing the corresponding notion for vector bundles
(cf. Definition 6.1.4(a)). We show that a G-bundle E — X is semistable if and
only if its adjoint bundle ad E is semistable (cf. Lemma 6.1.5).

For an algebra R over C, let Dg = Spec R[[¢]] denote the formal disc. Let
a finite group A act on D := Spec C[[¢]] and let & — Dg be an A-equivariant
principal G-bundle, which is trivial as a G-bundle, where A acts on Dg with
the trivial action on R. Then, as proved in Theorem 6.1.9, there exists a
G-bundle trivialization of & in which the A-action is the product action, i.e.,
there exists an A-equivariant G-bundle isomorphism inducing the identity on
the base: & % Dg x G such that the action of A on Dg x G is given by

YO (x,8) = (yx,0,(x(0)g),

184
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where x(0) is the image of x in Spec R and 6, : Spec R — G is a morphism.
Moreover, for any x° € Spec R, the group homomorphism 6(x°): A — G,
Y = 6, (x°), is unique up to a conjugation, which is called the type of & over
x°. The proof of Theorem 6.1.9 uses non-abelian group cohomology. In fact,
Theorem 6.1.9 is true for any connected affine algebraic group.

Let T = (11,...,Ts) be a set of rational markings, i.e., T; = T;/dj, for
some positive integers d; and Exp(27i7;) = 1. As in Theorem 6.1.8, we
fix a Galois cover 7: £ — X with signature the pair p and the sequence
i = (dy, ...,ds) with finite Galois group A. We also fix inverse images
{pj € nfl(pj)}lfjfs and generators ¥ = (y1,...,¥s) of the cyclic isotropy
groups (Ap, ..., Ap ). Thus, A is of order d;. As earlier in Section 1.1, let
Alg be the category of algebras over C and Set the category of sets. Define the
functor ﬁ A i ,: Alg — Set by

92 ;(R) = {(ER,6R) : ER is an A-equivariant G-bundle over f)R
such that £ Ris e has local type T for any x€ Spec R and 6 is an
A-equivariant section of E R Over (f)*) R}/ isomorphisms,
where T* := ¥\ p,2* := 77 1(Z*), A acts trivially on R and S := % x
Spec R.

For any parabolic subgroup P of G, consider the parahoric subgroup
scheme P C G((r)) defined by P := evy I(P), under the evaluation map
evo: G[[t]] - G at t = 0 (cf. Exercise 1.3.E.11). Let ¢; be the formal
parameter at p; € X defined by identity (1) of Definition 6.1.11. Then,
we prove (cf. Theorem 6 1.12) that, if 6(z;) < 1 for all j (for the highest
root 6), the functor ﬁ S is representable, represented by the ind-scheme
Xp = l'[]: Xg(P ), where Pj := P(z;) is defined in the first paragraph.

Similar to the definition of the stack Bung(X) as in Chapter 5, define the
group01d fibration over S of A-equivariant G-bundles Buné "(£) of local
type T, whose objects are A-equivariant G-bundles Eg over ¥ x S (with the
trivial action of A on §) such that Eg. . (for any ¢ € S) is of local type T (cf.
Definition 6.1.14). Let )_(}; = l'[j.=1 )_(G(Pj) and let I be the ind-affine group
variety with C-points I' := Mor(X*, G), where X* and P; are as in the above
paragraph. Then I" acts on X p by the left multiplication on each factor via
its Laurent series expansion in the formal coordinates ;. With this notation,
there exists an equivalence of categories between Buné ?(fl) and the quotient
stack [F\X ] (cf. Theorem 6.1.15). In particular, BunG () is isomorphic
to the stack Parbung (%, P) of quasi-parabolic G-bundles over (%, p) of type
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P = (P, ..., Py) (defined in Chapter 5) and hence it is a smooth (algebraic)
stack. Specializing this result to the fiber over a point, we get (cf. Theorem
6.1.17) that there is a natural set-theoretic bijection between the set Buné’ t (f))
of isomorphism classes of A-equivariant G-bundles over % of local type T and
the set Parbung (%, ﬁ) of isomorphism classes of quasi-parabolic G-bundles
of type P over (2, p). Under this bijection, A-semistable (resp. A-stable)
G-bundles over % correspond to the parabolic semistable (resp. parabolic
stable) bundles over ¥ with respect to the markings 7. This reduces the prob-
lem of studying the quasi-parabolic moduli stack (resp. parabolic semistable
moduli space, resp. parabolic stable moduli space) of parabolic G-bundles
over (X, p) to that of the moduli stack (resp. semistable moduli space, resp.
stable moduli space) of (non-parabolic) A-equivariant G-bundles over a cover
3 of ¥ with Galois group A.

Let us assume now that G, more generally, is a connected reductive group
and X continues to be a smooth irreducible projective curve. In Section 6.2,
we prove the existence and uniqueness of Harder—Narasimhan (for short HN)
reduction of a G-bundle over X. Let 7: E — X be a G-bundle. Then, a
P-subbundle Ep C E for a standard parabolic subgroup P of G is called
a Harder—Narasimhan reduction if the associated L-bundle Ep (L), obtained
from the P-bundle Ep via the extension of the structure group P — P/U =~
L, is semistable, where L is the Levi subgroup of P containing H and U is the
unipotent radical of P. Moreover, we require that for any nontrivial character
A of P such that A € @f: | Zya; (in particular, A is trivial restricted to the
identity component of the center of G),

deg (Ep xP(C,\) > 0.

By virtue of Theorem 6.2.3, such a reduction exists and is unique. Moreover,
for a G-bundle E over X, and an embedding of connected reductive groups
G < G’, the HN reduction of E coincides with the HN reduction of E(G’)
intersected with E (cf. Theorem 6.2.6 for a more precise statement). As a
consequence, it is shown (cf. Corollary 6.2.7) that if E(G’) is semistable, then
so is E. Further, if E is semistable and G is not contained in any proper (not
necessarily standard) parabolic subgroup of G, then E(G’) is semistable. As
another consequence of HN reduction, an A-equivariant G-bundle over S is
A-semistable if and only if it is semistable (cf. Exercise 6.2.E.4). By virtue of
Exercise 6.1.E.15, a vector bundle over X is polystable (where polystability is
defined in Definition 6.1.4(c)) if and only if it is a direct sum of stable vector
bundles of the same slope. In Exercise 6.2.E.2 the HN reduction of vector
bundles is discussed.
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Section 6.3 is devoted to the classical result of Narasimhan—Seshadri
on topological construction of stable and polystable vector bundles over
% and its generalization to any connected reductive G. For any homomor-
phism from the fundamental group p: 71(¥) — G, we get a holomorphic
G-bundle

E, = ¥ x1E G,

where ¥ is the simply-connected cover of . By the Serre’s GAGA principle,
E, is an algebraic G-bundle over . If Imp lies in a compact subgroup
of G, then p is called a unitary homomorphism and E, is called a unitary
G-bundle. The homomorphism p is called irreducible if Im p is not contained
in any proper (not necessarily standard) parabolic subgroup of G. Then, by
Proposition 6.3.4, E, is a semistable G-bundle if p is unitary. Further, for
a unitary p, E, is a stable G-bundle if and only if p is irreducible. In fact,
we prove a generalization of these results for equivariant bundles. It is shown
that for a unitary representation V of 71 (X), the subspace V™) of (X)-
invariants in V is canonically isomorphic with the space of global sections of
the corresponding vector bundle over ¥ (cf. Lemma 6.3.6 for its equivariant
generalization). This leads to the result that for two unitary homomorphisms
p,p', the corresponding bundles E, and E, are isomorphic if and only if
p is conjugate to p’ (cf. Corollary 6.3.7 for its equivariant generalization).
A classification of topological G-bundles over ¥ is obtained in Lemma
6.3.10. For a unitary representation p of m1(X), the dimension of the group
cohomology H! (7r1(X), ad p) is calculated in Corollary 6.3.14.

Let K be a compact connected Lie group (which we take to be a maximal
compact subgroup of G). For any integer g > 1, let F, be the free group on
the symbols {a1,b1,a2,b2, ... ,ag,b,}. Define the map

B:K* — [K,K1, ((hi,k1), (ho,ka), ..., (hg kg)) + TIS_ [hi,kil.

Any p = ((hl,kl), e, (hg,kg)) € K?¢ determines a group homomorphism
p: Fg — K taking a; — h; and b; — k;. If p € ,B_I(e), then the homo-
morphism p descends to a group homomorphism p: 71(X) — K, where g is
the genus of . For any 5 € 87! (e), Ker((dp) 5) is determined in Proposition
6.3.15 and identified with the space of 1-cocycles of 71 (X) with coefficients in
ad p. As a corollary, we get that M, (K) :={p € B~ (e) : p isirreducible} is
an R-analytic (smooth) manifold of dimension (2g — 1) dim K + dim 3, where
3 is the center of g (cf. Corollary 6.3.16). Moreover, M, (K) parameterizes an
R-analytic family of holomorphic G-bundles over X. It is shown in Proposition
6.3.18 that the infinitesimal deformation map for this family is surjective. In
particular, this family is complete at each of its points (cf. Theorem 6.3.20).
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As proved in Proposition 6.3.30, let # — X x T be a C-analytic family
of stable G-bundles over ¥ parameterized by a C-analytic space T. Then, the
subset

T, := {t e T : %, ~ E, for some unitary representation p of m(E)inG}

is a closed subset of T. Moreover, for any C-analytic family %’ — ¥ x T
of G-bundles, by Lemma 6.3.31 (resp. Exercise 6.3.E.9), the subset T :=
{t € T : ] isastable G-bundle} (resp. Tss defined as Ty by replacing ‘sta-
ble’ by ‘semistable’) is an open subset which is complement of a (closed) C-
analytic subset of 7. Further, for any R-analytic family .% of G-bundles over
¥ parameterized by an R-analytic space T,

T, := {t e T : %, ~ E, for some irreducible representation p of 71(X) in K}

is an open subset of T (cf. Corollary 6.3.21). The above results lead finally to
the following fundamental Theorem 6.3.35.

Theorem Let G be a connected reductive group and let £ be a holomorphic
G-bundle over a smooth irreducible projective curve ¥ of genus g > 2. Then E
is polystable of degree 0 (i.e., E x¢ C » has degree O for any character x of G)
if and only if £ >~ E,, (as holomorphic G-bundles) for a unitary representation
p:m(¥) — G.

We further have the following equivariant generalization of the
Narasimhan—Seshadri Theorem 6.3.35 (cf. Theorem 6.3.41).

Theorem Let ¥ be an irreducible smooth projective curve with faithful
action of a finite group A such that ¥ := 3 /A has genus g > 2. Then an
A-equivariant G-bundle E over ¥ is A-unitary if and only it is A-polystable
of degree 0.

In particular, an A-equivariant G-bundle over T is A-polystable if and only
if it is polystable.

We also prove the following result (cf. Proposition 6.3.42).

Proposition Let E be an A-equivariant G-bundle over 3 such that & /A has
genus > 2 and let 6: G — GLy be a representation with finite kernel, where
G is a connected semisimple group. Then the vector bundle E(V)is A-unitary
if and only if Eis A-unitary.
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6.1 Identification of Parabolic G-Bundles
with Equivariant G-Bundles

Let G be a simple, connected, simply-connected algebraic group over C and
let (X, p) be an s-pointed (for any s > 1) smooth projective irreducible curve
(of any genus g), where p = (p1, ..., ps). Unless otherwise stated to the
contrary, this will be our tacit assumption during this Section 6.1. Fix a
maximal compact subgroup K of G. Following the notation from Section 1.2,
define the fundamental alcove:

b, ={hebh:aih)>0 and 6(h) <1, for all the simple roots «;},

where 6 is the highest root.
For any semisimple element x € g, define the corresponding Kempf’s
parabolic subalgebra

p(x) :={veg: lim Ad(Exp(tx)) - v exists in g},
t——00

and let P (x) be the corresponding parabolic subgroup of G.
Then, for h € ®,, P(h) is the standard parabolic subgroup such that its Levi
subgroup L(h) containing H has for its simple roots Sy, := {«; : «; (h) = 0}.
We recall the following well-known result (cf. (Helgason, 1978, Chap. VII,
Theorem 7.9)).

Lemma 6.1.1  The map
&, > K/AdK, h+— [Exp(2rih)],

is a bijection, where K /AdK denotes the set of K -orbits in K under the adjoint
action and [Exp(2mih)] denotes the K -orbit of Exp(2mih).

Definition 6.1.2 Let E — X be a principal G-bundle (cf. Example C.4(d)).
A parabolic structure on E (with respect to the pointed curve (X, p))
consists of:

(a) Markings (called parabolic weights) T = (ty, ..., T,), for t; € ®,, where
7; is ‘attached’ to the point p;, and

(b) Asectionoj of Ep;/Pj over pj, foreach 1 < j <, where P; := P(t})
and E,; is the fiber of E over p;.
Denote ¢ := (o7, . ..,0y).

A G-bundle E — X with the above additional structures (a) and (b)
is called a parabolic G-bundle over (X, p) with markings T and denoted
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by (E,7,0). Thus, a parabolic G-bundle over (X,p) is nothing but a
quasi-parabolic G-bundle over (X, p) of type P = (Py, ..., P;) (cf. Definition
5.1.4) together with the markings 7.

Similarly, a family of parabolic G-bundles parameterized by a scheme S is
a G-bundle & over ¥ x § consisting of:

(a’) markings T = (1, ...,7y) as in (a), and
(b’) asection cer of (&]p;xs)/Pj,foreach 1 < j <.

Let &1 and &> be two families of parabolic G-bundles with the same mark-
ings T (parameterized by schemes §; and S, respectively). By a morphism
@: &1 — & of families of parabolic G-bundles, we simply mean a morphism
of the underlying quasi-parabolic G-bundles (cf. Definition 5.1.4).

Definition 6.1.3  (a) Let P be a standard parabolic subgroup with the Levi

subgroup L = Lp containing the maximal torus H (with Lie algebra b).
Let Sp C {o1,...,a¢} be the set of simple roots for L. Then the set X (P)
of characters of P (i.e., algebraic group homomorphisms P — G,,) can be
identified with

b7 p = (A € : AMe;") € Z V simple roots o; and A(e;) = 0 Yo; € Sp)

(1)
under x — x(1)|y. We often identify x with x (1)|, and write it additively.
Let {w1, . ..,w} denote the set of fundamental weights, i.e.,
wi(ajy)=5i,j, 1<i,j<Ut. ()
Then

[)zp = @ 7 w;.

a;¢Sp

Recall that the standard maximal parabolic subgroups Qj are parameterized
by 1 < k < £, where Qy is the unique standard parabolic subgroup with

SQk = {Oll, e ,&k, e ,Oég}.
For a standard parabolic subgroup P, let Wp C W be the Weyl group of its
Levi subgroup L p.

(b) Let E — X be a principal G-bundle and let f: G — G’ be a
homomorphism of algebraic groups. Then, by E(G’) we mean the principal
G'-bundle E x¢ G’ — ¥, where G acts on G’ via the left multiplication
through the morphism f and G’ acts on E x¢ G’ via the right multiplication
on the G'-factor.

https://doi.org/10.1017/9781108997003.008 Published online by Cambridge University Press


https://doi.org/10.1017/9781108997003.008

6.1 Identification of Parabolic G-Bundles 191

(c) Let E — X be a principal G-bundle. For any parabolic subgroup P of
G and x € X(P), define the line bundle over £/ P:

Lp(x) = ZLp(x.E)=E x"C,.1 > E/P,

where C,_; is the 1-dimensional representation of P associated to the
character x L.

Let T,(E/P) be the relative tangent bundle of E/P over X (consisting
of tangent vectors of E/P along the fibers of the bundle £/P — X). Then,
T,(E/P) can canonically be identified with the vector bundle E x (q/p) over

E/P, where p := Lie P and P acts on g/p via the adjoint action.

Definition 6.1.4 (Semistable bundles) (a) A vector bundle ¥ over X is
defined to be semistable (resp. stable) if for any subbundle (0) G # & ¥,

w) = w(¥) (resp. w(#') < uw(¥)), (D

where the slope (7)) := deg(?')/rank(¥) and deg denotes the first Chern
class.

Thus, a vector bundle ¥ is semistable (resp. stable) if and only if ¥ ® &
is semistable (resp. stable) for any line bundle .Z over .

(b) A G-bundle E — X is called semistable (resp. stable) if for any
standard maximal parabolic subgroup Qy of G (1 < k < ¢) and any section u
of E/Qr — X,

deg u* (ka (—wk)) <0 (resp. deg u* (ka (—wk)) < 0) ) 2)

Observe that the trivial bundle ¥ x G — X is semistable.

Alternatively, a G-bundle £ — X is called semistable (resp. stable) if
for any standard proper parabolic subgroup P of G and any section p of
E/P — %,

deg u* (Ty(E/P)) > 0 (resp. > 0).

By Exercise 6.1.E.4, these two definitions are equivalent.

These alternative definitions remain valid for any connected reductive group
G provided we take the fundamental weights wy to vanish on the center
Z(g) (C b) of g and we replace wy by some positive multiple dwy so that
dwy, 1s a character of T'.

By Exercise 6.1.E.5, a vector bundle ¥ over X is semistable (resp. stable)
if and only if the associated frame bundle F (%) (which is a principal
GL,-bundle for n = rank ¥) is semistable (resp. stable).

(c) As in (b), let G be a connected reductive group. Then, a G-bundle E
over ¥ is called polystable if it has a reduction E7 to a Levi subgroup L
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(of a parabolic subgroup P of G) such that the L-bundle E; is stable and
for any character y of L which is trivial restricted to the center of G, we have

deg (EL x L (CX) =0,

where C, is the 1-dimensional representation of L given by the character x.

A vector bundle ¥ over X of rank r is called polystable if the associated
frame bundle F(7) is polystable as a GL,-bundle. By Exercise 6.1.E.15, ¥ is
polystable if and only if it is a direct sum of stable vector bundles all of which
have the same slope.

By Theorem 6.1.7, ad E is polystable if E is so, where ad E = E x9 g.
Thus, by Exercise 6.1.E.15, ad E is semistable and hence E is semistable by
Lemma 6.1.5.

(d) Let (E,7,0) be a parabolic G-bundle over (%, p). Then, it is called
parabolic semistable (resp. parabolic stable) if for any standard maximal
parabolic subgroup Qi (1 < k < ¢) and any section u of E/Q; — X, we
have

s
deg 1* (Lo, (—wr)) + Za)k(wj_lrj) <0 (resp. <0), (3)
j=1
where w; :=Wp,wjWg, € Wp,\W/ Wy, is the unique element such that tak-
ing any ¢; € Ep; and writing oj =e;g;P; and u(p;) = e;h;Qx, for some
gj.hj € G, wehave

hj€gjPjw;QOk. 4)

(It is easy to see that w; does not depend upon the choices of ¢;, g; and h;.
This w; is called the relative position of u with respect to the quasi-parabolic
structure at p;.)

The number on the left side of (3) is called the parabolic degree (denoted
pardeg u*.Zp, (—wi)) of the parabolic bundle E with respect to the section p
and the line bundle %, (—wy) for the parabolic markings T=(t1,...,T5).

An equivalent characterization of parabolic semistability (resp. parabolic
stability) for vector bundles is given in Exercise 6.1.E.7.

Lemma 6.1.5  Let G be a connected reductive group and let E — X be a
G-bundle. If the adjoint vector bundle

adE :=E x%g

is semistable (resp. stable), then so is E.
In fact, by Theorem 6.1.7, we see that if E is semistable, then so is ad E.
Thus, semistability of E is equivalent to that of ad E.
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In general E being stable does not necessarily imply that ad E is stable
even when G is a simple group (cf. Exercise 6.3.E.10).

Proof Let P be a standard proper parabolic subgroup of G and let Ep C
E be a P-subbundle obtained from a section u of E/P — ¥ (cf. Lemma
5.1.2). Now, by definition, u* (T,(E/P)) is a quotient of the adjoint bundle
ad E. But, deg(ad E) =0 (since G acts trivially on A'°P(g) under the adjoint
action) and since ad E is semistable (resp. stable), by assumption, we get
deg u* (Ty(E/ P)) = 0 (resp. > 0). This proves the lemma. ]

Remark 6.1.6 A G-bundle can be thought of as a parabolic G-bundle
for s = 0. Further, in this case, parabolic semistable (resp. stable) bundle is
nothing but a semistable (resp. stable) bundle.

We recall the following result without proof from Ramanan and
Ramanathan (1984, Theorem 3.18). The proof in the same has a gap, but
a modified proof is given in Balaji and Parameswaran (2003, Proposition 6
and Remarks 17, 18).

Theorem 6.1.7 Let f: G — G’ be a homomorphism between connected
reductive groups such that f(Z°(G)) C Z°(G’), where Z°(G) denotes the
identity component of the center of G. Then, if E — X is a semistable (resp.
polystable) G-bundle, then so is E(G') obtained from E by extension of the
structure group to G’ (cf. Definition 6.1.3(b)).

In particular, for any semistable (resp. polystable) G-bundle E, ad E is a
semistable (resp. polystable) vector bundle (cf. Exercise 6.1.E.5).

We recall the following result. To prove the result, by Selberg (1960,
Lemma 8), any finitely generated linear group I has a normal torsion-free
subgroup I', of finite index in I". Moreover, observe that if I" acts faithfully
on the upper half plane H (resp. A'(C)) with all its I'-orbits closed and the
action of I' is properly discontinuous on a nonempty I'-stable open subset,
then I', acts fixed point freely on H (resp. A!(C)). To prove this, realize
H = SL>(R)/ SO, and thus I' C PSL,(R) in this case. In the case of A!(C),
observe that the group of variety automorphisms of the affine line:

a b

Aut(A1(C)) = {[ 0

}:ae@*,be@}

acting on AY(C) = {[z : 1] : z € C} as a subset of P'(C). An element
V= |: ?) [17 i| € Aut(A'(Q)) is of infinite order if and only if either a = 1

and b # 0 or a € C* is of infinite order (in the multiplicative group). Now,
using the results from Serre (1992, §6.4) the following result is obtained.
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Theorem 6.1.8  Ler (I, p) be a smooth irreducible projective s-pointed
curve for s > 1 andletd = (dy, ...,ds) be a set of integers d; > 2 attached
to p.

We assume that if ¥ = P!, then s > 3. (D)

Then there exists a smooth irreducible projective curve 3 and a Galois cover
7% — X with finite Galois group A such that A acts freely on ﬁ:\ﬂ’_l (p)
and the isotropy subgroup A, (for any p; € 7~ Y(p)) is eyclic of orderqd,-,
where p C X denotes the subset {p1, ..., ps}. The set p together with d is
called signature on X.

Conversely, any smooth irreducible projective curve > with faithful action
of a finite group A gives rise to such an example by taking ¥ = by /A and
p = (p1,...,ps) in X consists of ramification points. Here, d= dy,...,ds)
is the set of integers > 2 such that d; is the order of the isotropy group for any
point p; € 3 over p;.

Even though, given (X, p) and d , S is not unique, we will fix one such )
in the sequel.

Let A be a finite group acting on the formal disc D := Spec(C[[¢]]) and let
R € Alg (cf. Section 1.1). Then, A acts on Dg := Spec(R[[¢]]) with the trivial
action of A on R, by observing that R[[f]] = 1(1£1n(R Qc ((C[[t]]/(t”))).

Theorem 6.1.9  Let G be any connected affine algebraic group (not neces-
sarily semisimple) and let & — Dpg be an A-equivariant principal G-bundle,
which is trivial as a G-bundle. Then, there exists a G-bundle trivialization of
& in which the A-action is the product action, in the sense that there exists an
A-equivariant G-bundle isomorphism inducing the identity on the base:

& % ]D)R x G
such that the action of A on Dg x G is given by
Y O(x,8) = (yx.0,(x(0)g), fory € A,x eDg and g € G, (1)

where x(0) is the image of x in SpecR induced from the embedding
R — R[[t]] and 0, : SpecR — G is a morphism.

Moreover, for any x° € SpecR, the group homomorphism 0(x°): A — G,
y = 0,(x°), is unique up to a conjugation, which is called the type of &
over x°.

If R = C, so that SpecR is a point, we simply call 6 the type of &.
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Proof  Pick any G-bundle trivialization & ﬁ) Dg x G. Then, the action of

A transports via 8 to an action given by
y-(x,8) = (yx,a,(yx)g), for y € A,x € Dg,g € G, 2)

where ), : Dg — G is a morphism. Since & is an A-equivariant G-bundle,
we get

Ayyy, (X) = @y, (x)ayz(V]_IX), for y1,y2 € A,x € Dp. (3)

Thus, thinking of «,, as an element of G(R[[¢]]), we get a 1-cochain: A —
G(R[[t]]), y = ay, for the group A with coefficients in G(R[[¢]]), with the
trivial action of A on G. Moreover, « is a 1-cocycle by (3) (cf. (Serre, 1997,
Chap. I, §5.1)).

Evaluation at = 0 gives rise to an A-equivariant algebra homomorphism
R[[t]] — R and hence an A-equivariant group homomorphism

e’: G(R[[r]]) — G(R).
Composing e o a, we get a 1-cocycle
a’: A — G(R) — G(R[[t]].

Let G(R[[t]])™ be the kernel of . Clearly, ¢ is surjective (due to the
inclusion G(R) — G(R[[t]])). The exact sequence

1 - GRI[1IDT — G(R[[1]) LN G(R)— 1

gives rise to an exact sequence of pointed sets in non-abelian group cohomol-
ogy (cf. (Serre, 1997, Proposition 38, §5.5)):

H' (A, GRI[HIDT) — H'(A,G(RI[1]])) <> H'(A,G(R)). 4)

We next show that ¢° is a one-to-one map. To prove this, by Serre (1997,
Chap. I, Corollary 2, §5.5), it suffices to show that for any 1-cocycle g: A —
G(RIIr1D),

H'(A, G(R[[r]]);;) is trivial, (5)

where G(R[[t]]);' denotes the same group G(R[[¢t]])™ but with a twisted
action of A via §:

yOp f=BW)(y-f)B(y)", for y € A and f € G(RI[t])™.
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We first prove by induction on n > 1 that
H! (A, G (RII1] /<z">);) is trivial, (6)

where G (R[[t]]/(t"))" is the kernel of the surjective homomorphism
G (R[[t]]/(t")) — G(R) and G(R[[t]]/(t”))gr denotes the same group
with twisted action of A via the image of 8 in G (R[[t]]/(t")) . Clearly, (6) for
n = 1 is trivial. Now, consider the exact sequence of A-groups:

+ R
L= (Ka(R)g — G (RIA/G) 7 G (RIA/M); > 1 ()

where K, (R) is the kernel of n,f. By Exercise 6.1.E.1, n,f is surjective with

" Cl[1]] )
HIC )
Next, observe that any element y € A acts on (K,(R))g via a C-linear

isomorphism. Thus, by Hochschild and Serre (1953, Proposition 6),

kernel isomorphic (as a group) to the C-vector space R Q@c (g Qc

H'(A, (Kn(R))p) = 0. (8)

From the cohomology sequence (analogue of (4)) associated to the coefficient
sequence (7) of A-groups, and using (6) (valid by the induction hypothesis)
and (8), we get that

H' (A,G (R[[r]]/(r"“));) =0,

completing the induction and hence (6) is proved for all » > 1 and any 1-
cocycle B: A — G(R[[t]]).

Since My (R[[t]]) =~ 1(3111 My (R[[t]]/(t")), by considering an embedding
G — My and the equations defining G, it is easy to see that

G(R[[1])" ~lim G (R (™)™ €))

Consider the isomorphism of varieties induced from the exponential map (cf.
Exercise 6.1.E.1):

Exp: 9 ® (¢CII711/(") — G (CIIN/¢™) "
It induces a bijection
a ® (¢RI[111/(t")) ~ Mor (Spec R,a ® (¢C[[¢]]/(t")))
~ Mor (Spec R.G ((C[[t]]/(t"))Jr)ﬁ, f > Expof

%
= G (RILN/M) 5

where the bijection 6 is obtained by using Exercises 1.3.E.10 and 1.3.E.6.
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The bijection 6 allows us to transport the action of A on G (R[[¢]]/ (t”))/'ér
to that on g ® (¢ R[[#]]/(t")). Moreover, it is easy to see that any y € A acts on
g ® (tR[[t]1/{t")) via a C-linear isomorphism. Thus, [¢ ® (tR[[¢]] /(t"))]A is
a linear subspace. From this we immediately see that the canonical map

A
n+l + o\t A . . .
|:G (R[[t]]/(t + ))ﬁ] — [G (R[[t]]/(t >)ﬂ] is surjective.
Thus, by Exercise 6.1.E.2, (6) and (9), we get

H' (A.G(RID}) =0,

for any l-cocycle B: A — G(R[[t]]). This proves (5) and hence the map
(cf. (4)

&%: HY(A,G(R[[t]])) — H'(A,G(R)) is one-to-one.

We return to the 1-cocycle & as at the beginning of the proof. Clearly, €°([a]) =
&°([«®]), where [e], [«®] € HY(A, G(R[[t]]) denote the cohomology classes
of o and «?, respectively. Since ¢° is one-to-one, we get

[a] = [«°], (10)
i.e., there exists a T € G(R][[t]]) = Mor(Dg, G) such that

r(yx)_lay(yx)r(x) = ay, (x(0)), forall x € Dg,y € A,
since (yx)(0) = x(0) (11)

(cf. (Serre, 1997, Chap. I, §5.1)).
Define a G-bundle isomorphism

Dg x G 5> D x G, (x,2) — (x,7(x)"\g).

Then, the action of A on the range transported via £ (to be denoted ©)
becomes (cf. (2))

y O (x.g) =% £ (x.9)
=7(y - (x,7(x)g))
=T(yx,a, (yx)t(x)g)
= (yx.1(yx) oy (yx)T(x)g)
= (yx.a(x(0))g), by (11).

Taking 6, = e°(a;, ), we get the first part of the theorem.
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To prove the uniqueness of 6(x?) up to a conjugation for any x° € Spec R,
let

Dgr x G i) Dgr x G, §(x,g) = (x,S(x)g), for x € Dg,g € G,
be an A-equivariant G-bundle isomorphism such that A acts on the domain by
(1) and on the range by

y O (x,8) = (yx,G)’,(x(O))g), for y € A,x €Dy and g € G,
where §: Dg — Gisa morphism. In particular, for x° € Spec R C Spec R[[t]],

8y © (x%,8)) = 8(yx°, 0, (x")g)
= (yx®,8(rx")6, (x%)g)
= (x%,8(x")0y (x”)g), (12)
since A acts trivially on Spec R. On the other hand, from the A-equivariance
of §, we get
8(y 0 (x%8) =y Q" 8((x* )
=y O (x%5(x%))
= (x%,0,,(x")3(x")g). (13)
Comparing (12) and (13), we get
5(x*)0y (x5 (x) ™" = 0], (x°).
Thus, 8’(x°): A — G is a conjugate of 6(x?), proving the theorem. O
The above theorem justifies the following.

Definition 6.1.10  Let G be as at the beginning of this section.

(a) Let (X, p) be an s-pointed curve as in Theorem 6.1.8 (in particular, it
satisfies (1) of Theorem 6.1.8) and let d = (dy, ...,ds) be a set of positive
integers attached to p. Fix a Galois cover 7 : ¥ — ¥ with Galois group A as
guaranteed by Theorem 6.1.8. We also fix preimages 1? = (p1,...,ps) in o
of p and generators ¥ = (yi, ...,¥s) of the isotropy groups (Apps - Apy)-
Observe that A, are cyclic groups, being subgroups of Aut(Tp, ().

For any A-equivariant principal G-bundle E over 3, E Ip. 1S trivial as a
bj
G-bundle (e.g., by Theorem 5.2.5), where D 5 C Y is the formal disc around
pj- Since pj is fixed by A, (in particular, it acts on D ), Ej, isan Ap.-
. 5

equivariant trivial G-bundle. Thus, by Theorem 6.1.9, we get a homomorphism
(the type of Ej;. )60j: As, — G (unique up to a conjugation). Moreover,
pj

any conjugate of ¢; can be realized as 6; with respect to some G-bundle
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trivialization of £ In. - Let T; € @, be the unique element such that Exp(2mit;)
Pj

is conjugate to €;(y;) (cf. Lemma 6.1.1). Define the local type of E to be the
sequence

T=(T1,...,Ts).
Observe that 7; does depend upon the choice of the generator y; of A i

(b) Let (=, p) be an s-pointed curve as in Theorem 6.1.8 (in particular, it
satisfies (1) of Theorem 6.1.8). Let T = (tq, ..., Ts) be a set of markings (cf.
Definition 6.1.2) with 7; rational points of ®,, i.e., we can write 7; = 7;/d;,
for some positive integers d; and Exp(2nit;) = 1.

As in Theorem 6.1.8, we fix a Galois cover 7 : $. — % with finite Galois
group A associated to (X, p) and the sequence d = (dy, ...,ds), ignoring
those p; with d; = 1. We also fix inverse images {p; € n’l(pj)}lsjss and
generators y = (y1, ..., ¥s) of the cyclic isotropy groups (App, o Ap)).

We make the following definition similar to Definition 5.2.6.

Definition 6.1.11  With the aQove notation; in particular, s > 1 and s > 3 if
% = P!, define the functor ﬁg’f . Alg — Set by

ﬂg )T:*(R) = {(ER,UR) ER is an A-equivariant principal G-bundle over ZR

such that ER\';:XV has local type T for any x€ Spec R and 6 is an
A-equivariant section of E R Over (f)*) R} ™~

where ©* := Z\{p1,...,ps} = 7 1(Z*), A acts trivially on R and
(ER,6R) ~ (EfR,6p) if there exists an isomorphism 6r of A-equivariant
G-bundles:

such that fg o 6g = G- We denote the equivalence class of (ER,&R) by
[ER,OR]. R
Choose a local parameter 7; of X around p; such that the generator y; of
the isotropy group A ;. acts on the function ij via
L. dj . ($\dj
yi-ti=e "I and tj .—(lj)f (D)

is a local parameter for  at p;. Such a local parameter ; exists.
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For any one-parameter subgroup t: G,, — G, recall the definition of
Kempf’s parabolic subgroup

o) := {g eG: 1in}) r(z)gr(z)_1 exists in G} . 2)

If semisimple x € g is such that Exp(2widx) = 1 for some positive integer
d, then

0x: C— G, t — Exp(dtx)

descends to a one-parameter subgroup oy : C* — G, where C* := C/2xiZ.
In this case, it is easy to see that Lie(Q(oy)) = p(x), where p(x) is defined at
the beginning of this section.

For any parabolic subgroup P of G, define the parahoric subgroup scheme
P c G((t)) as in Exercise 1.3.E.11 by

P= evo_l(P), under the evaluation map evg: Gl[t]]— G at t =0. 3)
Analogous to Proposition 5.2.7, we have the following.

Theorem 6.1.12  Let the notation and assumptions be as in the above
definition. Assume further that 6(t;) < 1 for each 1 < j < s, where 0 is
the highest root of G. Then, the functor 92; is representable, represented
by the ind-scheme (cf. Exercise 1.3.E.11)

Xp =T_, X (P)),

where P; is the standard parabolic subgroup P(t;) of G as at the beginning
of this section and X G (Pj) is the partial infinite flag variety, which is an ind-
projective variety as in Exercise 1.3.E.11.

Proof  We need to prove that for any R € Alg, ﬁé; (R) is canonically
isomorphic with )_(;,(R) = Mor(Spec R, )_(;,).

Define the map $: ﬁé:;*(R) — )_(13 (R) as follows. Let @j := Spec (C[[fj]]

be the formal disc around p;. Let [Er,6r] eyg’;*(R). Recall that there
exists an algebra R’ € Alg and a surjective étale morphism ¢: Spec R’ —

Spec R such that the G-bundle E R . is trivial for each 1 < j < s, where
|Dj) pr

¢ =1dg x¢: fJR/ — Tgand ER/ = @* (ER) (cf. Theorem 5.2.5). Moreover,

by Theorem 6.1.9, we can assume that the action of A;, on E R . is the
1) pr
‘product action’ in the sense that there exists a section j1; = ji; g of Ep/
D) pr
such that the generator y; of the stabilizer A p; C Aactson fij via
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vj-ij=ij-ExpQrit). (D
Write as sections
Q% =65 Bj. for BjeGR () )
where &g is the section of E Ris, obtained from the pull-back of 6, and
R
k=0 fSpccR’«fj»’ i = 'aﬂSpeCRl((’Af))'

By (1), it is easy to see that
vi-Bj = B - ExpQrit)). 3)

Define the transition function
Bj = B; - (i)Y € GR' (). “)
From identity (1) of Definition 6.1.11 and identity (3), it is easy to see that
i Bj =B &)

Thus, B; descends to an element of G(R’((¢;))). If we take a different section
[/J of Epr ., then we can write

D))
A =p - fj. forsome f; e G(R'I[{]]).
Hence,
Bifi="F)

Moreover, if /fb’j also satisfies (1), then we see that

vi- f; =ExpQruit;)~!- f; - ExpQmit)). (6)
Conversely, for any f; € G(R'[[#;]]) satisfying (6), the section fi; - f; of
Ep satisfies condition (1). Let
(%

fi= 70 fy -G
Then, by (6) and identity (1) of Definition 6.1.11,

vi-fi=1Tl 0
Thus, f; € G(R'((tj))). We next claim that
fi € Pj(R) == evy ' (P;(R)), (8)
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where evg: G(R/[[tj]]) — G(R') is the map induced from the evaluation at
tj = 0 (cf. Exercise 1.3.E.11). Let

f¢ = &b(fj). where évo: G(R'[[F;]]) > G(R').

Then, by (6), f;’ € ZEXp(gm-,j)(R’ ), where ZEXp(27Ti‘L’j) is the centralizer
scheme of Exp(2rit;) in G and ZEXp(zmrj)(R’) is its R’-rational points. Now,
ZEXp(zni,j) is the Levi subgroup L ; of G containing H with roots 8 € A such
that (r;) = 0, where A C b* is the set of roots of G. (We have used the
assumption here that |8(z;)| < 1 for all 8 € A) Thus, we get

E)~5 - f7 @Y =f7 and f? e Lj(R) C Pj(R). 9)

Think of f}o € G(R') € G(R'[[#;1]). Then {; := (f;)*‘ - f+ Spec(R'[[7;1])
— G has image inside the big cell H x Ilyeca U, (fixing an ordering of A
so that all the positive roots appear first and then all the negative roots or vice
versa), where U, is the one-parameter unipotent subgroup corresponding to
the root «. (To prove this observe that (( f ")_1 fj)| Spec R 18 the constant map
gomg to e € G.) Decompose the morphlsm {l = (;, 0), ;, (@))qen, Where
{j (0) (resp. ;I () is the component of g“, in H (resp. Uy). Then, for any
a €A,

i) i= (F) 75 - ¢ja) - (F)7 € () TR, (10)

where we have identified ¢, : G, = U, satisfying hea(z)h’l = eq(a(h)z),
for any z € G, and h € H (cf. (Jantzen, 2003, Part II, §1.2)). (Observe that
the ‘41’ in the exponent of ¢ ;7 in (10) appears due to the fact that 2 i Spec R’ 18
the constant map with image e and hence fj (a) € 1;R'[[#;]1.)

By (7) and (9) (since y; - fAj‘.’ = fAj‘.’) we get

yj ¢ =¢;, where &= ()Y
In particular,

i Ci@) = ¢j(@) (e, gj(@) € R'(())) and  y; - ¢;(0) = ¢;(0) = £;(0).

11
By the assumption 6(7;) < 1, we get (since a(7;) € Z)
—(dj —2) < —a(tj) +1 =<d;, foranyroot o € A. (12)
Moreover, for any (negative) root o which is not a root of Pj;,
2 < —a(zj)+ 1. (13)
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By (1) of Definition 6.1.11, since t; = (fj)df, the exponents of fj in ¢;(a)
(for any « € A) are multiples of d; by (11). Hence, by (10)—(13), ¢; € P;(R")
and hence so is f; € P;(R’) by (9). This proves (8). Thus, by (8), associated
to [E r»OR’], we get a well-defined element

B =B, ....B) € I_, (GR'((1))))/P;(R)), (14)

i.e., it does not depend upon the choice of the trivializations (fi;)1<j<s
satisfying (1), where ,3]- =B ‘J’j(R’) and B; is defined by (4).
Consider the canonical injective map (cf. Exercise 1.3.E.11):

ij(R): G(R'((t;)))/P;(R") — Mor (Spec R, X (P))) .

Let B’ be the image of B in Mor(Spec R, X ).

Considering Spec R x Spec R’ as in the proof of Proposition 5.2.7,
Spec R

from the uniqueness of B’ we get a well-defined element in X p(R) =
Mor(Spec R, X};). This gives our sought-after map $: 92; (R) — X};(R).

We now prove that $ is a bijection. We first prove that $ is injective. Take
(Eg,6R), (EA%,c%R) € ﬂg:;*(R) such that their images under $ coincide.
Choose a surjective étale morphism ¢: Spec R — Spec R such that both the

G-bundles E R and E’ LA are trivial for each 1 < j < s, where E R'»
D) o RID))p

(@ ;)R are as at the beginning of this proof. Taking a section fi; (resp. ,&’j) of
E R (resp. E;Q, ) satisfying (1), we get B ; (resp. B;) defined by (2).
M) gr D) pr
From the injectivity of i ; (R"), we get that
B+ (¥ e By (()TPH(R'), forall 1<) <s,

i.e., there exists f; € P;(R’) such that

B;=Bj- fj. where fj= (@)Y f;- ()Y (15)
It is easy to see from (3) that
vi- fi = ExpQuit))~"- f; - BxpQrit)). (16)

We next claim that f; € G(R'[[f;]]). Similar to f]" consider f¢ := evo(f}) €
P;(R’) under the evaluation map G(R'[[¢;]]) — G(R’). Considering ¢; :=
( fj”)—1 - fj,itis easy to see (similar to the case of 2 j considered earlier) that

¢= @)Y ¢ - ()7 e GRIIED. (17)
Further,

fi= G- f7 - @70, (18
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Since (fj)ff' commutes with L (R") (where L j is the Levi subgroup of P;
containing H), it is easy to see that

)T f7 - (E)~5 € GRIIEID. (19)
Combining (17)-(19), we get that
fj € G(R’[[fj]]), forall 1<j <s. (20)
For any 1 < j < s, choose a set of coset representatives:
1 qj
{alag,.....alaz ) of asa;.

Forany 1 < k < g, consider the formal disc a ID> in 3 centered at a - pj.
Identify the disc ak ID) i with ID) ; under the actlon of a and transport the local
parameter 7 j of ]D) to a ]D (still denoted by t i) under this identification.
Take the section [i; j(k) (resp. [ i/ (k)) of E R . (resp. E;e’ )
\(a D; )R’ |(a b )R/

defined by
k)@ - x) = ab - (pj(x)), forany x e (D))p,
and similarly for j (k) where f1; and [, ; are any sections of E R . and

1) pr

E;?, respectively satisfying (1). Then, it is easy to see (since Gg is
D) s

A-equivariant) that i;(k)* = 6 - ,3 ; as sections over (af]f);‘.) g for any
1 < k < ¢; and similarly for ,1; (k)*. Thus, by the analogue of Proposition
5.2.7 with several punctures (for * replaced by *) and using (15) and (20),
we get that there exists a G-bundle isomorphism

ER/—>E/,

N S

taking G to a Slnce or and o) R are A- -equivariant over (E*) r (by
assumption) and T g ((2*) gr’) is dense in ER/, we conclude that Og is
A-equivariant. From the uniqueness of fg (since it is uniquely determined
on nlg/l ((fl*) r')), following the same argument as in the last part of the proof
of Proposition 5.2.7, by considering the fiber product

Spec R’ x Spec R/,
Spec R
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we conclude that (E R,OR) is isomorphic with (E/ ,&1’?) as A-equivariant
G-bundles. This proves that $ is one-to-one.

We next prove that $ is surjective. Take a morphism §: Spec R — X B
Then by Exercise 1.3.E.11 and the proof of Lemma B.2, there exists an fppf
cover ¢: Spec R’ — Spec R such that the morphism §g := §og: Spec R’ —
)_(I; lifts to a morphism SR/: Spec R’ — H;zl(_?((tj)) giving rise to the
elements B; € G(R'((t;))) by taking the projection of § g’ to the jth factor
and using Lemma 1.3.2. Define

Bj = Bj- (i)"Y € G(R'(({))). 2D
Consider the trivial G-bundle E }e, over ( ) *) g with the trivial A-action, i.e.,
Ep =" xG— (g
with
a-(x,g)=(a-x,g), for acAxe (X%, geC.
Further, consider the A B -equivariant trivial G-bundle E J , = (]]3) R X G —
(D) g with the action of the generator y; of A b given by
vj-(x,g) = (yj - x, Exp2rmitj)g), for x € (HSDJ-)R/ and g € G.
There is an A-equivariant isomorphism of schemes
Ax Opr - (Fp, lax]ea-x,
where F; == A -D; = ]_[ijl(a? D)), {a},...,a?j}Ais a set of coset
representatives of A/A p; (as earlier) and A5, acts on A x (D) g diagonally:
y - (a,x) = (a- yfl,y -x), forae A,y € A,;j and x € (}f)).,')Rr.

Hence, an A -equivariant G-bundle on O j)r’ extends uniquely (unique up
to a unique isomorphism) to an A-equivariant G-bundle on (F;) g’ (cf. (Chriss
and Ginzburg, 1997, §5.2.16)). In particular, the A pi -equivariant G-bundle E {;,,
extends uniquely to an A-equivariant G-bundle E {Q, over (F R

Identify the A -equivariant bundles E', and E{Q, over the intersection
DN g = D)) g N (g via
0 Epy  =ODr xG— Ep

5% e 15%) s

= O)r x G, (x.8) = (x.B;()g).forx € D g and g € G,

where B; € G(R'((}))) is defined by (21).
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Clearly, 0; is an A}, -equivariant isomorphism of G-bundles and hence
gives rise to a unique A-equivariant isomorphism of G-bundles

éj: Eje’ — E;e/ , where (ﬁj‘)m = (A ~H3>7)R/.

1) IFHpr

The A-equivariant G-bundles E}, and {E"{e,}lg j<s and the above isomor-
phisms allow us to get an A-equivariant G-bundle Eg over S via the
‘descent’ lemma (cf. the analogue of Lemma 5.2.3 for several punctures in
). By the definition, Eg is of local type {rj}1<j<s wWhich comes equipped
with an A-equivariant section 6/ over (ﬁ)*) R’ given by

Gr(x) = (x,1) in Ep, forxe (Z%g.
Further, from the definition of $,

$ ([ERUR]> = Sp. (22)

From the injectivity of $, (12" r’,Or) satisfying (22) is unique (up to a unique
isomorphism) and hence considering (as earlier) the fiber product
Spec R” := Spec R’ x Spec R’
Spec R

with the two projection to Spec R’, we get (e.g., applying the analogue of
Proposition 5.2.7 for 3 with several punctures) that (E r,OR) descends to
a G-bundle (E R,OR) over ) R Wwith section over (f]*) Rr. Moreover, it is
easy to see by considering (Egr,67) that the A-equivariant structure on
Eg also descends to give an A-equivariant structure on Eg such that 6 is
A-equivariant . Thus, (ER,8R) € ﬁg;* (R), which maps to § under $. This
proves the surjectivity of $ and hence the theorem is fully established. m

Remark 6.1.13  In Balaji and Seshadri (2015), the restriction 6(t;) < 1
in Theorem 6.1.12 plays no role since by considering general parahoric
subgroups of G((¢;)), their work is independent of the location of the weights
7; in the fundamental alcove. However, the proof, in the case when 6(t;) is
allowed to be 1, is very similar to the proof given above.

It might be remarked that for any semisimple group G, the ‘parahoric
viewpoint’ is a natural one since the ‘unit group’ of A-invariant local sections
is a parahoric subgroup of a general kind.

Definition 6.1.14  Similar to the definition of the stack Bung(X) as in
Definition 5.1.1, define the groupoid fibration of A-equivariant G-bundles
Buné’r(fl) of local type T over the category &, whose objects are
A-equivariant G-bundles Eg over xS (with the trivial action of A on §)
such that Eg). ~(for any ¢ € §) is of local type 7. By a morphism between
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two such bundles Eg (over 3 x S) and E, (over 3 x S"), we mean an A x G-
equivariant morphism f: Eg — E, and a morphism f: S — S making the
following diagram commutative:

f

Eg— s E,

TxS—>3¥ xS,
Idg x f
The functor Buné’?(ﬁ) — Gtakes Eg ~» Sand f ~ f.

Let X5 = Im_, XG(P;) be as in Theorem 6.1.12 and let I' be the ind-
affine group variety as in Definition 5.2.9 and Lemma 5.2.10 with C-points
I' := Mor(X*, G). Then T acts on X 5 by the left multiplication on each factor
via its Laurent series expansion in the coordinates ¢; (cf. Corollary 5.2.11).

With the notation as above, we have the following.

Theorem 6.1.15 Let s > 1 and T be as in Theorem 6.1.12. Then there
exists an equivalence of categories over S between the groupoid fibration
Buné’ r_( f)_) over G of A-equivariant G-bundles of local type T and the quotient
stack [F\X ] (cf- Example C.18(b)).

In particular, BunG (Z) is isomorphic to the stack Parbung (X, P) of
quasi-parabolic G-bundles over (X,p) of type P = (P, ..., P5) (cf.
Definition 5.1.4) and hence it lS a smooth (algebraic) stack.

( Even though Parbung (%, P) only depends upon P, its isomorphism with
BunG () does depend upon the choice of T.)

Proof  The proof is parallel to the proof of Theorem 5.2.14. We first define a
functor ¢ : Buné’r(f)) — [T\Xp]. Let E=FEs—¥xSe Buné’r(f)) (for
any scheme S € ©). Define a C-space functor &s as follows. For any C-algebra
R and an element in S(R), i.e., a morphism ¢: Spec R — §, define

(f"; (¢) := set of A-equivariant sections of EW\E}; ,

where E(p denotes the pull-back bundle (Ids, ><<p)*(E ). Now, for any C-algebra
R, set

éAds”(R) = UpesS(R) é%§)(<ﬂ)~

Then, for an fppf R-algebra R/, @%’(R) — éA”S”(R’) is injective. Let &5 be the
sheafification of 6?’S” (cf. Lemma B.2). Then, we get a morphism

[3:(535—>S.
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Further, for any ¢ € S(R), using Lemma 5.2.10, there is a canonical action
E¢(p) x ['(R) —» & () giving rise to an action

&g x T — &s. (1)

(Here, we have used the identification Mor(X%,G) ~ MorA(f]*,G), where
MorA(f)*,G) denotes the set of A-invariant morphisms f)* — G) Since
A acts freely on E* with quotient X%, the A-equivariant G- bundle E Siss is
the pull-back of a unique G-bundle Eg over Xg with trivial A-action. Take
an affine étale cover S’ — S such that Eg over E;, is trivial (cf. Theorem
5.2.5), where Eg is the pull-back of Eg to X%, Then it is easy to see that

Esr (which is the pull-back of Es to ¥ x §') satisfies ES/ ~ q*(Eg) as
S/
A-equivariant G-bundles, where ¢ : PO s — X, is the standard quotient map

induced by 7 : - %.In particular, E S/ admits an A-equivariant section.
Dy

Then 6"5/ =5 xg éas is isomorphic with §" x I" such that the induced action
of T on é"g/ (as in (1)) corresponds to the right multiplication on the [-factor.
Thus, p: 6"5 — S is a [-torsor with the right action of I (cf. Definition C.16).

We further define a I'-equivariant morphism B: éag - X3 p as follows. For
any ¢ € S(R), map any element of fs" () to the pair (E(p, 6,), where 6, is the
corresponding section of E‘/’\i;;' The sections &, (for ¢ € S(R)) give rise to

the section &, of ﬁ*(ES) over 3* x c?s, where 1§: 3 x c?g — ¥ x S is the
morphism Id¢, x p. We call 6, the A-equivariant tautological section. Now, the
(R) (cf. Definition 6.1.11) corresponds to

equivalence class (Ey,6,] € F F. A%

an element in X p(R) (ct. Theorem 6.1.12). This gives us the desired morphism
,é: g’g — )_(}3

It is easy to see that B is I-equivariant, where we switch the right action of I’
on & to the left action by the standard procedure:

y~x=x~y_1, foryef‘andxeés.

The functor ¢ takes E s € Buné’?(f)) to the pair (p, ,3).
Conversely, we define a functor n: [['\X 3] — Bun‘é’ 7($) as follows.
Take a T-torsor (with the left action of T') p: & — S (over a scheme
S € ©) and a T'-equivariant morphism B:&s — X p- The identity morphism
Id: X P X p gives rise (via Theorem 6.1.12) to an A-equivariant G-bundle

U(T) over & x X 5 (with A acting trivially on X 5) of local type 7 restricted
toany ¥ x x (for x € X p) together with an A-equivariant section 65(1; of
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U(T) over B* x )_(13. Moreover, the pair (H(?),&Xﬁ) is unique up to a unique
isomorphism. (Even though Theorem 6.1.12 only guarantees a G-bundle over
3 x Spec R, for R € Alg, but the uniqueness insures its extension to S x X B
We fix one such pair in its isomorphism class. By the same proof as that of
Lemma 5.2.12, the G-bundle (%) acquires the structure of a I'-equivariant
G-bundle over ¥ x X3 I3 Commutlng with the A-equivariant structure. The
I-equivariant morphism ,B : 55 — X3 p givesrise to a I-equivariant G-bundle
,3*(11(?)) over 3 xégs via pull-back through,é =1dg x,é: by X@és -3 x)_(,ﬁ.
Since p: éA"’S — Sisa-torsor, the f—equivariant bundle ,3*(11(?)) descends to
give a G-bundle (denoted) E(p, ) — % x S (cf. Lemma C.17). Since A(7) is
of local type T, so is E (p, ,é ). Further, since U(7) has_ an A-equivariant structure
commuting with the I'-equivariant structure and B is an A x I-equivariant
morphism with A acting only on ) (acting trivially on éA"S and }_( and I acting
trivially on ), E (P, B)i 1s an A-equivariant G-bundle over T x S This is our
map n: [F\X 1 — BunG (2) taking (p, ,3) — E(p ﬁ)

The proof that n o { =~ IdBuné”(E) and ¢ on =~ Id [F\X ;] is similar to the
one given in the proof of Theorem 5.2.14 and hence is left to the reader. This
proves the first part of the theorem.

The ‘In particular’ part of the theorem follows from the first part and
Exercise 5.2.E.3 together with Theorem 5.1.5. O

Following Definition 6.1.14, let Buné’f(f}) be the set of isomorphism
classes of A-equivariant G-bundles over 3 of local type 7. Similarly,
Parbung (%, P) is as defined in Corollary 5.2.17.

Definition 6.1.16  Let G be a connected reductive group. An A-equivariant
G-bundle E over $ is called A-semistable (tesp. A-stable) if condition (2) of
Definition 6.1.4(b) is satisfied for any standard maximal parabolic subgroup
Qr of G and any A-equivariant section p of E / Ok — .

Similarly, following Definition 6.1.4(c), E is called A-polystable if it has an
A-equivariant reduction E to a Levi subgroup L such that the L-bundle Er
is A-stable and for any character x of L which is trivial restricted to the center
of G, we have

deg (EL xt (CX> =

Similar to the definition of semistable and stable vector bundles as in
Definition 6.1.4(a), an A-equivariant vector bundle ¥  over ¥ is called
A-semistable (resp. A-stable) if the inequality (1) of Definition 6.1.4(a) is
satisfied for any A-stable subbundle (0) C # C 7.
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Similar to Exercise 6.1.E.5, an A-equivariant vector bundle 7 is
A-semistable (resp. A-stable) if and only if the corresponding frame bundle
F(Y) is so.

An A-equivariant vector bundle ¥ over 3 of rank r is called A-polystable
if the associated frame bundle F(¥') is A-polystable as a GL,-bundle.

By Exercise 6.1.E.16, an A-equivariant vector bundle ¥ over T s
A-polystable if and only if we can write

v =P
i
where each %] is an A-stable vector bundle all of which have the same slope.

Similar to Corollaries 5.2.15 and 5.2.17, we get the following result from
Theorem 6.1.15.

Theorem 6.1.17  With the notation and assumptions as in Theorem 6.1.15,
we have a natural set-theoretic bijection

BunA*($) ~ Parbung (Z, P). (1)

In fact, there is a similar set-theoretic natural bijection as (1) with by
replaced by xS (for any ind-scheme S as parameter space).

Under the bijection (1), A-semistable (resp. A-stable) G-bundles over by
correspond to the parabolic semistable (resp. stable) bundles over X with
respect to the markings T (cf. Definition 6.1.4(d)). In fact, a more precise result
is true (cf. identity (17) in the proof).

Proof  The bijection (1) (resp. its extension to T x S) follows immediately
from Theorem 6.1.15 by spe01al1zmg the equivalence of the groupoid fibrations
BunG (2) and Parbung (X, P) over a point (resp. over S).

We now prove the assertion about the correspondence of semistable and
stable bundles. Take any standard maximal parabolic subgroup Or(1 <k <¥
of G.Let E — X be an A- -equivariant G-bundle over 3 of local type T and
let E — X be the corresponding quasi-parabolic G-bundle over X of type P
given by the correspondence (1). Then, by definition (given in the proofs of
Theorems 6.1.12 and 6.1.15 following the notation therein which we follow
freely) as A-equivariant G-bundles (with the trivial A-action on E):

B, =m*(E). 2

From this we see that the pull-back of sections provides a bijective
correspondence between the sections of (E|,.. )/ Ok and A-equivariant sections
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of (E‘i*)/Qk. Moreover, since Yy := G/ is a projective variety and X is a
curve, this correspondence extends to give a

bijective correspondence Y between the sections of E/Q and A-equivariant

sections of E/Qk. 3

(In fact, this bijective correspondence holds for any parabolic subgroup Q of
G.) Take a section 6 of E/Qy and let 0 = ¥ (0) be the corresponding section
of E /Qp. Forany 1 < j < s, we assert that there exists a section (i ; of E|

satisfying the following two conditions (writing 7; := Exp(2mit;)):
vj-ij = ;- tj, cf. (1) of the proof of Theorem 6.1.12, )
and

éhﬁ)j =fi; - w;Qk, forsomew; e N(H), 5)

where N (H) is the normalizer of H in G. To prove the existence of such a /i j,
take any ,&’j satisfying

which is guaranteed by Theorem 6.1.9. Write
6,

Dj

= /l’j .8, for a morphism §: ]]j)j — Y;. 7

Since @ is A-equivariant, we get from (6) and (7) that

yid =278 inparticular, §(p;)=%;38(p)), 8)

where y; acts on 3 and not on Y. But it is easy to see that

(Vi)' = {gQx : %80k = g Ok} isgivenby (Y0 = | J Lw0s,
weW
where L is the Levi subgroup of P; containing H. Thus, S(ﬁj) = ljw; Ok
for some w; € N(H) and [; € L;. Thus, U, - Qk being an open subset
of Y, & lands as a map §: ®j — ljﬁ)jUék Ok, where Ug, is the opposite
unipotent radical of Q. Define §: 1@- - ljw;U o C G obtained from the

isomorphism UQ Or/0r C Yy ~ UQ CG.Leté,: D; — Uék be the map

8 = (1j;)~"8. Then, by (8) (since (Ad/; ;! =271,

vi oo = (w527 ;) 8 (@785 ©)
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Now, consider a new section of E g
j

fj = - 1w 8,w; ).
Then, by (6), (7) and (9),
vj-fj =it and éhf)j =t w; Ok

This proves (4) and (5).

We next show that the relative position of the section 6 of the bundle
E/Qy with respect to the quasi-parabolic structure on E at p; is given by
Wp,w;Wo,, where wj € W is the image of w; in W (cf. Definition 6.1.4 for
the definition of the relative position). By (5),

9A|®j_ = [L;w; Ok
= 6|D? ﬁj w; Ok, by (2) of the proof of Theorem 6.1.12, where
0 is an A-equivariant section of E ™
= 6|D? Bj (fj)_f/ w; Ok, see(4) and (5) of the proof of Theorem 6.1.12,
where §; is yj-invariant
= 6%7 Bjw;Ok. (10)

But 8hﬁ>*, - Bj descends (since & is the pull-back of a section o of E|x+) and

extends‘, to give a section pu; of E|Dj (cf. Proposition 5.2.4 and (14) of the
proof of Theorem 6.1.12) and hence

Q\Dj = ujw;Qf. (11)

Now, from the definition of the relative position as in Definition 6.1.4(d), since
wj(pj)P;j gives the quasi-parabolic structure on E at p; (cf. Exercise 5.2.E.3,
especially the equation (*) therein), we get from (11) that Wp,w;Wg, is the
relative position of 6 at p;.

We finally compute the degree of the line bundle . := 6* (.,22 VR (T*0* L)*
over f], where

L= E x% Cy, and Z:=E x Qk Coy -

By Exercise 6.1.E.14, the section O)s+: X* — E/Q lifts to a holomorphic
section ®: ¥* — E,ie., ®mod Oy = 6;z+. Moreover, let ©®: ¥* — FE be
the A-equivariant holomorphic section given as 7t *®, which lifts 9@*' Then ®

provides a trivialization ® o of .7] o
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Forany 1 < j < s, take a section /i; of E s satisfying (4) and (5) and
J

write
ﬂj|®§ = ©|®7 -Bj. for Bj € G((i)),

~

cf. (2) of the proof of Theorem 6.1.12 taking 6 = ©. (12)

A

Let 1 j be a section of E I given above satisfying (11), again replacing 6 = ©.
Then, by definition,

(ﬂm%=®@ﬁf@ﬁ. (13)

Let 1,, be a nonzero vector of C,, and let §, be the section E— Ex Coys
x > (x,14,), of the trivial line bundle £ x C,, — E (which is viewed as the
pull-back of the line bundle D?Qk(—wk) over I;"/Qk as in Definition 6.1.3(c)
via the projection g : E — E/Qk). Similarly, we define the section s,: E —
E x C,,. From the identities (5) and (12) (by considering the sections §, and
S,) we get that the line bundle (é*.,?)%j has a section

A

6] = [ll] . wj’]la)k]9
= I:é)b* 'Bj . w./,lwk] over Jf))j
J

= [@D;,Bju‘;j : lek], (14)

since ,3 jw; has image in Qi by the identity (10) taking 6 = ©, where
[X,1,] € £ denotes (X,1,,)mod Q, for ¥ € E. Similarly, using the
identities (11) and (13), the line bundle (n*@*f)lﬂj)_ has a section

J

8 =[x ) - wj, 1o ]

= @m-ﬁj-wj,wjfl(f,-)ffwj-ﬂwk] over D’
J

=|é ﬁ~wdfwﬁﬂn]

= \@7 Jjo Wi\t Wi

n R N
= ®‘D*v(tj)wk(wj Tj)ﬂ]wj ]lwk] (15)
J

From (14) and (15), we get that the line bundle . over 3 has section © o over
$* and sections (2 ). over ID; satisfying the following equation over Dj:

A ~ —-1-=,
(1)) =05 ) W™, (16)
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Since 3 — X is of degree N = # A and, for each 1 < j < s, there are N/d;
isomorphic copies of D; over D;, we get from (16) and Exercise 6.1.E.3,

deg(é*j) — Ndeg(0*%) = deg .

s N e
:Zza)k(wj 7).
="

Thus,
N ‘E
deg(0*.%) = N | deg(6*.%) + Zwk(wj_lrj) , since Tj:= d_j-’
j=1 !
ie.,
deg (é*jgk(—wk)) = N Pardeg (6* Lo, (—p)). (17)

where Pardeg denotes the parabolic degree of the G-bundle E with respect
to the section 6 and the line bundle £, (—wy) for the parabolic markings
T = (11, ...,Ts) (cf. Definition 6.1.4(d)). This proves the theorem. ]

6.1.E Exercises

In the following, ¥ is a smooth irreducible projective curve.

(1) Let G be a connected affine algebraic group and let » > 1. Show that
the affine algebraic group G ((C[[t]]/(t”))+ (cf. Exercise 1.3.E.10) is a
unipotent (in particular, connected) group with Lie algebra
g ® (tC[[£]]/(t")), where G ((C[[t]]/(t”))+ is the kernel of the
homomorphism G (C[[¢]]/{t"*)) — G induced by the C-algebra
homomorphism C[[¢]]/{t") — C, t — 0.

Use the above to show that for any R € Alg and n > 0, the canonical
homomorphism

k.G (R[[t]]/(t"+1)>+ — G (RII1/¢™) "

is surjective with kernel isomorphic (as a group) to the C-vector space

R & (3@c L), where G (RI11/(1")* is the kemel of the

homomorphism G (R[[t]]/{t")) — G(R) induced by ¢ — O.

Hint: By Exercises 1.3.E.10 and 1.3.E.6, R ~ G (R[[t]]/(t"))" isa
representable group functor, represented by an affine algebraic group
with C-points G (C[[#]]/(t"))" .
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(2) Let A be a group and let {r,: G,+1 — Gy}n>1 be an inverse system of
A-groups. Assume that each 7} : G2 s G2 is surjective, where G
denotes the subgroup of A-equivariants in G,. Let G be the inverse
limit of G,. Then G is canonically an A-group.

Prove that if HI(A, G,) = 0, for all n, then so is HI(A, G)=0.

(3) Let £ be a line bundle over X with nowhere vanishing sections o over

¥\p and p over D, (for a fixed p € X), where D, is the formal disc

centered at p in ¥ with a local parameter z. Write
My, = 01y, - B, for () € C(().

where D7 := Spec C((z)) is the punctured formal disc at p. Then show
that deg .Z = d, where d is the unique integer such that
4. B(z2) € C[[z]] with nonzero constant term.

(4) For any connected reductive algebraic group G, show that the two
alternative definitions of semistability/stability (cf. Definition 6.1.4(b))
are equivalent.

Moreover, show that if a G-bundle E — X is semistable (resp.
stable), then for any standard parabolic subgroup P of G and any
section u of E/P — X,

deg ¥ (ZLp(=1)) < 0 (resp. deg u* (Lp(—2)) <0),

for any nontrivial character A of P which is trivial restricted to the
connected center of G and is dominant (i.e., )»(ozl.v ) > 0 for all the
simple coroots a;”).

(5) Show that a vector bundle ¥ over X is semistable (resp. stable) if and
only if the associated frame bundle F (") (which is a principal
GL,-bundle over X, where n := rank(?")) is semistable (resp. stable) in
the sense of Definition 6.1.4(b).

Hint: A rank-r subbundle # of ¥ is given by a P,-subbundle

F(¥)p, C F(¥) (induced by a section u of F(¥)/P, — X) by taking
the associated vector bundle F'(¥)p, x Pr C” and conversely, where P,
is the maximal parabolic subgroup of GL,, stabilizing C" C C” under
the standard representation. Now,

deg(#') = deg (u*ﬁpy (—a)r))
and nw, — rw, is a character of P, which vanishes on its center, where

w, (diag(ty, ..., ty)) :=11... 1.
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(6) Let ¥ be a semistable vector bundle over X. Then show the following.
(a) For any nonzero ¢’y-submodule .% of ¥/,
n(F) < u(¥),

where the slope (%) has the same definition as in
Definition 6.1.4(a) for any &'y-module .%.
(b) For any nonzero O’y;-module quotient 2 of ¥,

w(2) = pu(7).
(7) (a) Let (2, p) be an s-pointed smooth irreducible projective curve,
where p = {p1, ..., ps} and let ¥ be a rank-n vector bundle over X.

A parabolic structure for ¥ at p; consists of a partial flag in the fiber:
1 2 li _
ViGViG GV =V
together with a set of markings:
1>/Lil>[,Li2>~-~>,bL§iZO,

where V), := ¥},. Such a ¥ with a parabolic structure is called a
parabolic vector bundle.

The parabolic degree of ¥ (with the above parabolic structure) is
defined to be

pardeg(¥) :=deg ¥ + Z Z dim(Vik/Vikfl)uf,

1<i<s 1<k<l;

where we set Vi0 = (0). The parabolic slope of ¥ (with the above
parabolic structure) is defined to be

Mpar (V) := pardeg(?")/ rank(¥).

The parabolic structure on ¥ defines a parabolic structure on any
subbundle # by defining a flag {Wid }1<d<m; in the fiber W), by
removing repeated terms in the filtration and renumbering them
successively:

VAW, CVENW, Coo CVINW, =Wy,
Further, we define the markings vlfi , 1 <d < m; by setting

d .

ok
Vi = Uy,

where k is the smallest integer with Wl.d C Vl.k.
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Finally, the parabolic bundle ¥ is defined to be parabolic semistable
(resp. parabolic stable) if for every proper nonzero subbundle %, we
have

Mpar(W) = Hpar(%) (feSP- ,upar(W) < Hpar(%))-

Now, prove that the above notion of parabolic semistability (resp.
parabolic stability) corresponds precisely to the notion of parabolic
semistability (resp. parabolic stability) for the corresponding frame
bundle F(¥') as in Definition 6.1.4(d). Write down the precise parabolic
subgroups P;, the sections o; of F(¥),,/P; and the markings 7; (cf.
Definition 6.1.2) under this correspondence.

(b) Show that a parabolic semistable vector bundle ¥ has a filtration
by parabolic semistable subbundles

V=202 2%=(©0)

such that (under the canonical parabolic structure)
(b1) Mpar(%) = ,vaar(y/)s foralll <i <¢-—1,and
(b2) ¥;/ V41 is parabolic stable, and
(b3) gr vV = @f;ll ¥;/V;+1 is independent (up to parabolic
isomorphism) of the above filtration of ¥" with properties (b1) and (by).
(8) Let f: G — H be a surjective homomorphism between connected
reductive groups such that the identity component of Ker f is a torus
and let E be a G-bundle over X. Then, show that if E(H) is stable
(resp. semistable) then accordingly so is E.
(9) Let ¥ be a vector bundle over X of degree d and rank r. Assume that
(d,r) = 1. Then, show that 7 is semistable if and only if it is stable.
(10) Let ¥ be a semistable vector bundle over X of degree 0. Then, show
that any nonzero section of #” is no-where zero.

Hint: A nonzero section gives rise to an injective &s-module map from
Ox (D) to ¥ for some effective divisor D.

(11) For a semisimple group G, show that any semistable G-bundle over P!
is trivial.

(12) Let E be a G-bundle over X for a connected reductive group G. Then E
is semistable (resp. stable; polystable) if and only if E(G/Z) is
semistable (resp. stable; polystable), where Z is contained in the center
of G.

Prove its analogue for the A-equivariant case.
Observe that Exercise 8 is a weaker version of this exercise.
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(13) Let H be a connected affine algebraic group and ¥ a smooth projective
curve. Then show that any H-bundle over X is locally trivial in the
Zariski topology.

Hint: Use the result that over a smooth affine curve any U-bundle is
trivial, where U is a unipotent group. Moreover, prove that if H is
reductive, then any H-bundle over X is Zariski locally trivial.

(14) Let H be a connected affine algebraic group and X a smooth projective
curve. Then show that any holomorphic H-bundle over
X* = ¥\{p1,...,ps} (for p; € ¥ and s > 1) is holomorphically
trivial.

Hint: Show that any holomorphic line bundle over ¥* is
holomorphically trivial by using the cohomology sequence
corresponding to the sheaf exact sequence induced from
ﬁho] — ﬁl?ol’f = €2ﬂif2

0—Z— ﬁho]—)ﬁf:ol%o.

(15) (a) A vector bundle ¥ over X is polystable (cf. Definition 6.1.4) if and
only if it is a direct sum of stable vector bundles all of which have the
same slope.

(b) Let ¥ = ¥1 & ¥3, where ¥; are semistable vector bundles over %
of the same slope . Then show that ¥ is semistable.
Thus, a polystable vector bundle ¥ is semistable.

Hint: Take any vector subbundle # C ¥ and consider its projection to
/1. Now apply Exercise 6.1.E.6(a) or the construction () in the proof of
Lemma 6.3.22 to conclude that u (%) < u.

(16) Following the notation in Definition 6.1.16, show that an A-equivariant
vector bundle ¥ over ¥ is A-polystable if and only if we can write

V=V,

where each V; is an A-stable vector bundle all of which have the same
slope.

6.2 Harder—Narasimhan Filtration for G-Bundles

In this section we assume that ¥ is a smooth irreducible projective curve over
C and G is a connected reductive group with a fixed Borel subgroup B and
maximal torus H C B with their Lie algebras g, b and b, respectively. Let
Z(g) (C b) be the center of g. By simple roots {«fy, ...,a¢} and fundamental
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weights {1, ...,w}, we mean the corresponding objects for the semisimple
Lie algebra g/Z(g). In particular, w;, a; € (h/Z(g))*.

Definition 6.2.1 Let 7: E — X be a G-bundle. Then, a P-subbundle
Ep C E for a standard parabolic subgroup P of G (cf. Definition 5.1.1) is
called a Harder—Narasimhan reduction (also called HN reduction for short or
canonical reduction) if it satisfies the following two conditions.

(a) The associated L-bundle Ep (L), obtained from the P-bundle Ep via
the extension of the structure group P — P/U =~ L, is semistable, where L
is the Levi subgroup of P containing H and U is the unipotent radical of P.

(b) For any nontrivial character A of P such that A € @le Z 4w, where
Z4 = Zs>o (in particular, X is trivial restricted to the identity component of
the center of G),

deg (Ep(L)) > 0, where Ep(A) := Ep x¥ C,.

By Theorem 6.2.3, such a reduction exists and is unique.
If we realize Ep C E via a section p of the bundle E/P — X (cf. Lemma
5.1.2), then the line bundle

Ep xP C) ~ u*(Lp(=1) (cf. Definition 6.1.3(c)). (1)
If E itself is semistable, then clearly it is an HN reduction.

Definition 6.2.2  For any G-bundle E — X, define the integer
dg = min {deg " (T,(E/Q))}.

where Q runs over all the standard parabolic subgroups of G and p runs over
all the sections of E/Q — X. (Here the relative tangent bundle 7, (E/Q) is
as defined in Definition 6.1.3(c).)

Since any u*(T,(E/Q)) is a quotient of the adjoint bundle

adE := E x©¢ g (G acting on g via the adjoint action),

deg uw*(T,(E/Q)) is bounded from below by using the Riemann—Roch theo-
rem for smooth curves (Hartshorne, 1977, Chap. IV, Theorem 1.3). Thus, dg
is indeed an integer.

Theorem 6.2.3  Let P be a standard parabolic subgroup and let Ep C E be
a P-subbundle of a G-bundle w: E — X given by a section p of E/P — X
(via Lemma 5.1.2) satisfying the following conditions:

() deg p* (Ty(E/P)) = dE.
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(B) There does not exist any parabolic P 2 P with a section i 0fE/16 — X
such that
deg ji* (T, (E/P)) =
Then Ep is a HN reduction of E. Thus, a HN reduction of E exists.
Moreover, Ep is the unique HN reduction.

Further,
HO (. Ep x" g/p) =0. (1)

Proof Let Ep C E be areduction satisfying conditions («) and (8). We first
prove that E p satisfies condition (a) of Definition 6.2.1, i.e., Ef := Ep(L) is
semistable.

We choose By, := B N L as the Borel subgroup of L. Assume, for contra-
diction, that E is not semistable, i.e., by Definition 6.1.4(b) there exists a
standard parabolic subgroup Q of L and a section o of E;/Q — X such that

dego™ (T,(EL/Q)) < 0. )

Consider the surjective group homomorphism py: P — P/U =~ L and let
P = pzl(Q), Since p7 (B) = By, P C P is a standard parabolic subgroup
of G. Since the homomorphism p;, induces an isomorphism:

Ep/Pl —2—>E[/Q

the section o of Ey/Q induces a section u; of Ep/P; C E/P). As earlier,
we denote the Lie algebra of any group by the corresponding Gothic character.
Then, we have the following exact sequence of Pj-modules:

0—p/p1 = g/p1 —> g/p— 0. 3)

Since p/p; =~ 1/q as Q-modules, the above exact sequence gives rise to the
following exact sequence of vector bundles over X (cf. Definition 6.1.3(c)):

0— o™ (Tw(EL/ Q) = ui (Tu(E/P) — w* (TW(E/P)) - 0. (4

Observe that 7 o w1 = u, where 7: E/P; — E/P is the projection. From
(4), we get

deg 1t} (Ty(E/Py)) = dego™* (T,(EL/ Q)) + deg i* (T,(E/ P))
< deg ¥ (T,(E/P)), by (2).

This contradicts the choice («). Thus, E; is semistable.
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We next show that E p satisfies condition (b) of Definition 6.2.1.
4
For any nontrivial character A of P such that A = Y n;o;, with n; € Z,
i=1
we need to show that

deg (Ep xP CA) > 0. 5

Fix ax ¢ Sp (where Sp is the set of simple roots of L) and let P, D P
be the parabolic subgroup with Sp, = Sp U {a} and let L, be its Levi
component containing H again. (If P = G, there does not exist any nontrivial
character A of P such that A € Zle Zy«a;.) Then the image of P under the
homomorphism p;,: P, — L is a parabolic subgroup Q of L, giving rise
to an isomorphism (as Q-modules, viewing Q as a subgroup of P under the
embedding L, C P>):

m/px=b/a (6)
Similar to the exact sequence (4), we get the exact sequence
0 — 05 (Ty(EL,/ Q) = W* (T,(E/P)) = u3 (T,(E/P2)) — 0,  (7)

where p, is the section u followed by the projection E/P — E/ P>, E;, 1=
Ep,(Ly) and o is the section of E;,/Q =~ Ep,/P C E/P induced by u.
From the exact sequence (7), we get

deg w* (T,(E/P)) = deg 03 (Ty(Er,/Q)) +deg 3 (T,(E/P2)) . (8)

From the ‘maximality’ of P with the minimality of deg u* (T,(E/P)) as in

(B), we get
deg o5 (Ty(EL,/Q)) < 0. ©)
Now, by Definition 6.1.3(c),
Ty(EL,/ Q) ~ EL,x? (1b/a) =~ Ep, x” (n2/). (10)

Clearly, A"P(1;/q) =~ AP(py/p) is a P-module and the character

chp (A'P(p2/p)) = —Ok, where 6 =mpa + »_ mia;,  (11)

o €Sp
for some mj; > 1 and m{‘ € Z . Combining (9)—(11), we get
deg o} (TU(ELz/Q)) = —deg (Ep xP (Cgk) < 0.
Thus,
deg (Ep xP (Ca'gk) > 0, forany d > 0. (12)
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From (12), we get that for some N > 0 and some m; € Z,
deg (Ep P Cﬂ) >0, (13)

where A = Zle n;; is as in (5) (in particular, A being a nontrivial character
of P, ny > 0 for some oy ¢ Sp)and 8 = N Zakesp nrog + ZO[,‘ESP
Now, NA and B are both characters of P (or equivalently characters of L) and
clearly they coincide on Z(I), where Z(I) is the center of the Lie algebra I of
L. Of course, being characters of L, they both vanish on the commutator [[,1].
Hence, NA = B on  and hence they coincide on L (L being connected). Thus,
by (13), we get deg (Ep x P (CNA) > 0, which gives deg (Ep x P C;L) > 0.
This proves (5), proving the first part of the theorem.

n;o;.

We now prove the uniqueness of the HN reduction.

Let Ep C E and Epr C E be two HN reductions (for standard parabolic
subgroups P and P’) given by sections wand ' of E/P — X and E/P' — X,
respectively. The L-bundle E; obtained from the extension of the structure
group via P — P/U =~ L is semistable by the definition of HN reduction,
where L D H (resp. U) is the Levi subgroup (resp. unipotent radical) of P.
Consider the P-module filtration:

Vo=0CcVicVaC...CVi=g/p

such that each A; := V;/V,_1, 1 < i < k, is an irreducible P-module. In
particular, U acts trivially on each A; (cf. Exercise 6.2.E.1).
Similarly, consider the P-module filtration

Wo=0CWyCcWC...CcW,=u

such that each B; := W;/W;_ is an irreducible P-module. Let ¥;, <, #;
and #; be the vector bundles over X associated to the P-bundle Ep by the
P-modules V;, A;, W; and Bj, respectively. For 1 <i <kand1 < j <n,

¥ C u* (T,(E/P)) and #; C ad Ep, (14)

where ad E p is the adjoint bundle Ep xP p > . We also let PBp+1 be the
vector bundle over ¥ associated to Ep — X via the P-module p/u. Then,
since [ >~ p/u, it is easy to see that

Ppv1 = ad(EL). 15)

Since each A; and B; (for 1 <i < kand 1 < j < n) is an irreducible
L-module, E; is semistable and %, is the associated adjoint bundle, by
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Theorem 6.1.7, we get that each of vector bundles .«7; (1 <i < k)and %; (1 <
J < n+1)is semistable (cf. Exercise 6.1.E.5). Clearly, for any 1 <i < k and
any 1 < j <n,

¢
(AP(A))) € @Z+ap, ch (A'P(B))) € P Zyep,  (16)
and both of these are clearly nontrivial characters of P. Hence, by
Definition 6.2.1(b), forany 1 <i <kand 1 < j <n,
deg @ <0 and deg %; > 0. (17)
Moreover, since A°P() is a trivial L-module,
deg B,4+1 = 0. (18)

In exactly the same way, we consider filtrations V/, of g/p" and W/, of 1’
giving rise to vector bundles 77/, .27}/, 7/].’, and %’}, over X. Analogous to (17)
and (18), we get, for all i’ and j’,

deg o7, <0 and deg %), > 0. (19)

Moreover, the vector bundles Mif and %', are semistable.

By the following lemma, there is no nonzero s -linear map from any %;
to 7. Thus, working through the filtration % of ad Ep and the filtration 7/
of ' (T,(E/P")), we get that

Homgy (ad Ep, " (T,(E/P"))) = 0. (20)
The exact sequence of P-modules
00— p—>g—g/p
gives rise to the exact sequence of vector bundles over X:
0—>adEp — adE — u* (Ty(E/P)) — 0,

and a similar sequence for the reduction (P’, u’). Thus, from (20), we get that

adEp CadEpr.
Similarly,
adEp CadEp.
Thus,
ad Ep = ad Ep/, as subbundles of ad E. 2n

https://doi.org/10.1017/9781108997003.008 Published online by Cambridge University Press


https://doi.org/10.1017/9781108997003.008

224 Parabolic G-Bundles

We assert that from (21) we get
Ep = Ep/ as subbundles of E. (22)
Take x € X and e, € E, (the fiber over x) such that
(Ep)x =e,-P and (Ep)y =e, g, P/, forsome g, eG. (23)
Then, by definition,
(ad Ep)x = [ex,p] and (ad Epr)y = [exgx,¥'],

where [e,, p] is the set of equivalence classes of (e,,Y) in E xGgasyY ranges
over p. Since

[ex, Pl = [exgx, '] = [ex, (Ad gx) - P'], by (21), 24)
we get

p=(Adgy) -y, equivalently P =g, P'g;'.

But since P and P’ are both standard parabolic subgroups, we get (cf.
(Borel, 1991, Theorem 11.16 and Corollary 11.17)) that g, € P and P’ = P.
Thus, from (23),

(Ep)x = (Epr), forall x € X,

proving that Ep = Ep: and hence E p is unique.

To prove identity (1), from the filtration ¥; of Ep x P g/p, it suffices
to prove that H*(X,o%) = 0 for all 1 <i < k. But, as shown above, .o/
are semistable vector bundles and further deg o; <0 (cf. (17)). Thus,
HY(Z,94) = 0 (e.g., by the next Lemma 6.2.4 applied to & = Oy and
ZF = 7). This proves identity (1).

This proves the theorem modulo the next lemma. O
Lemma 6.2.4  Let & and ¥ be two semistable vector bundles over % such
that

w(&) > uw(F). (1
Then
Homg (&,.7) = 0.

Proof If possible, take a nonzero f € Homgy(&,.%). Then by
Exercise 6.1.E.6,

(&) = n(f(&)) = u(F),

where (%) = %J, for any O’x-module ¥ This is a contradiction to (1).
This proves the lemma. O
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From the uniqueness of the HN reduction, we get the following.

Corollary 6.2.5 Let S be a smooth irreducible projective curve with the
action of a finite group A and let E be an A-equivariant G-bundle over X.
Then its HN reduction E p remains stable under the A-action, i.e., A-Ep C Ep.

Let f: G — G’ be an embedding between connected reductive algebraic
groups. Choose a Borel subgroup B of G (resp. B’ of G’) and a maximal torus
H C B of G (resp. H' C B’ of G’) such that

B'NG=B and HNG=H.

We fix these choices.

Let E be a G-bundle and let E’ := E(G’) be the associated (principal)
G’-bundle. Thus, E C E’ can be thought of as a G-subbundle of E’. Let
Ep C E and E;,, C E’ be the HN reductions to P and P’, for standard
parabolic subgroups P of G and P’ of G’.

Theorem 6.2.6  With the notation as above, assume the following.
Forany g € G such thatif P C gP'g™' , then g € P', (1)
and
UPP'NG) cUPH, (2)
where U (P") denotes the unipotent radical of P'. Then
Ep =Ep NE assubsetsof E'.

Proof  Consider the filtrations ¥ C u* (T,(E/P)) and #; C adEp as
in (14) of the proof of Theorem 6.2.3, where the P-subbundle Ep C E is
given by a section y of E/P — X. Similarly, consider the filtrations ¥}/ C
w™* (T,(E'/P")) and V/j’/ C ad E',,. As in the proof of Theorem 6.2.3 (using

Lemma 6.2.4), we conclude that (considered as subsets of E x ')
adEp CadE }),.

So far we have not used any of the assumptions (1) and (2). By an argument
towards the end of the proof of Theorem 6.2.3, we get (by using assumption
(1)): Ep C E',,, which gives

Ep CELNE, 3)
and

PC P NG. “)
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Let P, := P’ N G, which is a standard parabolic subgroup of G. From (3) and
(4), we get

Ep :=Epx" PP =EpLNE. (5)

Since the reduction Ep is a HN reduction, clearly E p, satisfies property (b)
of HN reduction as in Definition 6.2.1.
So far, we have not used the assumption (2). Now, by assumption (2),

UP)) cUPHYNG.

Conversely, U (P’)NG being a normal unipotent subgroup of Py, U(P)NG C
U(Py). Thus,

UPP)YNG =U(P). (6)

The inclusions P; < P’ and U(P;) C U(P’) induce the commutative
diagram

Py ——— P /U(P)

Pl ———P'/U(P"),
where the right vertical map is injective by virtue of (6). This gives that
Ep(L1) = Ep/(L)),
where L (resp. L') is the Levi component of Py (resp. P’) containing H
(resp. H').
Now, since E',, (L) is semistable (since E), is a HN reduction of E’) so
is its adjoint bundle ad E’, (L") (by Theorem 6.1.7). Moreover, ad E,, (L")
has degree 0. Similarly, ad Ep (L1) has degree 0. Thus, ad Ep (L1) is a
semistable vector bundle (by the definition of semistability of vector bundles
as in Definition 6.1.4(a)). Thus, by Lemma 6.1.5, Ep,(L1) is a semistable
Li-bundle. Hence, Ep, satisfies property (a) of HN reduction as well. Thus,

Ep, is a HN reduction of E. From the uniqueness of HN reduction (cf.
Theorem 6.2.3), we get that

P=P and Ep=EFEp.
Combining this with (5), we get

Ep = E}, NE, proving the theorem. =
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Corollary 6.2.7 Let G — G’ be an embedding of connected reductive
groups and let E be a G-bundle over X. Then, we have the following:

(a) If E(G’) is semistable, then so is E.

(b) If E is semistable and G is not contained in any proper (not necessarily
standard) parabolic subgroup of G’, then E(G') is semistable.

Proof (a)Let Ep C E be the HN reduction of E. Since E (G’) is semistable,
this is the HN reduction of E(G’). Thus, from Theorem 6.2.6, Ep =E
proving (a).

(Observe that the conditions (1) and (2) of Theorem 6.2.6 are trivially
satisfied since U (G) = {1}.)

(b) Let E,, C E(G’) be the HN reduction. By the assumption in (b),
condition (1) of Theorem 6.2.6 is clearly satisfied. By the proof of Theorem
6.2.6 (specifically identity (4), which does not require assumption (2) of
Theorem 6.2.6), we get

G C PN G, whichgives G C P'.

But since, by assumption, there is no proper parabolic subgroup of G’
containing G, we get P’ = G’ and hence E(G’) is semistable. This proves (b).
[m]

Remark 6.2.8 (1) The assumption in the (b)-part of Corollary 6.2.7 that
there is no proper parabolic subgroup of G’ containing G is, in general,
required. Take, e.g., G = H, G’ = SL,(C), where H is the standard maximal
torus of SL,(C). Take any line bundle .2 over X of positive degree and let E
be the corresponding G-bundle. Then E’ = E(G’) corresponds to the frame
bundle of the rank-2 vector bundle . & .Z*, which clearly is not semistable.

(2) Conditions (1) and (2) in Theorem 6.2.6 are missing in the correspond-
ing theorem (Biswas and Holla, 2004, Theorem 5.1). Their proof has a gap
which necessitated imposing conditions (1) and (2).

6.2.E Exercises

(1) Let H be an algebraic group and let V be an irreducible H-module.
Show that the unipotent radical U (H) of H acts trivially on V.

Hint: A unipotent group fixes a nonzero vector in any representation.
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(2) Let ¥ — X be a vector bundle. Then there is a unique filtration of ¥ by
subbundles:

0=%CHG - Sh=",

such that each ¥;/7;_ is a semistable vector bundle and, moreover, for
all2 <i <n,

w (/Yo < p(Yic1/Yi2),

cf. Definition 6.1.4(a) for the definition of .

This filtration is called the Harder—Narasimhan (for short HN)
filtration of 7.

Let F(7) be the frame bundle of ¥ and let F(¥') p be the HN
reduction of F(¥'), where P is a standard parabolic subgroup of GLy, N
being the rank of ¥ (cf. Definition 6.2.1). Then, the filtration of cN
induced by the parabolic subgroup P gives rise to a filtration of the
vector bundle ¥ = F(¥) xCL¥ C¥ from the reduction F(¥)p. Show
that this filtration is the unique HN-filtration of 7.

Conversely, show that the HN filtration of ¥ gives rise to the HN
reduction of the GLy-bundle F(¥).

(3) Let f: G — H be a homomorphism between connected reductive
algebraic groups such that the identity component of Ker f is a torus and
let E be a G-bundle over X. Then, if E(H) is semistable, so is E.
(Compare this exercise with Exercise 6.1.E.8.)
Hint: Express f as the composite G —/ f(G) < H.By
Corollary 6.2.7(a), E(f(G)) is semistable. Now use Exercise 6.1.E.8.

(4) Following the definition and assumptions as in Definition 6.1.16, show
that an A-equivariant G-bundle E over 3 is A-semistable if and only if it
is semistable.

Hint: Use Theorem 6.2.3.

6.3 A Topological Construction of Semistable G-Bundles
(Result of Narasimhan—Seshadri and its Generalization)

Let G be a connected reductive group and let K be a maximal compact
subgroup (which is an R-analytic group unique up to a conjugation). Let X
be a smooth projective irreducible curve of genus g > 1. This will be our tacit
assumption through this section unless stated otherwise.
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Choose any base point oo € X. Then, as is well known (cf. (Spanier, 1966,
Chap. 3, §8.12)), the fundamental group m1(X) = (X, 00) is isomorphic
with

m(8) = F(ai,br,az by, ... ag,by)/(TI5_, [a;, bi]), (*)

where F denotes the free group, [a;, b;] is the commutator a;b;a; lbi_ land ()
denotes the normal subgroup generated by the enclosed element(s). Moreover,
under this isomorphism,

(X \ p,oo) = F(ay,b1,a2,b, ... ,a4,bg), forany p # co € X.

Definition 6.3.1  For any group homomorphism p: 71(X) — G, we get a
holomorphic G-bundle E,, over ¥ defined by extension of the structure group
of the principal 71 (X)-bundle ¢ : ¥ — X to G via p, where I is the simply-
connected cover of X, i.e.,

E,:=% x™® G,

By the GAGA principle (Serre 1958, §6.3), E, is an algebraic G-bundle over
Y (cf. Section 1.1).

Ifimp C gKg~! forsome g € G, then p is called a unitary homomorphism
of m1(X) and E, is called a unitary G-bundle. A representation of 71(X)
in a finite-dimensional vector space V is called unitary if the corresponding
homomorphism p,: 71(2X) — GLy is unitary. Equivalently, V is unitary if it
admits a positive-definite Hermitian form invariant under 71 (X).

The homomorphism p is called irreducible if Im p is not contained in any
proper (not necessarily standard) parabolic subgroup of G.

A vector bundle ¥ over X is called unitary if there exists a finite-
dimensional vector space V and a unitary representation p,: 71(¥X) — GLy
such that ¥ >~ E, (V) := E,, xSV) v,

Lemma 6.3.2  Let Rg(g) be the set of all the homomorphisms from w1 (X)
to G and let Rk (g) be its subset consisting of unitary homomorphisms p with
Imp C K. Then Rg(g) acquires an affine variety structure and Rk (g) is a
compact R-analytic subset.

Moreover, there exists a ‘universal’ C-analytic G-bundle 6: & — X X
Rg (g) such that for any p € Rg(g), & ~ E,.

I xp

Proof  Consider the morphism of varieties:

£: (G x G)* > [G,G], ((x1,y1), ..., (xg.¥9)) > [x1. 311 - [xg, ygl-
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Then, by the identification (*) as at the beginning of this section, mapping
a; — xi, b = y;, we get

RG(g) =& 1(1).

Thus, Rg(g) acquires a natural affine variety structure as the reduced scheme
corresponding to the scheme-theoretic fiber over 1. Now, Rk (g) := Rg(g) N
K*?¢ and K C G is an R-analytic subgroup. Hence, Rk (g) has a natural R-
analytic space structure and Ry (g) being a closed subset of K *%¢ is compact
in the analytic topology.

We now construct the family & over ¥ x Rg(g).

Consider the right holomorphic action of 1 (X) on ¥ x Rg(g) x G by

Fp.g) vy =G yv.0.p(r Ne).
for iei,peRg(g),geG and y e (X2).

Since the action of 771 () on ¥ is fixed point free and properly discontinuous,
so is its action on £ x R (g) x G. Thus, we get a C-analytic space

&= (% x Ro(9) x G) /mi (%)
together with holomorphic projection

: & — X x Rg(8),[%,p,8] = (q(%),p),

where [X, p, g] denotes the m{(X)-orbit of (x,p,g). Then, 8 is a C-analytic
principal G-bundle under the right action of G on & via the right multiplication
on the G-factor (local triviality of 6 is easy to see since g : Y > Tis locally
trivial). By construction,

Elsw, = Ep, forany p e Rg(g). o

Definition 6.3.3  Let 3 be a smooth irreducible projective curve with the
faithful action of a finite group A and let ¥ := by /A be the quotient (smooth)
curve. If the genus g of T is 0, we assume that there are at least three

ramzﬁcatton points of ¥ - %. Let§ q: 3 — ¥ be the simply-connected cover
of ¥ and let 7r; be the fundamental group of T with resBect to a fixed base

point in . Then, there exists a subgroup m C Autho () such that 7 acts
discontinuously on > and 7 is a normal subgroup of m (771 acting of course

properly discontinuously without fixed points on ). Moreover, /m; ~ A
and they satisfy
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<M
M

S/r —> /A,
where the two vertical maps are the canonical orbit maps and the bottom
horizontal morphism is induced by

S/~ (§/m) /(71/711) ~ $/A.

In lzlct, 7 is the subgroup of Authol(f]) corlsisting of those automorphisms o
of 3 which commute with the quotient g : IS ¥, i.e.,,q oo = q. Then, itis
well known (e.g. (Serre, 1992, §6.4) or (Jones and Singerman, 1987, §5.10))
that 7 has a presentation

w =~ F(ay,by,a2,b2, ... ,ag,bg,c1, ...,c5)/ M,
where F is the free group and M is the normal subgroup generated by
d
W= (Hle[ai,bi]) e YL ,cfx.

Here d; is the ramification index of p; (i.e., the order of the isotropy
subgroup of any preimage of p; in 3, where P1,-..,Ps € X are precisely the
ramification points).

Let G be a connected reductive group. For any group homomorphism
0: m — G we get an A-equivariant G-bundles E 5 over T as follows:

Eﬁ:zf)x”’ G — 3,

where w1 acts on G via the left multiplication through the representation
,6|n1. The A-equivariant structure on Ej; is given by fixing an identification
A ~ 7 /m and defining

y-lzgl=1z-y L p(y)gl fory em,ze ¥ andg € G,

where [z,¢] € E 5 denotes the equivalence class of (z, g). This action clearly
descends to give an A-equivariant structure on E 5

We can clearly extend the definition of unitary (resp. irreducible) homomor-
phisms p: 7 — G. Similarly, we can define a unitary representation of 7. If o
is unitary, we call the corresponding A-equivariant G-bundle E 5 A-unitary.
Similarly, an A-equivariant vector bundle ¥ over 3 is called A-unitary if
there exists a finite-dimensional vector space V and a unitary representation
0o: ™ — GLy such that Y ~E 5, (V), as A-equivariant vector bundles.
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Proposition 6.3.4  We follow the notation and assumptions as in the above
Definition 6.3.3.

(a) For any unitary homomorphism p: © — G, the associated A-equivariant
G-bundle E; is A-semistable.
(b) Further, such on E’g is A-stable if and only if p is irreducible.

Proof (a) Let p be a unitary homomorphism. To prove that E 5 1S
A-semistable, by Exercise 6.2.E.4 and Lemma 6.1.5, it suffices to show that
the adjoint vector bundle ad £ o Over 3 is semistable, where p := Oz, - But
ad E, is the vector bundle associated to the SLy-bundle Eq,, where Ad p is
the composite homomorphism

Ad
m 5G5S sL,.

Since p is unitary, so is Ad p.

We now show that for a unitary homomorphism p,: m; — SLy (for
a finite-dimensional vector space V), the corresponding vector bundle
Y = E,, (V) = E,, x5V V is semistable.

Let # be a vector subbundle of ¥ of rank r. Since deg ¥ = 0, we need to
show that deg # < 0. Consider the line bundle

NHW CNY.
Assume, if possible, that deg # > 0. Then, there exists a degree 0 line bundle
£ over % such that
HYE, 2@ NW) #0. (1)

Since V is a unitary representation of 71, so is A" V. Also, the line bundle .
being of degree O comes from a unitary character x (i.e., -dimensional unitary
representation C,) of 7y (cf. Exercise 6.3.E.3). Choose a positive-definite
my-invariant Hermitian form on C, ® A"V and decompose

Cy, ANV =V,aV}5

where V,, := [C, ® A"V]"! is the subspace of mi-invariants and VOJ- is its
ortho-complement. Decompose the vector bundle accordingly as

LNV =Y,V .

Of course, ¥, is a trivial vector bundle. Consider the projections p;: .Z ®
NY - YVyand pr: QN YV — ”f/(} and let i denote the inclusioni: . ®
NW — £ ANV, By the next Lemma 6.3.6,

HO (2%) =0 )
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and hence
p2oi =0, by (1). 3)
Further, since deg (£ @ A"#') > 0 and ¥, is a trivial vector bundle,
proi=0. “)
Combining (3) and (4), we get i = 0, which is a contradiction. Hence,
deg # < 0, proving the (a)-part of the proposition.

(b) Assume that p: 7 — G is an irreducible unitary homomorphism. We
need to show that £ 5 is an A-stable G-bundle.

Let Q be a standard maximal parabolic subgroup of G and let i be an
A-equivariant section of E 5/ Qk — 3. Then, following Definition 6.1.16, we
need to show that

deg i* (L, (~a0)) <0, 5)
where d >0 is chosen so that w; := dwy is a character of Q; and

jgk(—(bk) = Eﬁ x Qk Cg, over Eﬁ/Qk. Since, by the (a)-part, 12“/3 is A-
semistable, we get

deg i* (.,?Qk(—a)k)) <0.
Assume, if possible, that
deg(* Lo, (—ax)) = 0. (6)

In particular, i * .,?Qk (—ay) is a A-unitary line bundle (cf. Exercise 6.3.E.3).
Let V (@) be the irreducible representation of G with highest weight wy. Then,
we get an embedding

J:G/Qk = P(V(ax)), g0k [gu4],

where vy is a nonzero highest-weight vector of V(wy) and [gvy] denotes
the line through gvy. Let T be the tautological line bundle over P(V (wy))
restricted to G/ Qk. Then, since 7 is the homogeneous line bundle over G/ Qy
corresponding to the character w; of Qg, we get that, as A-equivariant line
bundles over E 5/ Qk:

ij(—@k) ~ E/; x Qk Cvy — EA/;/Qk.
Thus,

[* Lo, () C E; x9 C(G - vy) C E5(V (@), (7
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where C(G - vy) is the cone C - (G - vy ) inside V (wg). Assuming (6), we get
that o* (ij (—d)k)*) ® Eﬁ(V(cbk)) is a A-unitary vector bundle and, by (7),
HO (zu* (.,?Qk(—a)k)*) ® Eﬁ(V(J)k)))A 0.

Thus, by the following Lemma 6.3.6 and the first inclusion in (7), we get that
there exists a g € G such that the line Cgv is stable under 7. This gives,
from the embedding j: G/Qx <> P(V (&y)), that Im(p) C g0rg . Thisisa
contradiction to the assumption that p is irreducible. Thus, (5) is satisfied and
hence 12"/5 is A-stable.

Conversely, assume that p is unitary and E 5 is A-stable. Then we need to
show that p is irreducible. Assume, for contradiction, that p is not irreducible.
Thus, Imp C gQig™', for some ¢ € G and a standard maximal parabolic

subgroup Qy of G. Since 12"'5 o~ Eg—lﬁg (cf. Exercise 6.3.E.1), we can assume
that

Im,é C Ok-
Then
E;/OQr~E; x9 G/Qr =% x™ G/Qk DT x™ Qi/Qk = %.

This gives rise to an A-equivariant section i of E 5/ Qk over T Itis easy to
see that (as A-equivariant line bundles over X)

i (Lou(—i0) = 5 x™ Ca, (8)

where my acts on the 1-dimensional space Cg;, via the character oy of Qp
through the homomorphism pjr,: 71 — Q. Since p is unitary, by (8),
we have that ﬁ*(fgk(—a")k)) is a A-unitary line bundle. Further, E 5 being
A-stable,

deg 1" (Lo, (@1)) > 0. ©)

Thus, for N > 0, Ho(fl,/l*(ij (Nay))) # 0 (cf. (Hartshorne, 1977, Chap.
IV, Corollary 3.3)). Hence, by (8) and the next lemma for A = (1), m;
acts trivially on Cyg,. In particular, by (8) again, ﬂ*(ka (Nay)) is (non-
equivariantly) a trivial line bundle over 3, which gives deg ,&*(fQ (Nay)) =
0 and hence deg /l*(.iﬁQk (wr)) = 0. This contradicts (9). This contradiction
shows that for E 5 to be A-stable, 0 must be irreducible. This proves the
proposition modulo the following Lemma 6.3.6. O

Remark 6.3.5  From the above proof we see that any unitary line bundle .¥
over 3 has deg ¥ = 0.
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Lemma 6.3.6  We follow the notation and assumptions as in Definition 6.3.3.
Let p,: 1 — GLy be a finite-dimensional complex representation such that
Im o, leaves a positive-definite Hermitian form {-,-} on V invariant. Then,
there is a canonical isomorphism from the group cohomology

Ho(z, V) — HY(2,%;)4,

where ¥} is the A-equivariant vector bundle E 5, (V) over .

Moreover, any section s € H 0, ”f/l;g)A pulled back to S s of the form
5(x) = (X,v,), for some fixed v, € V.

Proof Decompose V =V, & VOJ-, where V, := V7 is the subspace of
m-invariants in V and V;;" is the ortho-complement of V,, in V (which is clearly
a w-module). Then

H'm, V)=V, and ¥ = E; (Vo) @ Ej (V). (1)
Of course, V, being a trivial 7-module and by being irreducible and projective,
HOS, E5, (Vo)A = V. 2)

So, to prove the lemma, by (1) and (2), it suffices to show that
HO(S,Ep, (Vi) =0, (3)

Now, by the definition, for any 7-module W, the associated A-equivariant
vector bundle # := % x™ W has

HOS, )4 = {Hol. maps f: T oW satisfying the following identity}
“)
fG-o)=0"1. f(&), forall € ¥ and o € 7. (5)

If # is a A-unitary vector bundle, then, for any such f, we get
| f@E o) =f&)], forall €% and o € 7.

Thus, || f(¥)]| descends to a continuous function on X; in particular, it attains

a maximum o say at X, € 3. Choosing an appropriate orthonormal basis of
W, we can write (for n = dim W)

=) f&) =(.0,...,0).
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Now, fi: Y > C being a holomorphic map, Im f; is open (unless it is a
constant). In particular, if f] is non-constant, there exists y € 3 with f) =
(@ + €, o(3), ..., fn(¥)), for some € > 0. This is a contradiction since
[l f ()|l < «. Thus, f1 is a constant giving

»

f&X) = (o, fo(X), ..., fu(x)), forall X e X.

But, since || f(X)|| < a,weget fr=...= f, =0,i.e,

f&) =(,0,...,0). (6)
Thus, by (4) and (5),

HOE, )4 ~w™.
Since (VOJ-)” = 0, we get (3). This proves the first part of the lemma. The
second part follows from (4), (5) and (6). O

As a corollary of the proof of Lemma 6.3.6, we get the following with the
same notation and assumptions as in Definition 6.3.3.

Corollary 6.3.7  Let p, p’ be unitary homomorphisms m — G. Then
E; >~ Ey (as A-equivariant holomorphic G-bundles over 2) if and only if

1

o =gpg~", forsome geG.

Moreover; if p and p’ both have images in a maximal compact subgroup K
of G, then g (as above) can be taken to lie in K.
Proof  If p’ is conjugate of 0, then Eﬁ ~ l:?/;/ (see Exercise 6.3.E.1).

Conversely, assume that E 5 LE & as A-equivariant G-bundles. By conjugat-
ing o’ by some g € G, we can (and will) assume that Im 6 and Im p’ both lie
in the same maximal compact subgroup K of G. Similar to condition (5) in the
proof of Lemma 6.3.6, we get that ¢ is induced from a holomorphic function
Q: > G satisfying

G -0)peH=p0"Hg®R), for i€ and o €, (1)

in the sense that the map (x,g) — (x,9(Xx)g), for x € s, g € G descends to
give the isomorphism ¢.

Take a faithful representation i : G < GLy and realize W := EndV as a
G-module under the conjugation:

g-A=i(g)Ai(g)"", for g€ G and A €EndV.
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Put the standard positive-definite Hermitian product on W:
{A,B} = trace AB¥,

where B* is the adjoint of B taken with respect to a fixed K -invariant positive-
definite Hermitian product on V. Clearly {,} is K-invariant; in particular, it is
invariant under both 6 and p’ (this is where we use the assumption that Im 0,
Imp’ C K). ~
From (1) we get, for any X € Sando € 7,
li@EoNI| = 11i(p' (e~ Ni@E)i (o))
= [lig®]l, since p(0),p'(0~") € K.
Thus, [|i o @|| descends to a continuous function on 3. By the same argument
as in the proof of Lemma 6.3.6, we get that ¢ ¥ — G is a constant function,
say §(3) = g, € G. Thus, by (1),
pe™ =g 15/ (07D, , forall o €.

Hence, p and p’ are conjugate.
The ‘Moreover’ assertion follows from (Helgason, 1978, Chap. VI,
Theorem 1.1), proving the corollary. O

Lemma 6.3.8  We follow the notation and assumptions as in Definition 6.3.3.
Let p: w1 — G be a unitary homomorphism such that the corresponding holo-
morphic G-bundle E, := $ x™ G over ¥ is holomorphically A-equivariant,
where | = nl(ﬁ)). Then, p extends to a unitary homomorphism p: w7 — G
such that

E 5 = Ep, as A-equivariant holomorphic G-bundles. €))

Proof  Any A-equivariant structure on E, (using the pull-back of E, to T x
G) is given by

o [% gl =[x 0, (¥)gl, forc emr,iecTandge G, 2)
where g5 : ¥ — Gisa holomorphic map satisfying
(@) Qoy0, (%) = @5, (X ~o2_1)g0(,2(12), for 01,00 € T and X € f], and

(b) g0 G Hp(w) = p(opo ™) (F), forp € 11,0 e Tand ¥ € X.

Moreover, since A = 7 /m1; in particular, 7y acts trivially on E,. Thus,

(©) 9u(X) = p(u), forallp emandx € .
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Since p is unitary, by using the same argument as in the proof of Corollary
6.3.7, we get (using (b) and comparing it with identity (1) of Corollary 6.3.7):
Vg ¥ — G is a constant function with image denoted ¢, € G. In
particular, by (a),
(50102 = @J] ¢02~ 3)
Further, by (c), we get
¢|T[1 = p-

Thus, setting p = ¢: 7 — G we get (1) from (2) and (3). Of course, 0 is
unitary since 71 is of finite index in 7. O

Definition 6.3.9 (A construction of topological G-bundles)  We take ¥ and
G as at the beginning of this section. For any continuous map c: ' — G,
construct a topological principal G-bundle F, over X as follows. Fix a base
point p € X and take an open disc D, in ¥ around p. Fix a homotopy
equivalence 5 : D;‘, — S!, where D;‘; = D,\{p}, and let c: D; — G be
the composite ¢ o h. Let ¥* := X\{p}. Take the trivial G-bundles

D,xG— D, and ¥£*xG— X¥
and ‘clutch’ them via ¢ to get a topological G-bundle F, over X, i.e.,
F.:=(Dp x G)U(Z* x G)/ ~,
where

(x,8) € D, x G~ (x,c(x)g) € E* x G, for x¢€ D;‘, and g€ G.
(1)

The projection F. — X is obtained by the projections to the first factor. It
can be seen that the topological G-bundle F, (up to an isomorphism) does
not depend upon the choices of ¢ in its homotopy class, p, D, and h (cf.
Exercise 6.3.E.2). Thus, we get the ‘clutching’ map

n: [S1,G] — Bun’(2), [c] > Fe,

where [S!, G] s the set of (free) homotopy classes of maps from S ' Gand
BuntgP(E) is the set of isomorphism classes of topological principal G-bundles
over X.

Lemma 6.3.10  The above map
n: (5", G] — Buntgp(E)

is a bijection. Of course, [SL,G]is bijective with 71 (G).
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Proof  Since D, is contractible, any G-bundle over D, is trivial (cf.
(Steenrod, 1951, Corollary 11.6)). Further, since X* is homotopic to a
1-complex and the classifying space BG has trivial fundamental group
(G being connected), any G-bundle over X* is trivial. From this, we see that n
is surjective.

To prove the injectivity of 7, take two continuous maps c1,¢2: S — G and
assume that there exists a G-bundle isomorphism:

F—>F

NS

For any i = 1,2, take the section u; of F, D, given by

pi(z) = (z,1) € D, x G, forany z € D),
and the section o; of Fy, = given by
0i(z) = (z,1) € T* x G, forany z € T*.
Thus, by identity (1) of Definition 6.3.9,
Wi = 0j - ¢; Over D;‘,. (D
Also, let 1), (resp. 03) be the section of FCQle (resp. Fe,|x+) given by
Wy :=¢@opu and o} :=¢ooj.
Then, we get continuous functions «: D, — G and : ¥* — G such that
w2 = wy -« over D, and 03 = o} - B over T*. (2)
From relations (1) and (2), we get
¢1(2) = BR)&(a(z)”" forz € D, 3)
Since « is defined as a continuous function on D,
a: D}, — G is homotopically trivial. 4

Similarly, since 8 is defined as a continuous function on X*, Dy: D;‘; —- G
is also homotopically trivial, as the following argument shows.

Denote ,B‘D* = . By (Spanier, 1966, Chap. III, §8), the induced map
Iyt m(D oo) — m(X*,00) from the inclusion i : D* — X*, where oo
is any base point in the boundary of D, takes a generator

o€ m(D;;,oo) > [a1,b1].. . [ag,be] € w1 (E¥,00)
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(cf. the beginning of this Section 6.3 for the description of 71 (X*, 00)). Thus,
the composite map

Bi = Bu 0 is: T1(D}y,00) = 71(G, B(00))
is trivial since 1 (G, B(00)) is an abelian group. From this we conclude that
B: D}, — G is homotopically trivial. (5)

Combining (3)—(5), we conclude that ¢y and ¢, are homotopic, proving the
injectivity of 7. O

Lemma 6.3.11  Let genus g of ¥ be > 2 and let G be a connected
semisimple group. Then, for any F € Bun[GOP(E), there exists an irreducible
(unitary) homomorphism pp: m(¥) — K C G such that E,, ~ F as
topological G-bundles, where E . is as in Definition 6.3.1.

Proof Leta: K — K be the simply-connected cover of K. Fix any ¢ €
Kera. Then, of course, ¢ is a central element of K (hence ¢ belongs to any
maximal torus of K) and K being semisimple, Ker « is finite. We assert that
there exists a group homomorphism

pe: m(T¥) > K, suchthat j.(n) =c,

where, as earlier, ¥* = X \ p, oo € X is any point lying on the
boundary d D), of a small disc D), around p in X, 71(X*) denotes 1 (X%, 00)
and p is a generator of Kerw(X*) — m(X,00) (which is an infinite
cyclic group generated by orientation preserving homeomorphism (S',1) ~
(dDp,00) C X¥).

Recall, from the beginning of this Section 6.3, that we have generators
{a;,bi}1<i<g C m1(X¥) such that

nl(E*):F(a19b17a27b27"'9ag1bg} (1)

and u = I"I‘le[a,-,b,-]. Fix a maximal torus 7 C K and take a Weyl group
element w € W such that the map

17—1

cw: T —>T, T+ wiw i

has finite kernel. (Such a w € W exists; e.g., we can take w to be a Coxeter
element.) Since c¢,, has finite kernel, it is surjective. Take 7, € T such that

Cw ({o) =cC. (2
Now, consider the homomorphism (since g > 2 by assumption)

e (T > K, ay > w, by > By, ay > 1, by > 1, a;,bi — 1 fori > 2,
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where 7' €T is any element such that T is the smallest closed subgroup
containing 7’ and w is a representative of w in the normalizer N 12(7:) of T
in K. From (2), we see that p.(u) = ¢. Since ¢ € Kero, 2 0 p.: 71 (2*) - K
descends to a homomorphism p.: 71(¥) — K C G. We next claim that
pc 1s an irreducible homomorphism, i.e., Im p. is not contained in any proper
parabolic subgroup P of G.

Assume, if possible, that

Imp. C P. (3)
By the definition of p,,
Imp. D {T,w}, where T := o(T) and w := a ().
If (3) were true,
{T,w}C PNK.

In particular, 7 is a maximal torus of P N K. Moreover, P being a proper
parabolic subgroup, there exists a nontrivial connected subgroup Z C T cen-
tralizing P N K. Thus, w commutes with Z. From this we see that ¢, has
infinite kernel contradicting the choice of w. Thus, (3) is not possible, i.e., o,
is irreducible.

Take any

ceKera >~ m(K) ~m(G)

and let p.: 7 (Z*) — K C G be as above, where G is the simply-connected
cover of G. This descends to give an irreducible (unitary) homomorphism
pe: (X)) — K C G. Let E,,_ be the corresponding stable G-bundle over
% (cf. Proposition 6.3.4 for A = (1)). Then

Ep. >~ n(c), as topological G-bundles, “)

where ¢ also denotes the corresponding element of the fundamental group
m1(K) ~ m1(G) (cf. Exercise 6.3.E.4).
Thus, the lemma follows from Lemma 6.3.10. O

Continuing the assumption at the beginning of this Section 6.3, let G be a
connected complex reductive group and let K be a maximal compact subgroup.
Let ¥ be a smooth irreducible projective curve of any genus g > 1 and
let p: m(¥) — K C G be a (unitary) homomorphism. Let E, be the
associated holomorphic G-bundle over X (cf. Definition 6.3.1). For any finite-
dimensional complex representation V¢ of G, we denote the associated vector
bundle E, xG Ve by E,(Vc). With this notation, we have the following
proposition.
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Proposition 6.3.12  Let V be a finite-dimensional real representation of K.
Then the natural map (induced from the sheaf embedding L(V,) — E,(Vc))

i H' (Z,L(V,)) - H' (Z,E, (Vo))

is an isomorphism of real vector spaces, where L(V,) is the local system over
Y obtained from the representation V of w(X) through p, Vo := V @r C
is the complexification of V which is canonically a G-module (obtained as
the complexification of the K -module V) and H 1 (E, E p(V(c)) is the coherent
cohomology of the vector bundle E,(Vc) over X.

Further, since by assumption, the genus g of X is at least one, there is a
natural isomorphism

jrH (mi(2),V,) ~ H' (Z,L(V))). (1)

Proof Choose a Hermitian metric on the complex curve X (which is
automatically Kéhler) and a K-invariant positive-definite Hermitian form on
Vc. By the Hodge decomposition applied to the local system L(V, ®g C) over
% (cf. (Griffiths and Harris, 1978, Chapter 0, §7) where the corresponding
result for the trivial local system is proved; the proof applies equally to the
local systems), we get (using the Dolbeault isomorphism, cf. (Griffiths and
Harris, 1978, Chapter 0, §3))

H' (S.L(V, @2 ©) = H' (2.E,(Ve) @ H' (2.2'(2) ® E,(Vo))
~ H' (,E,(Vo)) ® H! (T,E,(V})),
~H' (Z,E,(Vo)) @ H' (,E,(Vo)), 2)

since V has a K -invariant positive-definite form, where Q! () is the sheaf of
holomorphic 1-forms on ¥ and M for a C-vector space M denotes the same
space as M wherein the complex multiplication is twisted by the conjugation.

From this it is easy to see that the natural R-linear map i : H Iz, L(V,)) —
H(=Z, E,(Vc)) is injective. By the isomorphism (2),

dimg H'(Z,L(V,)) = dimc H' (£,L(V, ®r C)) = 2dimc H' (2, E, (V)
=dimg H' (Z,E,(Vo)). (3)

From the injectivity of i and the equality of the dimensions as in (3), we get
that 7 is an isomorphism.

The isomorphism (1) follows from Cartan and Eilenberg (1956, Chap. X VI,
§9) by using the contractibility of the simply-connected cover ¥ of ¥ (since
g=1. m
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Remark 6.3.13  For a complete proof of Proposition 6.3.12, we refer to
Narasimhan and Seshadri (1964, Proposition 4.4). Moreover, in the setting of
Definition 6.3.3, for a (unitary) homomorphism p: 7 — K, the map i of the
above Proposition 6.3.12 is A-equivariant and hence we get an isomorphism:

A A A A A
H! (E,L(Vp)) — H! (E,Eﬁ(V@)) , where p = iy (8-

Corollary 6.3.14  Let p: m1(X) — K be a (unitary) homomorphism and
let ad p be the corresponding adjoint representation of w1(X) in t := LieK.
As earlier; we assume that the genus g of X is at least 1. Then

dim H' (771(2), ad p) = 2dim H® (71 (), ad p) + 2(dim K)(g — 1). (1)
Further, p is irreducible if and only if
dim H% (71 (%), ad p) = dim3, )

where 3 is the center of .
Thus, p is irreducible if and only if

dimHl(m(E), adp) =2 ((dimK)(g — 1) + dim3). 3)
Proof By Proposition 6.3.12,
dimg H' (1(2), ad p) = 2dimc H' (T, ad E,) , 4)

wheread £, = E, =G g.
By the Riemann—Roch theorem (cf. (Fulton, 1998, Example 15.2.1))

dimg H° (2, ad E,) = dim¢ H' (2, ad E,) + dim K)(1 —g),  (5)

since the adjoint action of G on A'"°P(g) is trivial.
Combining (4) and (5), we get

dimg H' (1(2), ad p) = 2(dim K)(g — 1) + 2dimc H° (L, ad E,,)
= 2(dim K)(g — 1) + 2dim¢c H%(71 (), (ad p)c),
by Lemma 6.3.6 for A = (1)
=2(dimK)(g — 1) 4+ 2dimg H(71 (), ad p).

This proves (1).

We next prove (2). If dim H O(r1(2), ad p) > dim 3, then there exists a non-
central element x € f fixed by 71 (X). Thus, Im 71 (2) C Zg (x), where Zg (x)
is the centralizer of x in K, which is a proper Levi subgroup of K (since x is
non-central) contained in a parabolic subgroup of G. Thus, p is not irreducible.
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Conversely, if p is not irreducible, then Im p C K N P, where P is a proper
parabolic subgroup of G. But K N P being compact, K N P C L p, for some
Levi subgroup Lp of P. Recall that for any Levi subgroup Lp of a proper
parabolic subgroup P, the centralizer 3:(K N Lp) of K N L p in ¥ satisfies

3K N Lp) 2 3.
Hence
dim Ho(m(E), ad p) > dim3,

contradicting (2). This shows that p is irreducible and hence (2) is proved.
Combining (1) and (2) we, of course, get (3). m]

Let K be a compact connected Lie group. For any integer g > 1, let F, be
the free group on the symbols {ay,b1,a2,b2, . .., aq, bg}. Define the map

B: K* — [K.K1, ((h1,k),(ha,ka), ..., (hg,kg)) +> TIE_ [hi ki

Any p = ((h1,k1), ..., (hg.kg)) € K?¢ determines a group homomor-
phism o: F; — K taking a; — h; and b; — k;. If p € B~ (e), then the
homomorphism p descends to a group homomorphism p: 71 (X) — K, where
g is the genus of X (cf. equation (*) at the beginning of this section).

Proposition 6.3.15  Forany € 7' (e),
Ker((d)) =~ Z'(m1(2), ad p), (1)

where Z (71 (), ad p) denotes the space of 1-cocycles of w1(X) with coeffi-
cients in ad p = ¥ (in the standard cochain complex as in Serre (1997, Chap. I,

§5.1)).

Proof For any & € K¢, the tangent space T5(K2¢) is identified with
T;(K?¢) = 28 under the right multiplication by !, where & := ((e, ¢), (¢, €),
..., (e,e)) and similarly the tangent space Ty (K) is identified with T, (K) = {.
For any a € Fy, define the function

Dy K > K by @u(5) =6(). )
Then, for a1, ay € Fy, clearly
DBy (5) = Py, (6) Dy, (5), forany & e K%, (3)
Forany p € K*¢ and v € T5(K 28, define the function

Sv: Fg > 1 by (@) = (dPo);s(v),
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where we have identified 7o, (5)(K) = t as above. Then we claim that
Fv € Z' (Fg, ad ). )
For a1, ap € Fg, by (3),
Sv(@raz) = d(Py, - Po,)5(V)
= (dPg,)5(v) + (Ad Dy, (D)) - ((dDPay)5(v)), 4)
where the last equality follows from the following equality for any & € K28:

P, (5) Py (6) - Py (5) ' Pary (5)
= (@0 @Pa, (D7) (P (D) - (®0,8) - P () 7") - ¥ (B)7).
Rewritten, the identity (5), of course, is the identity
Folanan) = Fula) + (Ad p@)) - (Fo(@2)),

which proves (4).
Now, by definition,

BG) =Pt 14, 510
and hence, for any v € T;(K%¢),
dB)5(v) = Fy (5_ Lai, bi) -
Thus,
v € Ker(dB); < &» (T15_,[ai,bi]) = 0. (6)

So far, in the proof, we took an arbitrary p € K 28 But now we take
0 € Kerp so that ad p is a 71(X)-module. In this case, by (6) and (*) at
the beginning of the section, we get a linear map

&: Ker(dB); — Zl(m(E), adp), v Fy. @)

We claim that § is an isomorphism.

Take v € Ker {, i.e., & = 0. In particular, &, (a;) = Fv(b;) = 0. By the
definition of §,, this gives that for all the coordinate projections 7 : K 28
K,1 < j <2g (dnj);(w) = 0. This, of courses, forces v = 0, i.e., §F is
injective.

To prove that § is surjective, take § € Z (D), ad p). Since § is a
cocycle and {a;, b;} generate (%), 6 is completely determined by its values
8(a;i),8(b;) € ad p. Consider the vector

v =((8a1),8(b1)), ..., (8(ag),8(by))) € .
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Then, it is easy to see from the definition of &, that
v(a;) = 8(a;) and Fy(b;) =68(b;), foralll <i <g.

But since both of § and &, are cocycles for F, with coefficients in ad p,
and they coincide on a; and b;, we get that § = §,. Moreover, since § €
ZY(71(2), adp) and §=, as cocycles for F,, by (6), we get that v €
Ker(dpB);. This proves the surjectivity of § as well. Hence § is an isomor-
phism, proving the proposition. O

Combining Corollary 6.3.14 and Proposition 6.3.15, we get the following
result.

Corollary 6.3.16 Let B: K?¢ —[K,K] be the map given above
Proposition 6.3.15. Take p € B~ (e). Then, (dB); is of maximal rank (equal
to dim[K, K1) if and only if the corresponding representation p: 71(X) — K
is irreducible.

Thus,

My(K) :=1{p € B~ (e) : p is irreducible}

is an R-analytic (smooth) manifold of dimension (2g — 1) dim K + dim 3 with
the tangent space at any p identified with Z' (1 (), ad p).

Proof By Proposition 6.3.15,
rank(dp); = 2g dim K — dim ZY(71 (D), ad 0)
=2g¢dimK — dim H! (71 (%), ad p)
+ dim HO(m (%), ad p) — dim K
= (2g —1)dim K — dim HO(m(E), adp) —2(dim K)(g — 1),
by identity (1) of Corollary 6.3.14
= dim K — dim H%(7r; (2), ad p). (1)
By identity (2) of Corollary 6.3.14, p is irreducible if and only if
dim H (1 (%), ad p) = dim 3.
Thus, by (1),
rank(dB); = dim[K, K] if and only if p is irreducible. m]

An infinitesimal deformation map for a family of fiber bundles is defined
in Kodaira and Spencer (1958a, §7). We recall the definition for a family of
G-bundles over X parameterized by a smooth variety.
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Definition 6.3.17 Let & > X x T be a family of G-bundles over X
parameterized by a smooth variety T. For t, € T, any tangent vactor v €
T,,(T) is given by 0,: SpecC(e) — T such that its restriction to Spec C
(under € — 0) corresponds to the point #, (cf. Definition B.7). Thus, pulling
& via 6, := Idx x6,, we get a G-bundle denoted &, over X(¢), where
3(€) := X x Spec C(¢). Clearly,

s = &, where &, 1= iz xq,. Q)

Take an affine Zariski open cover {U;}; of X such that &y, () are trivial. (This
is possible by Ramanathan (1983, Proposition 4.3) for &;, and affineness of U;
gives the result for &,.) Taking sections s; € I'(U;(¢), &), we get transition
functions

gfj: (UiNUj)(e) - G given by sfgfj = s;.
Thus, { gfj} satisfy the cocycle condition
gfjgjk =g WU;NnU;NU(e) — G. 2)

Moreover, by (1), gij := gj; iU provide transition functions for the bundle
itlj

&,. Let Uy N U; = Spec(R;;) for a C-algebra R;; (observe that U; N U;

is affine by Hartshorne (1977, Chap. II, Exercise 4.3)). Then, we can view

gfj € G(R;j(e)), where R;;(¢) := R;; ® C(¢). Consider the exact sequence of

groups (cf. Lemma B.11 and Definition B.15(b)):

6;
3® Rij = G(Rij(€)) —> G(R;)),

where g := Lie G and 6;; is induced by taking € > 0. By definition, ¢;; (gfj) =
8ij- Write

g = t(hij) - gij, where hij : UiNU;j — g
and g;; is thought of as an element of G(R;j(¢)) under the embedding

G(R;j) = G(R;j(¢)) induced by R;; — R;;(€). Thus, by (2) and Definition
B.17, we get the cocycle condition

hik = h;j + Ad(g;j)(hjx), as morphisms U; NU; N Uy — g.

Hence {h;;} give rise to an element &y of HY(Z, ad é;,) in the Cech realization
of cohomology (Hartshorne, 1977, Chap. III, §4). It is easy to see that the
element &, € H'(Z, ad é;,) does not depend upon the choice of the open
cover {U;} or the sections s7.
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The Kodaira—Spencer infinitesimal deformation map of the family & at 1,
is defined by

n: T,(T) > H'(Z,ad &,), n() =&,

Then, 5 is a C-linear map.

We can extend the above definition for any R-analytic family of holomor-
phic G-bundles over ¥ parameterized by a smooth R-analytic space T to get
an R-linear map (as above) n: T, (T) — HY(Z, ad é,), foranyt, e T.

Let R} (g) be the set of irreducible homomorphisms from 71 (%) to K.
By Corollary 6.3.16, R} (g) is an R-analytic (smooth) manifold. By Lemma
6.3.2, Rg(g) parameterizes a ‘universal’ C-analytic family 6: & — X x
Ri(g) of holomorphic G-bundles over %. Let us consider its restriction
Or: 6 — L X Rp(g) to ¥ x Ry (g) giving rise to an R-analytic family
of holomorphic G-bundles over ¥ parameterized by R} (g). The following
proposition determines its infinitesimal deformation map n = n(0y).

Proposition 6.3.18  For any p € R (g), the infinitesimal deformation map
n: T, (R () = H'(Z,ad E,)
coincides with the composition of the maps
T, (Rx(9) > Z' (mi(2), ad p) % H' (1(E). ad p)
L HY(Z, Ladp) > H'(Z, ad E)),

where the isomorphism § is as defined in the proof of Proposition 6.3.15 (iden-
tifying R} (g) canonically with My(K)), the map q is the standard projection,
H'(Z,L(ad p)) denotes the singular cohomology of ¥ with coefficients in
the local system L(ad p) and the isomorphisms j and i are as in Proposition
6.3.12.

In particular, n is surjective.

Proof ~ We identify R3 (g) as the subset My (K) of K%, taking
o (o(ar1),0(b1),...,0(ag),0(by)).

Take a small enough finite open cover {Uy} of X such that we can find a
holomorphic section s; of the simply-connected cover 7: ¥ — X over Ug.
Thus, whenever Uy N U; # ¥, we get an element ox; € 1(X) such that

S| = Sk * Q]
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Clearly, oy ; satisfy the cocycle condition
Okl -Lm =0rm Whenever Uy NU NU, # 0. (D)

Take a tangent vector v € T,(R%(g)). By the definition of & , Fy(a) =
(d®y),(v), where ®y: Ry (g) — K is the function ®4(0) = o(a). Take
the cohomology class 5 e Hl(m(E), ad p) represented by a cocycle § €
Z' (w1 (), ad p). Then j(8) is the cohomology class given by the Cech
I-cocycle

Uk, Up) + [skuenu;, (o) ] € HY (Uk NU,L(adp) == x™) ad ,0),

and so is the composite i o j (cf. (Hartshorne, 1977, Chap. III, Lemma 4.4)).
Thus, the composite map i o j og o ¥ takes v to the cohomology class of ad E,
determined by the Cech 1-cocycle

WU U = [suenvrs (@%a,), 0], @)

where, as above, @, , denotes the function R;( (g) > K,0 — o(ag,) and
(d®Py; )p(v) € T,(K) =1t C gidentifying Ty, ,)(K) with T, (K) under the
right translation. '

By the definition of the infinitesimal deformation map 7 as above in
Definition 6.3.17, it can be seen that the cohomology class of the above Cech
1-cocycle (2) coincides with n(v) (cf. Exercise 6.3.E.12). This proves the
proposition. O

The following definition is an analogue of Kodaira and Spencer (1958b,
Definition 2).

Definition 6.3.19 Let.# — ¥ x T be an R-analytic family of holomorphic
G-bundles over ¥ (parameterized by an R-analytic space T'). Then, this family
is said to be (R-analytically) complete at t, € T if for any R-analytic family
F' — ¥ x T" with t;, € T' such that .7 ~ .7, there exists an open
neighborhood U, C T’ of #, and an R—analyiic map f: Uy — T such that
f(t,) = t, and the family .7’ restricted to X x Uy, is isomorphic to the pull-
back family (Id x f)*(%).

The family .7 is called (R-analytically) complete if it is complete at each
teT.

We recall the following general result, the proof of which can be extracted
from Ramanathan (1983, Remark 8.11) or Biswas and Ramanan (1994,
Theorem 3.1) (also see the proof of Kodaira and Spencer (1958b, Theorem);
and for vector bundles see the article by Nitsure (2009)). The result hinges
upon the fact that HZ(Z, ad.#;)) = 0, since X is a curve.
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Theorem 6.3.20 Let # — X x T be an R-analytic family of holomorphic
G-bundles over ¥ parameterized by an R-analytic space T. Let t, € T be a
smooth point such that the infinitesimal deformation map

T, (T) - H'(Z, ad %)

is surjective. Then the family F is complete at t,,.
Conversely, if F is complete at t,, then the above deformation map is
surjective.

As a corollary of the above theorem and Proposition 6.3.18, we obtain the
following result.

Corollary 6.3.21 Let # — X x T be an R-analytic family of holomorphic
G-bundles over X. Then the subset

T,:={teT: % ~E, forsome p € R (g}
is an open subset of T.

Proof  Take t, € T, so that .%;,, ~ E, (for some p € R} (g)). By Theorem
6.3.20 and Proposition 6.3.18, the family 63 : &% — X x R} (g) (cf. the
discussion above Proposition 6.3.18) is (R-analytically) complete. Applying its
completeness at p, we get that there exists an open subset U;, C T containing
fop and an R-analytic map f: U;, — R} (g) such that the family 7.,
is isomorphic with the pull-back family f* (0% ), where f =1z x f.In
particular, for any ¢t € U;,, % =~ E, for some o € Ry (g),ie.,t € T,.
Thus, T, is open in T proving the corollary. O

Lemma 6.3.22 Let f: ¥V — W be a nonzero Os-module homomorphism
between two semistable vector bundles over X such that at least one of them is
stable. Assume further that they both have the same rank and the same degree.
Then f is an isomorphism.

Proof  We first recall the following general construction from Narasimhan
and Seshadri (1965, §4).

For any nonzero &'y-module homomorphism f: & — .%# between any two
vector bundles (not necessarily of the same rank) over X, since the structure
sheaf Oy is a sheaf of PIDs, f has the following canonical factorization
(obtained from the following commutative diagram):

0 & & & 0

)

\
-~
=
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where &;, .%; (i = 1,2) are vector bundles, the above rows are exact and f’ is
of maximal rank (i.e., & and .%] are of the same rank say r and the induced
map A" (&) — A" (F)) is nonzero). Then, F| (resp. &1) is called the vector
subbundle of F (resp. &) generated by the image (resp. kernel) of f.

We now come to the proof of the lemma assuming that %/ is stable. If f is
of maximal rank, since deg ¥ = deg #/, f is an isomorphism. This is because
a nonzero section of a degree 0 line bundle over ¥ is nowhere zero.

So, assume that f is not of maximal rank and consider the decomposition

)for f =ioflom:¥ 5 % L # 5 9. Since deg(E ® F) =
(deg E)(rank F) + (deg F)(rank E) for vector bundles E, F over ¥ (as can
easily be seen from the Chern character of £ ® F),

0=deg(¥*®7) =deg(¥*® ) +deg (V*® 13), (1)
where 7] := Ker . Since ¥ is semistable,
deg (7* ® #1) = (rank V) - deg(#7) — (rank #]) - (deg ¥) < 0.  (2)
Thus, combining (1) and (2), we get
deg(¥* ® 43) > 0. 3)
Since f is of maximal rank, we get
rank 5 =rank %] and deg#] > deg ¥5. 4)
Thus, ¥ and # having the same rank by assumption,
deg (#* @ #1) = deg (¥* ® #1), since deg? =deg# by assumption
>deg (7* ® 72), by 4
>0, by(3. &)

But % is a proper subbundle of the stable bundle % (since f is assumed to
be not of maximal rank). Thus

deg (#* ® #1) < 0. (6)

Then (5) and (6) contradict each other, and hence f must be of maximal rank.
But since deg ¥ = deg #/, f must be an isomorphism. This proves the lemma
when % is stable.

The case when ¥ is stable can be handled similarly. O

Definition 6.3.23 Let¢: G — GLy be a finite-dimensional representation
and let V = @;_, V; be its decomposition into irreducible components. Let
¢;: G — GLy, be the restriction of ¢ to V;.
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Let

C :={(z1¢1(8),....2+¢r(g)) € GLy : z; €« C* and g € G}.

Then C being the image of an algebraic group homomorphism (C*)" x G —
GLy, Cisclosedin GLy. Let

C = closure of C in End V.

Then, C (and hence C) is stable under left and right multiplications by ¢(g)
forany g € G.

Let E and E’ be two G-bundles over X. Then their fiber product
F: E >2< E’ — ¥ is canonically a G x G-bundle. Consider the vector bundle

Hom (E(V),E'(V)) = F(End V),
where G x G acts on End V via

(g,h)-f= ¢(g)f¢(h)71, for g,h € G and f € EndV. ey

The subsets End V;, C, C C EndV are clearly stable under the above action
of G x G (where End V; is a block of End V through the decomposition V =
@V;). Thus, we get fiber subbundles F(C) C F (C) Cc F(End V) and also the
vector subbundle F'(End V;).

Proposition 6.3.24  With the notation as above, let E be a stable G-bundle
and E' a semistable G-bundle of the same topological type (i.e., they are
topologically isomorphic). Let

,
s=(s1,....5)€H'(Z, F(EndV; x - - x EndV;)) = @D H(Z, F (EndV;))

i=1

be such that s(X)C F(C). Then, any s; is either 0 or an isomorphism
E(Vi) — E'(Vi).

Further, if each s; is nonzero and if ¢ : G — GLy is a faithful representa-
tion, then there exists (21, . . . ,zr) € (C*)" such that the section (z151, ... ,2rSr)
is induced from a G-bundle isomorphisms: E — E'.

Before we come to the proof of the proposition, we need the following two
lemmas.

As earlier, we fix a maximal compact subgroup K of G and take K’ :=
[K, K] as a maximal compact subgroup of the commutator subgroup G’ :=
[G, G]. Fix a maximal abelian subalgebra o’ of t' := Lie K’. Then ) := o/ ®id’
is a Cartan subalgebra of ¢’ := Lie G’ and b := ) @ z(g) is a Cartan subalgebra
of ¢ = Lie G, where z(g) is the center of g. Let IT = {y,...,a¢} C §* be
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a system of simple roots of g’. Then they take real values on id’. Let (M, p)
be an irreducible representation of G with highest weight A (with respect to
the above choice of simple roots). For any subset ® C I1, define the h-module
projection

pq>:M—>M®CM, where M® = @ )MA, Ly = Z>o

re(A-Lyeo Zioi

and M, is the Ath weight space of M. Recall that any weight X also takes real
values on ia, where a := o’ @ z(f). Let

Cy:={z0(g):z€C",g € G} CEndM

and let Cj be its closure in End M. With this notation, we have the following
lemma (having fixed Iy as above).

Lemma 6.3.25  Forany f € Cy, there exists a system of simple roots T1 C
V" (depending upon f) and a subset ® C TI such that

f =2p(@)pap(g). forsomeg.g € Gandz e C. (1)

Conversely, any element f of the form (1) lies in Cy.
In particular,

(Imf:feCy={gM®:geG,®cCTl
and T1 ranges over systems of simple roots in §*}.

Proof  Take a sequence
Znp(gn) — f, forz, € C*and g, € G

(Observe that the center of G acts by a scalar on M due to Schur’s lemma and
hence we can choose g, € G'.) Decompose

gn = knank,, with k,.k, € K" and a, € A’,

where A’ is the real subgroup of G’ with Lie algebra ia’ (cf. (Knapp, 2002,
Theorem 7.39)). Replacing g, by a suitable subsequence, we can assume
that k, — k,k, — k' and there exist h, all belonging to the same Weyl
chamber inside ia’ such that a,, = Exp(h,). Let IT be the set of simple roots
corresponding to this Weyl chamber. Thus, «; (h,) > 0 for all o; € IT and all
n. By passing to a further subsequence (if needed) and reordering the simple
roots, let 0 < g < £ be such that

ai(hy) — xi, for 1 <i <g¢q, and ¢;(h,) — oo, forg <i <¥.
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Take h € ia’ such that
ai(h)y =x;, for1 <i<gq
=0, forg <i <.
Then
f = p®)pExph) ( lim z,p(an Exp(—=h)) p(K).
Thus
f=p®)pExph) lim (zupExp(n)) p(K), @)
where h, := h, — h € id is such that
aj(hy) — 0 forall1 <i <g and a;(h,) = oo, forg <i <.
Let @ := {ay,...,04}. T}{e operator z, p(Exp(l_zn)) restricted to any weight
space M), is given by z,,e*"™) In particular, denoting
Py = Tim (zup Expin))iis,) 3)
we get

P, = ( lim e‘*—A><’5n>) Pa=Pr-dy,. ifreA— )Y Zia
n—oo a.eq)

= 0, otherwise, 4

where, M being a 1-dimensional space, we think of P as a scalar. Combin-
ing (2)—(4), we get (1).
For the converse, choose %,, € ia such that

a;(hy) =0, fora; € ® and o; (hy,) = n for o; ¢ O.

Set z, = ze~ AU Then the sequence z, p (Exp(h,)) — zpo. By the G x G-
invariance of Cj;, we get that any f of the form (1) lies in Cj;. This proves
the lemma. O

Definition 6.3.26  Let M and ® be as above. Then a subspace M’ C M is
said to be of type ® if M’ = p(g)M® for some g € G, where M® is defined
above Lemma 6.3.25.

Clearly, the set of subspaces of M of type ® can be viewed as a G-stable
subset of the Grassmannian Gr(dq’, M) of d®-dimensional subspaces of M,
where d® := dim M®.

For a G-bundle E over X, a vector subbundle of E (M) is said to be of type
®d, if the fibers are subspaces of M of type ®.
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Lemma 6.3.27  Let E be a stable (resp. semistable) G-bundle over ¥ and
let M be an irreducible representation of G. Then, for any proper nonzero
subbundle W of E(M) of type ® (for a subset ® C I1), we have

n) < wWEM)) (resp. n(#') < w(E(M))). 6]

Proof  Let P be the stabilizer of M® € Gr(d®, M) in G. Then clearly P is
a standard parabolic subgroup of G (with respect to the choice of simple roots
IT). This gives an embedding

G/P < Gr(d® M), gP +— gM®. )

The subbundle % gives rise to a section oy of E (P(Ad¢ M)). Since ¥ is
of type ®, o lands inside E(G/P) (under the embedding (2)), giving rise
to a reduction of the structure group of the G-bundle E to P (cf. Lemma
5.1.2). Let x¢ (resp. x) be the character of the action of P on Ad® (M®)
(resp. A"M, where r := dim M). Let Z be the center of G. Then, since Z
acts on M via scalars, the character x¢ = xg, - X’d(b is trivial restricted to Z.
Moreover, since the line AD® (M?®) c Ad® (M) is P-stable, the character x¢
(and hence o) is dominant. If P N G’ were to act trivially on Ad® (M®), then
the line A4” (M%) c Ad® (M) would be G-stable and hence M ® would be G-
stable, i.e., M® = 0 or M. But since # # O is a proper subbundle of E (M),
M® cannot be (0) or M. Thus, x¢ is a nontrivial character of P. Hence, by
Exercise 6.1.E.4, if E is stable (resp. semistable)

degoy, (Lp(—%o)) <0 (resp. degoy, (Lp(—Xo) <0).  (3)
But
degoy, (ZLp(—xo)) =rdeg¥ —d® deg E(M). (@)

Combining (3) and (4), we get the lemma. ]

Remark 6.3.28 By Theorem 6.1.7, if E is semistable, then so is E(M).
Thus, inequality (1) of Lemma 6.3.27 in the semistable case follows from the
definition of semistable vector bundles.

We return now to the proof of Proposition 6.3.24.

Proof of Proposition 6.3.24 We fixan 1 <i < r and denote V; by M. Let
s; # 0 and let %] be the vector subbundle of E’/(M) generated by the image of
s; (cf. proof of Lemma 6.3.22). Thus, similar to the diagram (*) in the same,
we have
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0 & EM) —— & 0

isi lf/ (D)

O<—§2<—E’(M)<i—§zl<—0.

Let d = rank.%#; and let Gr(d, M) be the Grassmannian of d-dimensional
subspaces of M. Then .%#] can be thought of as a section of E’ xG Gr(d, M).
Let

A:={N € Gr(d,M) : N =Im f;, forsome f = (f1,...,f) EC‘},

where C is as in Definition 6.3.23. Clearly, A is stable under the action of G on
Gr(d, M) (since C is G x G-stable). Moreover, by Lemma 6.3.25, the stabilizer
of any N € A is a parabolic subgroup (since so is for M®). Thus, G-orbits in
A are closed in Gr(d, M) and, by Lemma 6.3.25, A has finitely many G-orbits
all of which are of the form {gMd’}geg, for some M®. In particular, A is a
closed subset of Gr(d, M), which is a finite disjoint union A = LA of closed
subsets, with each A; (with reduced structure) isomorphic with G/P; (for a
parabolic subgroup P;).

Since the fibers of % coincide with Ims; on a dense open subset U of &
(which of course is connected), we can think of Im(s;|;)) € H (U, E'(A},))
for some fixed j,. But then .| € HY(Z,E'(A},)), E'(A},) being closed in
E’(Gr(d, M)). Therefore, by Lemma 6.3.27,

W(F1) < W(E(M)), (D

since s; # 0 and A j, consists of subspaces of M of fixed type @ ; . Considering
the dual of the diagram (D), we get

0— % —=E'M*) — F'——0
lsfk J/ (D1)
O<~— & <~——EM") =— & <—0,

where s*: E'(M*) — E(M¥) is the dual morphism. Similar to (1), using
Lemma 6.3.27 again, since E is a stable G-bundle, we get

M(é"z*) < n(E(M™)), if d < dim M. 2)
But

WEM™)) = —(E(M)) = —p(E"(M)),
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since E and E’ are of the same topological type (by assumption). Thus, (2)
gives

W(E' (M) < (&) < n(F1), 3)

where the last inequality follows since f’ is of maximal rank. Now, (3)
contradicts (1), proving that d = dim M, i.e., s;: E(M) — E’(M) is an
isomorphism over a nonempty open subset U of X. Think of s; as a section of
the degree O line bundle E (A M)* @ E'(AYM) over T which does not vanish
over U and hence it must not vanish anywhere. Thus, s; is an isomorphism.
This proves the first part of the proposition.

We now prove the second part. By the first part, since each s; is an iso-
morphism, and since C is closed in GLy and s(¥) C F (©) (by assumption),
we get that s(X) C F(C), i.e., for any x € X, there exists 3(x) = (z1(x), ...,
zr(x)) € (C*)" such that

(z1(x)s1(x), ...,z (x)s,(x)) € Fr(9(G)),

where ¢ (G) C End V is stable under G x G-action on End V given by (1) of
Definition 6.3.23. Let H be the closed subgroup of (C*)" defined by

H={On....y) € (@C) : (y1dy,,....y 1dy,) € p(G)}.
Then, for any v = (y1,....y,) € (C*),
(1) y1s1(x), ..., zr () yrsr(x)) € Fx(¢(G)) <=1 € H.
Hence, the function
3% > (CY/H, x— (z1(x),....,z7(x))-H

is a well-defined morphism. But, since X is a projective variety and (C*)"/H
is affine, the function 3 is a constant. Write

3(x) =(z1,....2,) - H, foranyx € X,
where (z1, ...,2,) € (C*)" is a fixed point. Thus, taking
5= (2151, -+ »2rSr),s

we get that §(X) C F(¢(G)). Finally, since ¢ is an embedding, we get that
§ is induced from a G-bundle isomorphism 5: E — E’. This proves the
proposition. O o

We have the following general result.
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Lemma 6.3.29 Let X and T be C-analytic spaces with X compact and let
{#i}1<i<r be C-analytic vector bundles over X x T. Let W = @;_, #; and
let € C W be a closed C-analytic subset which is stable under the homothety
action of (C*Y on 1 ® --- ® #,. Then

(a) The set S := |J {s’ e HYX, %) : s"(X) C Cf} has a natural struc-

teT
ture of a C-analytic space such that the projection S — T is holomorphic,

where Wi == Wxxi.
Moreover, its subset
ng = U {s’ech i = (s{,...,sﬁ)
teT
has each s #0, where s! € HO(X,V/,-J)}

is an open subset of S¢. In fact, Sﬁg is the complement of a closed C-analytic
subset of S¢.

(b) Consider the projectivization P(S,) = {[s’] :teT and s' € Sﬁg},
where

[s'] := (Is'], ... [s']) with [s]] € P (HO(X, Wi,,)) .

Then ]P’(S%) has a natural structure of a C-analytic space such that
Sc’g — IP’(S%;) is a holomorphic submersion and IP’(S%) — T is a proper
holomorphic map.

In particular, the set

{t €T :3s' ¢ HOX, %) with s' € Sié)]
is a closed C-analytic subset of T

Proof (a) Let Hol(X,”#) be the space of holomorphic maps from X to
W with the topology of uniform convergence. Then Hol(X,#') has a natural
structure of a C-analytic space such that for any C-analytic space Y, any
map ¥ — Hol(X,#) is holomorphic if and only if the corresponding map
Y x X — W is holomorphic (cf. (Barlet and Magnisson, 2014, Chap.
1V, §9.4)1; also see (Douady, 1966)). In particular, the evaluation map
Hol(X,#) x X — # is holomorphic. Hence, the subspace Hol(X, %) is
a (closed) C-analytic subspace of Hol(X, #).

! We thank D. Barlet for this reference.
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Consider the composite projections tx: # — XxT — Xandny: # —
X x T — T.Define

Hol,(X,%#') := {holomorphic s: X — # : 7wy os is a constant}.

Then Hol,(X,%#) is a (closed) C-analytic subspace of Hol(X,”# ), being
the inverse image of the set of constant maps under the holomorphic map
Hol(X,#) — Hol(X,T), s = mr o s (cf. Exercise 6.3.E.5).

By definition,

Sy = {s € Hol,(X,%¥) : mx os = Idy}. (1)

Of course, the map 7x: Hol,(X,%4) — Hol(X,X) induced from myx is
holomorphic, since the corresponding map given by Hol(X, %) x X — X,
(s,x) — mx(s(x)), is holomorphic. Since Sy = (Fx)~tdy), Sy is a
C-analytic space.

The projection S C Hol,(X,#) — T is given by s — 77 (s(x)) for any
(fixed) x € X. Hence, it is holomorphic.

Considering the (closed) C-analytic subset S¢(;) of S¢ for €(i) = € N
(7/1 H---B0D--- B Wr) where 0 is the zero vector bundle over X x T
placed in the ith slot, we get that ch\Sﬁg = Ui_; Sz is a closed subset
of S¢ and hence Ség is an open subset of S¢. This proves the (a)-part of the
lemma.

(b) The standard action of (C*)" on S(’g (by homothety in each factor
H O(X , Wi 1)) is, of course, fixed-point free. Moreover, it is holomorphic. This
follows since

CY xSy xX—>#, (@1,....2).s" .x) > Zzis] (x)

is holomorphic, where Sy 1is defined by (1) taking ¥ =% and
st = (s}, ....s)) with s € HO(X,#;.,). Also, since S¢, consists of nonzero
sections in each %; ;, the action of (C*)" on Séb,) is proper. Hence, the orbit
space Si,/(C*)" is a C-analytic space and the quotient map S;, — Si,/(C*)"
is holomorphic submersion (cf. (Cartan, 1957)). In particular, the holomorphic
map S, — T which clearly descends to a map S /(C*)" — T is
holomorphic. Introduce a positive-definite continuous Hermitian form on
the vector bundle % . Then the subset

SL(1) = {sf =(s!,....s") € S, with
teT, s’ e HYX.#.,) and ||s!|| = 1},

where ||s]|| := sup,cx Is] (x)|, maps surjectively onto S7,/(C*)".
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By Montel’s theorem (cf. (Rudin, 1966, Theorem 14.6)), the map
S¢,(1) — T is proper and hence so is the map S /(C*)" — T. Now, the
(b)-part of the lemma follows since

S/ (C*) =~ P(SL).

The ‘In particular’ part of the lemma follows from Remmert’s theorem
asserting that the image of a proper holomorphic map (between C-analytic
spaces) is a (closed) C-analytic subspace (cf. (Remmert, 1957)). O

As a consequence of Lemmas 6.3.2, 6.3.29 and Proposition 6.3.24, we get
the following.

Proposition 6.3.30 Ler . — X x T be a C-analytic family of stable
G-bundles over X (parameterized by a C-analytic space T ). Then the subset

T, = {t €T : % ~E, forsome unitary representation p of m1(%) inG}

is a closed subset of T.

Proof  We can of course assume that T is connected so that each .%; is of
the same topological type.

Recall the definition of the tautological family 6: & — X x Rg(g) from
Lemma 6.3.2. Consider the fiber product

H = FxE — T xT x Rg(g) of
x

F > XxT—> 3% and & > T x Rg(g) > X.

Then 77 is a family of G x G-bundles over ¥ parameterized by T x R (g) with
fiber (J€);,, = %1 x E,. Choose a faithful representation ¢ : G — GLy and
consider the G x G-stable subset C C €D;_, End V; C End V as in Definition
6.3.23. Applying Lemma 6.3.29 for X = X, T replaced by T X Rg(g), #; =
H(End V;), € = #(C), we get that the subset

Fi= {(t,p) €T x Rg(g) : 3s € HO (2. ¥, ) with s Ség}

is a closed C-analytic subset of T x Rg(g), where Ség is as defined in Lemma
6.3.29. Hence, Fx := F N (T x Rk(g)) is a closed R-analytic subset of
T x Rk (g), where Rk (g) is as in Lemma 6.3.2. But the projection pr: T X
Rx(g) — T is proper (since Rk (g) is compact) and hence pr(Fk) is closed
in T. Now, using Propositions 6.3.24 and 6.3.4(a) for A = (1), we get that
T. = pr(Fk) and hence T, is closed in T, proving the proposition. O
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Lemma 6.3.31 Let % — X x T be a C-analytic family of G-bundles over
Y (parameterized by a C-analytic space T ). Then the subset

T, :={t € T :.%; isa stable G-bundle}
is an open subset which is the complement of a (closed) C-analytic subset of T.

Proof  Take a standard maximal parabolic subgroup Qy of G and take the
irreducible representation Vi := V (dwy) of G with highest weight dwy, where
w 1s the kth fundamental weight required to vanish on the center 3(g) of g and
dwy is a suitable positive multiple of wy so that it is a character of the maximal
torus of G. Thus, we get an embedding G/Qx — P(Vi), g0 +— [gv4],
where v is a highest-weight vector of Vj and [gv] is the line through g - vy.
Let / = Jx be the Jacobian of X (i.e., the group of isomorphism classes of
degree O line bundles over ) and P — X x J the Poincaré line bundle (cf.
(Arbarello et al., 1985, Chap. IV, §2)). Define a C-analytic family of vector
bundles Fp (Vi) — X x (J x T) by

Fr(VG.n = J" & F (V).

Consider the closed C-analytic cone 4 C Fp (Vi) over n* (% (G/Qr)) C
a* (P(F (V) = P(Fp(Vy)), where m: ¥ x J x T — X x T is the
projection. Then, by Lemma 6.3.29, the subset

7y = {(j,r) eJxT:3p#0eH (S, Z5(Vi) 0. 1u(T) C %}

is a (closed) C-analytic subset of J x T. Let Z; C T be the image of Z; under
the projection J x T — T. Since J is compact, by a theorem of Remmert (cf.
(Remmert, 1957)), Zy is a (closed) C-analytic subset of T'.

We next claim that

Zi C T\T,. (1)

Take r € Zk. Thus, there exists j € J such that there exists nonzero
e HO(Z, j*®.%: (Vi) with u(X) C €. Hence, 1 gives rise to a section j of
P(%#; (Vi) over a nonempty Zariski open subset U C ¥ (where i is nonzero)
with the image contained in .%;(G/Qy). Since X is a curve and the fibers
of P(%#;(V})) are projective varieties, the section i extends holomorphically
to the whole of ¥ with the image contained in .%;(G/Qy). The section ji of
course provides a reduction of the structure group of .%; to Q (cf. Lemma
5.1.2). Let T — P(%;(V})) be the tautological line bundle, the pull-back
of which to .%,(G/Qx) can easily be seen to be .Zp, (—dwy) (following the
notation of Definition 6.1.3(c)).
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Let i*(7) be the pull-back line bundle over X. Then, the section u thought
of as a bundle morphism j — .%;(Vi) has its image contained in the
line bundle &*(t). Thus, j* ® *(r) has a nonzero section showing that
deg ii*(t) > 0. Thus, .%; is not stable (cf. Definition 6.1.4(b)), i.e., t € T\Ty,
proving (1).

Conversely, take t € T\ 7. Thus, there exists a standard maximal parabolic
subgroup Qy such that deg i* Zp, (—dwy) > 0 for a section i of . (G/ Q).
Thus, there exists a j € J and a nonzero Oy-module morphism j —
w* Zo, (—dwy) over ¥ such that the corresponding (nonzero) section

o (j* ® i* Lo, (—dwy)) € H* (T, Fp(Vi)(j.n)
has its image contained in 4. Hence, t € 7, ie.,

T, c | Z. 2)
k

where {k} parameterizes the standard maximal parabolic subgroups Qy of G.
Combining (1) and (2), we get the lemma. O

Lemma 6.3.32  Let Eg and E| be two holomorphic G-bundles of the same
topological type over X. Then there exists a holomorphic family & of G-
bundles parameterized by C such that

Sy ~Ey and & ~ E;. (1)

Further, if Eg and E are stable G-bundles, then such a holomorphic family
& satisfying (1) can be chosen over a nonempty connected open subset T of C
containing {0, 1} such that C\T is a (closed) C-analytic subset of C and &; is
stable for each E € T.

Proof Let E — X be a C* principal G-bundle over a holomorphic
manifold X. Then a connection form V over E (which is a g-valued C* 1-form
on E) induces a unique structure of holomorphic G-bundle on E satisfying
Koszul (1960, Proposition 1, §6.4) if and only if the corresponding curvature
form Q satisfies Q%2 = 0, where Q%2 is the component of  of type (0,2)
with respect to the holomorphic structure on X (cf. (Koszul, 1960, Proposition
3, §6.4)). Conversely, the structure of a holomorphic G-bundle on E gives rise
to a (not necessarily unique) connection form V on E with Q%2 = 0 such
that the corresponding holomorphic structure on E coincides with the original
holomorphic structure (cf. (Koszul, 1960, §6.4)).

Taking X = X, since X is of complex dimension 1, the condition Q02—
is automatically satisfied. Since the holomorphic bundles Eg and E; are of
the some topological type, we can assume that they correspond to (different)
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holomorphic structures on the same underlying C*° principal G-bundle E
over . Choose connection forms Vo and V| on E which give rise to the
holomorphic structures Eg and E; respectively. Now, consider the C*° product
G-bundle E x C — ¥ x C and define the connection form V on E x C by
V.=zVi+ (U —-2)Vgforz € C,ie.,

V(w,v) =V (w), for weT,(E) and v e T,(C).

Thus, the connection form V = zn (Vi) + (1 — 2)7}(Vp), where mp: E x
C — E is the projection.

From the definition of the curvature: Q = dV + %[V, V], it is easy to see
that %2 = 0 for the above connection form V on E x C. Thus, we get the
structure of a holomorphic bundle on & := E x C such that the holomorphic
structure restricted to E x 0 (resp. E x 1) is isomorphic with Eg (resp. E1).
This proves the first part of the proposition.

The second part follows immediately from the first part and Lemma 6.3.31
by observing that the complement of a (closed) C-analytic subset of C is
automatically connected. O

Definition 6.3.33 A G-bundle E over X is said to be of degree 0 if for any
character x of G, the line bundle E x G C, has degree 0, where C,, is the
1-dimensional representation of G given by the character x. (This definition
coincides with the definition of degree 0 vector bundles.)

With all these preparations, we are now ready to prove the following
celebrated theorem.

Theorem 6.3.34  Let G be a connected reductive group and % a smooth
irreducible curve of genus g > 2. Let E — X be a stable G-bundle of
degree 0. Then there exists a unique (up to conjugacy by G) irreducible unitary
representation p: w1(X) — G such that (as holomorphic bundles)

E~E,.

Proof Let Z, := G/G’, where G’ is the commutator [G, G]. Then Z, is
a (connected) torus. Let E(Z,) be the bundle obtained from E by extension
of the structure group G — Z,. We claim that E(Z,) is topologically trivial
since E is of degree 0 (by assumption). To prove this, since Z, is a torus, it
suffices to observe that a degree O line bundle over ¥ is topologically trivial.
The topological triviality of E(Z,) allows a topological reduction of the
structure group of E to G/, i.e., there is a topological G’-bundle E’ which is
isomorphic topologically with E under the extension of the structure group
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to G. By Lemma 6.3.11, since G’ is semisimple, there exists an irreducible
unitary representation p, : () — G’ such that

E,, >~ E' astopological G'-bundles
and hence
E,, (G) >~ E as topological G-bundles,

where E, (G) denotes the extension of the structure group G’ of E,, to G.
Observe that p, clearly remains irreducible considered as a homomorphism
T(X) > G.

Take a holomorphic family of stable G-bundles & — ¥ x T, such that T
is a connected open subset of C containing {0,1} and & >~ E, &1 ~ E,, (G)
(cf. Lemma 6.3.32). Let

T, ={teT: & ~E,,

for some unitary irreducible representation o of 7((X) in G}.

Then, by Corollary 6.3.21, T, is an open subset of 7. Further, by Proposition
6.3.30, T, is a closed subset of T. (Observe that if &; >~ E, for some unitary
representation o of 1 (X), then o is automatically irreducible by Proposition
6.3.4 for A = (1) since each &; is stable). Of course, T, is nonempty since
1 € T,. Thus, T, = T. The uniqueness of p (up to conjugation by G) follows
from Corollary 6.3.7 for A = (1). This proves the theorem. O

Recall the definition of polystable bundles from Definition 6.1.4(c). Then
we have the following generalization of Theorem 6.3.34.

Theorem 6.3.35 Let G be a connected reductive group and let E be a
holomorphic G-bundle over a smooth irreducible projective curve X of genus
g = 2. Then E is polystable of degree 0 if and only if E > E, (as holomorphic
G-bundles) for a unitary representation p: m1(X) — G.

Proof  Assume first that E is polystable of degree 0. Then E admits a
reduction Ej to a Levi subgroup L such that E; is stable of degree 0 (as
an L-bundle). (To prove this, observe that for any character x of L, there
exists a character x’ of G and a character XH of L trivial on the center of G
such that

«N = XL - x for some N > 0.)
Thus, by Theorem 6.3.34,

E;, ~E,, (1)
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for an irreducible unitary representation pr : 71(X) — L. Let p be the same
representation thought of as 1 (X) — G. Then, from (1), we get E >~ E,,.

Conversely, take a unitary representation p: 71(¥X) — K C G. Then, if it
is not irreducible, there exists a proper parabolic subgroup P of G and a Levi
subgroup L p of P such that

Imp CLp

(since P N K is contained in a Levi subgroup of P). Continuing this way
(inducting on the semisimple rank of G), we find a Levi subgroup L with
Imp C L and py: m1(¥) — L is irreducible, where p;, = p. Thus, from
Proposition 6.3.4 for A = (1), E,, is a stable L-bundle. Further, since E,,
has a discrete structure group (thereby a flat connection), by the Chern—Weil
theory,

deg (EpL xk (CX) =0, for any character x of L.

In particular, E,, (G) = E, is polystable of degree 0. This proves the theorem.
O

Definition 6.3.36 Let X be a smooth irreducible projective curve, G a
connected semisimple algebraic group and let E — X be a holomorphic
G-bundle. Then a C*°-connection V on E is called

(a) complex connection if the corresponding holomorphic structure on E
(cf. the proof of Lemma 6.3.32) coincides with the original holomorphic
structure.

(b) unitary connection if there exists a C*°-reduction Ex C E of the
structure group of E to a maximal compact subgroup K of G and V is
reducible to Eg (i.e., V is obtained as the direct image of a C°°-connection
on Eg).

Observe that the condition of V being unitary is equivalent to the require-
ment that the holonomy group of V is relatively compact.

(c) Einstein connection if the curvature form of V is identically zero.

(d) Einstein—Hermitian connection if it satisfies the above properties
(a)—(0).

Observe that since E admits a C*°-reduction Ex C E of the structure group
(G/K being contractible), E admits a unique complex unitary connection
(cf. (Kobayashi and Nomizu, 1969, Theorem 10.1 on p. 178 and Remark on
p- 185)).

Moreover, the existence of an Einstein—Hermitian connection on E is
equivalent to the unitarity of E (as in Definition 6.3.1) using the Holonomy
Theorem (Koszul, 1960, Chap. 4).
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Recall the definition of A-unitary G-bundles and A-unitary vector bundles
from Definition 6.3.3, the notation of which we will follow.

Lemma 6.3.37 Let E be an A-equivariant G-bundle over f), where G is
a connected semisimple group. Then E is A-unitary if and only if E (9) is
A-unitary vector bundle.

The lemma is clearly false if G were a torus.

Proof Of course, if Eis A- -unitary, then so is E (). Conversely, assume that
E (g) is A-unitary. Then we show that Eis A- -unitary.

The bracket g ® ¢ — g, x ® y +— [x,y], being G-equivariant, induces an
A-equivariant bundle morphism

9: E(@®9) — E(9)

between A-unitary bundles. By Lemma 6.3.6, the bracket map g ® g — g must
be m-equivariant, where the action p of 7 on g comes from the assumption
that E(g) is A-unitary. Thus, the representation p: 7 — Aut(g) has its
image inside Gr := Autri(g), where Autpi.(g) is the group of Lie algebra
automorphisms of g. Thus, E (G ) is A-unitary.

Assume now that G is of adjoint type (i.e., its center is trivial). Then we
have the exact sequence of groups

1-G—-Ggp—> F—1, (*)

where F is the (finite) group of outer automorphisms of g (its finiteness
follows from the Whitehead Lemma (Hilton and Stammbach, 1997, Chap. VII,
Proposition 6.1)). Since E (GF)(F) admits a canonical A-equivariant section
(coming from the embedding £ = E(G) — E(GF)), E(Gr)(F) being
an A-equivariant principal F-bundle, it is A-equivariantly trivial. Hence, the
composite map

JT£>GF—>F

is trivial (use Corollary 6.3.7), i.e., p(wr) C G, which proves that E is A-
unitary (in the case G is an adjoint group).

We now prove the A-unitarity of E when G is an arbitrary connected
semisimple group. Consider the exact sequence

1>272—>G— Gy — 1,

where Z is the center of G and G,q is the corresponding adjoint group. We
have already established that E(G,q) is A-unitary. Thus, the A-unitarity of E
follows from the following lemma. O
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Lemma 6.3.38  We follow the notation as in the above Lemma 6.3.37. Let
G —> Hbea surjective marphism of connected semisimple algebraic groups
with ﬁmte kernel. Let E = E(G) be an A-equivariant G-bundle over S such
that E(H) is A-unitary. Then so is E.

Proof  Since E(H) is A-unitary, in particular unitary, it admits a unique
Einstein—Hermitian connection Vg (cf. Definition 6.3.36). Moreover, by its
uniqueness, Vg is A-invariant. Let Vs be the connection induced from Vg on
E (using the isomorphism of tangent spaces of G and H). Then it is easy to see
that V¢ is an A-invariant Einstein—Hermitian connection (cf. (Ramanathan and
Subramanian, 1988, Lemma 2)). Thus the bundle  is given by a representation
of the fundamental group

71(2) — K for a maximal compact subgroup K.

Moreover, since E is an A-equivariant G-bundle, by Lemma 6.3.8 we get that
E is A-unitary. O

Let 3 be an irreducible smooth projective curve with faithful action of
a finite group A and let G be a connected reductive group. The following
equivariant generalization of Theorem 6.1.7 holds by the same proof.

Lemma 6.3.39 Let f: G — G’ be a homomorphism between connected
reductive groups such that f(Z°(G)) C Z°(G’), where Z°(G) denotes the
identity component of the center of G. Then, if E — ¥ is a A-semistable
(resp. A-polystable) G-bundle, then so is E (G”) obtained from E by extension
of the structure group to G’.

In particular, for any A-semistable (resp. A-polystable) G-bundle E, adE
is an A-semistable (resp. A-polystable) vector bundle.

Lemma 6.3.40 Let f), G and A be as above but we assume that 3. has genus
& > 2. Let E be an A-polystable G-bundle over %. Then, E is polystable.
In particular, E is A-semistable.

Proof > Observe first that E is A-polystable (resp. polystable) if and only
if £(G /Z) is A-polystable (resp. polystable), where Z is the center of G (cf.
Exercise 6.1.E.12). Thus, we can assume that G is semisimple. By Lemma
6.3.39, ad E is A-polystable vector bundle. By Exercise 6.1.E.16, we can write
adE = ®;7;, where ¥; are A-stable vector subbundles of ad E all with
the same slope; in particular, % are A-semistable and hence semistable by
Exercise 6.2.E.4. Fix any ¥ = ¥; and let ¥° be the socle of ¥, which is an

2 We thank V. Balaji for this proof.
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A-equivariant vector subbundle of ¥ such that the slope u(??) = u(¥) (cf.
(Mehta and Ramanathan, 1984, Definition 2.1 and Lemma 2.2)). If ¥ were
not polystable, then by the same reference and Exercise 6.1.E.15, 7 C v
and since u(¥°) = w(¥), it contradicts the A-stability of 7#". Hence, ”V is
polystable and hence so is ad E. Clearly, ad E isof degree 0. Thus, by Theorem
6.3.35, ad Eisa unitary vector bundle. Hence, by Lemma 6.3.37, Eisa unitary
G-bundle, and thus is polystable by Theorem 6.3.35.

The ‘In particular’ part of the lemma follows from Definition 6.1.4(c) and
Exercise 6.2.E.4. O

We now come to the following equivariant generalization of Theorem
6.3.35.

Theorem 6.3.41  Let 3 be an irreducible smooth projective curve with
faithful action of a finite group A such that ¥ := f]/A has genus g > 2
and G a connected reductive group. Then an A-equivariant G-bundle E over
S is A-unitary if and only it is A-polystable of degree 0.

In particular, an A-equivariant G-bundle over S is A-polystable if and only
it is polystable.

Proof  Assume first that E is A-unitary, i.e., there is a unitary homomor-
phism p: 7 — G (following the notation of Definition 6.3.3) with

A

E~E;

5> as A-equivariant G-bundles. D

Then, as in the proof of Theorem 6.3.35, there exists a Levi subgroup L
with Imp C L and p;: m — L is irreducible, where p; := p. Thus, the
corresponding bundle E 5, 18 A-stable by Proposition 6.3.4(b). Moreover, for
any character y of L,

deg (E;,L xt (CX> =

since E 5, has discrete structure group. Thus E is A-polystable of degree 0
by (1). R

Conversely, assume that E is A-polystable of degree 0. Then, by Lemma
6.3.40, E is polystable (of degree 0). (Observe that > has genus ¢ > 2 by
(Hartshorne, 1977, Chap. IV, Example 2.5.4) since ¢ > 2 by assumption.)
Now, by Theorem 6.3.35, as G-bundles,

E~ E,, for aunitary homomorphism p: 11(2) - G.

But, since E is an A-equivariant G-bundle, by Lemma 6.3.8, we get that p lifts
to a unitary homomorphism p: 7 — G such that
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E~FE 5 as A-equivariant G-bundles.
Thus, E is A-unitary, proving the first part of the theorem.

We now prove the ‘In particular’ part. Of course, by Lemma 6.3.40, if
E is A-polystable then it is polystable. For the converse part, using Exer-
cise 6.1.E.12, we can assume that G is semisimple. Now, if E is polystable,
then by Theorem 6.3.35 and Lemma 6.3.8, E is A-unitary. Thus, by the first

part of the theorem, Eis A-polystable. This proves the theorem. O

Let 3 and A be as in Theorem 6.3.41 (in particular, ¥ has genus > 2) and
G a connected (not necessarily simply-connected) semisimple group. Using
Theorem 6.3.41 and Lemma 6.3.37, we get the following generalization of
Lemma 6.3.37.

Proposition 6.3.42  Let E be an A-equivariant G-bundle over S and let
0: G — GLy be a representation with finite kernel. Then the vector bundle
E(V) is A-unitary if and only if E is A-unitary.

Proof  Clearly, if E is A-unitary, then so is E(V).

Conversely, assume that E (V) is A-unitary. Then so is E (W) for any GLy -
module W. In particular, for W := V* ® V = Endy, E (W) is A-unitary.
Consider the G-module embedding

df : g — Endy .

(Observe that d@ is injective since 6 has finite kernel.) Take a G-submodule M
of Endy such that

Endy ~g® M, as G-modules. (D)
The bundle £(W) breaks up as a direct sum of A-equivariant bundles:
EW) = E() ® E(M), 0)

obtained from the decomposition (1). Since E (W) is A-unitary (since so is
E(V)), by Theorem 6.3.41 for GLwy, E(W) is A-polystable of degree O.
Decompose

k
EwW) =PV,
i=1
where each V; is an A-stable vector bundle of degree O (cf. Exercise 6.1.E.16).
Letr: E(W) — E(g) be the projection obtained from the decomposition (2)

and choose the smallest subset S C {1, ...,k} such that Ty, : Vg — E (g) is
surjective, where Vs := P, Vi. We claim that 7, is an isomorphism.
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Let K5 be the kernel of m|y,. Then clearly K is an A-equivariant vector
bundle of degree 0. For any i € S, let w;: Ks — V; be the projection on the
ith factor. Then either r; = 0 or 7; is surjective since deg(Kg) = degV; =0
and V; is A-stable (cf. Exercise 6.3.E.11). (Observe that Kg is A-semistable
since it is a degree 0 subbundle of an A-semistable vector bundle Vs of degree
0.) We next show that 77; = 0 for all i € S. For, if not, assume that 7z; # 0
for some i and hence it is surjective. Thus, for any y € V; we can choose
x € Kg such that 7; (x) = y. Decompose (obtained from the decomposition

Vs = @ies Vi):

x:ij, with x; € V; sothat x; = y.

JES
Hence,
O=m(x)=m()+ ) m(x)).
J#i
Jjes
This gives
rVycr|EPv;
Jjes

J#i

This contradicts the minimality of S, proving that 7; = 0 for all i € §, i.e.,
Ks = (0). This proves that E (8) >~ P,cs Vi and hence E (9) is A-polystable
of degree 0. Thus, by Theorem 6.3.41 for G = GL,, E (g) is A-unitary. Thus,
the proposition follows from Lemma 6.3.37. O

Remark 6.3.43  For any adjoint simple group G not of type PGL(n), there
exist semistable but not stable G-bundles of any topological type. For a proof
of a more general result see Ramanathan (1975, Proposition 7.8).

We end the chapter with the following result.

Lemma 6.3.44 Let G be a connected reductive group and let m: E — X
be a semistable G-bundle. Then, for any p € X, the restriction map

Aut(E) — Aut(E,)

is injective, where Aut(E) denotes the group of automorphisms of the bundle
E inducing the identity over the base and E,, := E)),.
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Proof Let Z be the center of G. Then we can think of Z as a central
subgroup of Aut(E) by taking the embedding

8:Z — Aut(E), §(g)(e)=e-g, foree E, g € Z.
We have the following commutative diagram:

Aut(E)/Z 0 Aut(ad E)

i i
Myey (Aut(Ey)/Z) ——> Myex (Aut(ad Ey)) .

Clearly, i» and 6 are injective. Moreover, i1 is also injective since any ¢ €
Kerij gives rise to a morphism ¢: ¥ — Z, which must be a constant. Hence,
0 is injective. Now, consider the analogue of the above diagram for the fixed
point p € X:

Au(E)/Z — > Aut(ad E)

i1(p) i2(p)

P
Aut(E)/Z — L s Aut(ad E,).

Observe that ad E is a degree 0 vector bundle over X. We next claim that for

any degree O semistable vector bundle ¥ over X, the map iz(p): End ¥ —

End”l/p is injective, where End ¥ denotes the set of &x-module endomor-

phisms of #". The injectivity of i»(p) follows from the vanishing

H° (2,05 (—p) ® End¥) = 0, (1)

where End is the corresponding sheaf and (1) follows from Lemma 6.2.4.
Taking ¥ = ad E and using Lemma 6.1.5, we get the injectivity of i>(p).
Hence, from the second commutative diagram, we get the injectivity of i1 (p).
The injectivity of 71 (p) implies the injectivity of Aut(E) — Aut(E}), proving
the lemma. O

6.3.E Exercises

In the following ¥ is a smooth projective irreducible curve of any genus and
G is a connected reductive group.
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(1) Let p: m1(¥) — G be a homomorphism, where G is any algebraic
group. Then, for any g € G, show that the associated G-bundles E, and
E,,,-1 are isomorphic as algebraic G-bundles.

Following the notation as in Definition 6.3.3, prove the same result
forp: m — G,i.e., Eﬁ o~ Eg[)g_l as A-equivariant G-bundles.

(2) Following the notation in Definition 6.3.9, show that the topological
G-bundle F, (up to an isomorphism) does not depend upon the choices

of ¢ in its homotopy class, p, D, and h.

Hint: Follow the argument as in Steenrod (1951, §18).
(3) Show that a degree O line bundle . over ¥ comes from a unitary
character x (i.e., a 1-dimensional unitary representation C, ) of 71 (X).
Moreover, following the notation as in Definition 6.3.3, if .Z is an
A-equivariant line bundle of degree 0, then show that it is A-unitary.

Hint: The universal bundle &f;, . ,, of Lemma 6.3.2 for G = GL,

(so that K = S') gives rise to an R-analytic group homomorphism
B Rk (g) = (S)* — Jac(D),

where Jac(X) is the Jacobian variety of X consisting of the set of
isomorphism classes of degree O line bundles over X. Show that the
above map is injective and hence surjective from the dimensional
consideration. For the equivariant version, use the first part together
with Lemma 6.3.8.

(4) Prove identity (4) in the proof of Lemma 6.3.11.

(5) Let X, Y be C-analytic spaces such that X is compact. Letw: Y — T
be a holomorphic map. Then show that the inverse image of the set of
constant maps under the holomorphic map

Hol(X,Y) — Hol(X,T), fr>mof

is a closed C-analytic subspace, where Hol(X, Y) has a natural
C-analytic structure as in the proof of Lemma 6.3.29.

(6) Let 7 be a stable vector bundle over ¥. Then show that ¥ is simple,
ie., H9(Z,End?) = C, where End? denotes the sheaf of &x-module
endomorphisms of 7.

Hint: Let A := H(Z,End?¥) be the endomorphism algebra. Now, use
Lemma 6.3.22 and finite-dimensionality of A.
(7) Let E be a G-bundle over . Show that H(X, ad E) ~ Lie(Aut E).

Hint:

AWtE ~{p: E — G :¢pleg) = g_l(p(e)gVe e E,g € G}

https://doi.org/10.1017/9781108997003.008 Published online by Cambridge University Press


https://doi.org/10.1017/9781108997003.008

6.C Comments 273

and similarly
HY(Z,adE) ~{f :E — g: ¢(eg) = Ad(g™") - (p(e)) Ve € E,g € G}.

(8) Let 71 and 7 be two stable vector bundles over X such that
w(?) = u(72). Show that any nonzero O’x-module map ¢: #; — %
is an isomorphism.

(9) Prove Lemma 6.3.31 with T replaced by
Tys :={t € T : %, is asemistable G-bundle}.
Hint: Follow the proof of Lemma 6.3.31.

(10) Give an example of a stable G-bundle E such that ad E is not stable,

where G is a simple group.

Hint: For ¥ of genus > 2, take a representation p: w1 (X) — SO, (R)
with dense image (cf. Lemma 7.2.9). This representation remains
irreducible considered as a homomorphism o: 71 (X) — SL,(C). Thus,
E is stable SL, (C)-bundle. However, show that ad E; is not stable.
(11) Let ¥ and # be two A-equivariant vector bundles over X of degree 0.
Assume further that 7 (resp. #) is A-stable (resp. A-semistable). Show
that any nonzero A-equivariant ﬁi-linear map f: W — Vis
surjective.
Hint: Use the canonical factorization of f as given in the proof of
Lemma 6.3.22.
(12) Following Proposition 6.3.18 and its proof, prove that the composite
map i o j o q o § coincides with the deformation map 7.

6.C Comments

Mumford defined the notion of semistable and stable vector bundles over
a smooth projective curve X as in Definition 6.1.4(a). Its extension to any
G-bundles over X for a connected reductive group G as in Definition 6.1.4(b)
is due to Ramanathan (1975). Definition 6.1.4(c) of polystability for any
G-bundle is taken from Ramanan and Ramanathan (1984, Definition 3.16)
(though they call it ‘quasi-stable’). This extends the earlier definition of
polystability for vector bundles, that is why we prefer to call it ‘polystable.’
The notion of parabolic structure on vector bundles and their semistablity
(and stability) as in Exercise 6.1.E.7 is due to Mehta and Seshadri (1980)
(also see (Seshadri, 1977) for an announcement of some of the results). Its
extension to any G-bundles over X is due to Bhosle and Ramanathan (1989),
though we have taken our Definition 6.1.4(d) from Teleman and Woodward
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(2001, Definition 2.2). It might be mentioned that the paper by Bhosle and
Ramanathan (1989) has a serious error in their association of E(p,7) to a
representation p in their §2.> Lemma 6.1.5 appears in Ramanathan (1996,
Corollary 3.18).

A systematic study of A-equivariant vector bundles on S (where ¥ is a
smooth projective curve and A is a finite group acting faithfully on 3) was
begun in Narasimhan and Seshadri (1965), wherein many of the results from
Narasimhan and Seshadri (1964) were extended to an A-equivariant setting.
One of the classical results (Narasimhan and Seshadri, 1965, Corollary 2, §12)
(Theorem 6.3.35 for vector bundles) is derived from an analogous unitarity
result in the A-equivariant setting (Narasimhan and Seshadri, 1965, Theorem
2, §12). Study of A-equivariant vector bundles on > was continued and
expanded in Seshadri (2011).

We have taken Theorem 6.1.9 and its proof from Teleman and Wood-
ward (2001) (though we have provided more complete details). Theorem
6.1.17 is due to Mehta and Seshadri (1980) for vector bundles (also see
(Grothendieck, 1956-57), (Seshadri, 2011), (Boden, 1991), (Furuta and Steer,
1992) and (Biswas, 1997)). Theorems 6.1.15 and 6.1.17 for general G
are taken from Teleman and Woodward (2001, Theorem 2.3) and Balaji
and Seshadri (2015, Proposition 3.1.1, Theorems 5.3.1 and 6.3.5) (Theorem
6.1.17 is also proved in Balaji, Biswas and Nagaraj (2001, Theorem 4.3)).
In fact, in Balaji and Seshadri (2015), the restriction 6(z;) < 1 plays no
role by using Bruhat-Tits group schemes. Exercise 6.1.E.4 is taken from
Ramanathan (1975, Lemma 2.1 and Remark 2.2), Exercise 6.1.E.5 is taken
from Ramanathan (1975, Lemma 3.3) and Exercise 6.1.E.7(a) is taken from
Bhosle and Ramanathan (1989, §1). Exercise 6.1.E.7(b) is taken from Mehta
and Seshadri (1980, Remark 1.16). Exercise 6.1.E.8 is taken from Ramanathan
(1975, Proposition 7.1). For Exercise 6.1.E.12 see Ramanathan and Sub-
ramanian (1988, Proposition 1) and Ramanathan (1975, Proposition 7.1).
Exercise 6.1.E.13 is taken from Kumar, Narasimhan and Ramanathan (1994,
Lemma 3.6). Some of these results on parabolic bundles have been extended to
G-bundles over an arbitrary smooth projective variety over C by Balaji, Biswas
and Nagaraj (2001).

Harder-Narasimhan (for short HN) filtration of vector bundles over X is
due to Harder and Narasimhan (1975). Its extension for any G-bundles over ¥
was announced by Ramanathan (1979). However, he did not publish its proof.
Then, Atiyah and Bott (1982) provided an analogue of the HN filtration (or
reduction) for G-bundles over ¥ by looking at the original HN filtration of
the corresponding adjoint bundle. Behrend (1995) proved the existence and

3 1 thank V. Balaji for pointing this out.
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uniqueness of the HN reduction (in any characteristic) of G-bundles over
% by using a ‘complementary polyhedron.” A more bundle-theoretic proof
of the existence and uniqueness of the HN reduction of G-bundles over X
was given by Biswas and Holla (2004) and we have followed their proof
in Section 6.2 (Theorem 6.2.3). Identity (1) of Theorem 6.2.3 is taken from
Kumar and Narasimhan (1997, Lemma 3.6). Existence and uniqueness of the
HN reduction of G-bundles over compact Kéhler manifolds was established by
Anchouche, Azad and Biswas (2002). The HN reduction of G-bundles over %
in suitably positive characteristics was also studied by Mehta and Subramanian
(2002) and Biswas and Holla (2004). Theorem 6.2.6 and Corollary 6.2.7 are
taken from Biswas and Holla (2004), though (as mentioned in Remark 6.2.8)
their proof has a gap which required us to put additional hypotheses (1) and (2)
in Theorem 6.2.6. Exercise 6.2.E.4 is taken from Balaji, Biswas and Nagaraj
(2001, Proposition 4.1).

Several of the results in Section 6.3 (including Lemma 6.3.2, Proposition
6.3.4 in the non-equivariant case, Corollary 6.3.7 in the non-equivariant case,
Lemma 6.3.10, Lemma 6.3.11, Corollary 6.3.21, Proposition 6.3.24, Lemma
6.3.25, Lemma 6.3.27 and Lemma 6.3.29 are taken from Ramanathan (1975,
1996). Proposition 6.3.4 and Corollary 6.3.7 in the case of equivariant vector
bundles as well as Lemma 6.3.6 in the equivariant case is proved in Seshadri
(2011, Proposition 10 (Chap. IT), Corollary (Chap. I), Proposition 1 (Chap. I))
(see also (Bhosle and Ramanathan, 1989, Propositions 2.1 and 2.2) for the
parabolic analogue of Proposition 6.3.4 and Corollary 6.3.7).

Lemma 6.3.29 is attributed to R.R. Simha in Ramanathan (1975). Lemma
6.3.6 in the non-equivariant case is taken from Narasimhan and Seshadri (1964,
Proposition 4.1), though the proof given here is a slight modification of their
proof with help from Michael Taylor. Proposition 6.3.12, Corollary 6.3.14,
Proposition 6.3.15, Corollary 6.3.16 and Proposition 6.3.18 are taken from
Narasimhan and Seshadri (1964). Even though they prove their results for
G = GL,, virtually the same proof works for any G. Proposition 6.3.12
is proved by them, more generally, for any compact, connected, Kéhler
manifold. Lemma 6.3.22 is taken from Narasimhan and Seshadri (1965,
Proposition 4.3). Proposition 6.3.30, Lemmas 6.3.31 and 6.3.32 are due to
Ramanathan (1975, §7, §4). Theorem 6.3.34 is a slight variant of Ramanathan
(1975, Theorem 7.1). Its extension to Theorem 6.3.35 is straightforward. For
G = GL,,, this is a classical result due to Narasimhan and Seshadri (1965, §12,
Corollary 2). Exercise 6.3.E.4 is taken from Ramanathan (1975, Proposition
6.1 and Remark 6.2). Exercise 6.3.E.6 is taken from Narasimhan and Seshadri
(1965, §4). Exercise 6.3.E.9 is asserted in Ramanathan (1996, proof of Lemma
5.9.1). The analogue of most of the results in Section 6.3 for vector bundles is
due to Narasimhan and Seshadri (1964) and Narasimhan and Seshadri (1965).
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Corollary 6.3.7 for vector bundles is mentioned in Weil (1938). Theorem
6.3.41 for vector bundles is due to Seshadri (2011, Theorem 4 (Chap. II)).
Lemma 6.3.37 is taken from Atiyah and Bott (1982, Lemma 10.12) though
part of its proof via Lemma 6.3.38 is taken from Ramanathan and Subramanian
(1988, Proposition 1). Proposition 6.3.42 is taken from Balaji, Biswas and
Nagaraj (2001, §5).

There is an alternative proof of the Narasimhan—Seshadri theorem for
stable vector bundles over ¥ using the differential geometry of connections
on holomorphic bundles (cf. (Donaldson, 1983)). For its extension to any
reductive G and the base X replaced by any complex projective manifold, see
Ramanathan and Subramanian (1988, Theorem 1).

We have restricted the discussion of parabolic G-bundles to the case when
G is a simply-connected simple group. Its generalization to any connected
reductive group G (under some restrictions on parabolic weights) can be found
in Faltings (1993, §V) and in Balaji and Seshadri (2015, §8.2).
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