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The numerical investigation focuses on the flow patterns around a rectangular cylinder
with three aspect ratios (L/D = 5, 10, 15) at a Reynolds number of 1000. The study delves
into the dynamics of vortices, their associated frequencies, the evolution of the boundary
layer and the decay of the wake. Kelvin–Helmholtz (KH) vortices originate from the
leading edge (LE) shear layer and transform into hairpin vortices. Specifically, at L/D = 5,
three KH vortices merge into a single LE vortex. However, at L/D = 10 and 15, two KH
vortices combine to form a LE vortex, with the rapid formation of hairpin vortex packets.
A fractional harmonic arises due to feedback from the split LE shear layer moving
upstream, triggering interaction with the reverse flow. Trailing edge (TE) vortices shed,
creating a Kármán-like street in the wake. The intensity of wake oscillation at L/D = 5
surpasses that in the other two cases. Boundary layer transition occurs after the saturation
of disturbance energy for L/D = 10 and 15, but not for L/D = 5. The low-frequency
disturbances are selected to generate streaks inside the boundary layer. The TE vortex
shedding induces the formation of a favourable pressure gradient, accelerating the flow
and fostering boundary layer relaminarization. The self-similarity of the velocity defect is
observed in all three wakes, accompanied by the decay of disturbance energy. Importantly,
the decrease in the shedding frequency of LE (TE) vortices significantly contributes to the
overall decay of disturbance energy. This comprehensive exploration provides insights into
complex flow phenomena and their underlying dynamics.
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1. Introduction

The study of flow around bluff bodies with sharp corners holds great importance in
engineering sciences, as it finds applications in various structures such as bridges,
buildings and pylons (Tamura, Miyagi & Kitagishi 1998). Among these bluff bodies, the
rectangular cylinder serves as a simplified prototype. Despite its simple geometry, the flow
around a rectangular cylinder exhibits intricate features, particularly the separation and
reattachment of the unstable shear layer. As a result, it has garnered substantial attention
in both fundamental research and industrial applications. Over the years, researchers have
extensively investigated this flow phenomenon, recognizing its significance and relevance.

The flow behaviour around a rectangular cylinder is influenced by the aspect ratio,
denoted as L/D, where L and D represent the streamwise and cross-stream dimensions
of the cylinder, respectively. When the aspect ratio is small (1 < L/D ≤ 3), the shear layer
separates from the leading edge (LE) and intermittently reattaches on the upper or lower
side of the cylinder. However, for sufficiently large aspect ratios, the flow can permanently
reattach and separate from the trailing edge (TE). Accurate classification of flow regimes
based on aspect ratio also depends on the Reynolds number (Re), which is defined using
the inflow velocity U0 and D. When Re exceeds 300, shedding of vortices from both the
LE and TE occurs at the same frequency f , leading to an increase in the Strouhal number,
given by St(L) = f L/U0, in the two regimes. One regime is dominated by the LE vortex
shedding, and St(L) changes in a stepwise manner with increasing aspect ratio for Re up
to 2000 (Okajima 1982; Nakamura, Ohya & Tsuruta 1991; Ozono et al. 1992; Mills et al.
1995; Tan, Thompson & Hourigan 1998; Chiarini, Quadrio & Auteri 2022c; Zhang et al.
2023). The second regime, instead, is dominated by the TE vortex shedding, and St(L)

increases almost linearly with L/D (Chiarini et al. 2022c). However, several experimental
and numerical studies have shown that factors such as the blockage ratios of the open-water
channel and computational domain, as well as flow disturbances from upstream of the
cylinder, can affect this crucial characteristic of vortex shedding (Prasanth & Mittal 2008;
Liu & Zhang 2015; Zhang & Liu 2015).

The impinging shear layer (ISL) instability and the impinging LE vortex (ILEV)
instability were proposed by Nakamura & Nakashima (1986) and Naudascher & Rockwell
(1994), respectively, to explain the frequency locking phenomenon and the stepwise
dependence of St(L). Nakamura & Nakashima (1986) also speculated that the ISL
instability is a one-sided phenomenon rather than relying on the interaction between shear
layers from opposite sides. As a result of the ILEV instability, different shedding modes
occur with distinct integer total numbers n of LE vortices distributed on the upper and
lower sides of the cylinder. With increasing L/D, n also grows in a stepwise manner,
leading to an approximate relationship of St(L) ≈ Uc·n, where Uc is the mean convection
velocity of LE vortices and is approximately 0.55 times the free stream velocity U0
(Nakamura et al. 1991; Mills, Sheridan & Hourigan 2002; Tan, Thompson & Hourigan
2004; Chiarini et al. 2022c). Numerous studies have been conducted to investigate the
stepwise phenomenon and explore the effects of TE vortices resulting from the ILEV
instability (Hourigan et al. 1993; Hourigan, Thompson & Tan 2001; Mills et al. 2002;
Tan et al. 2004). Hourigan et al. (2001) proposed that the flow instability relies on the
interaction between LE vortices and TE vortices, with the shedding of TE vortices playing
a crucial role in the self-sustained oscillation of the fluid. When a LE vortex passes over
the TE, it generates a relatively weak pressure pulse that travels upstream and triggers the
shedding of the LE vortex, completing the pressure feedback loop.

Recently, Chiarini et al. (2022c) conducted a study on the variation of St(L) with
the aspect ratio of rectangular cylinders at a Reynolds number of 400. The research
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encompassed numerous scenarios with different aspect ratios, including non-integer
values. The authors asserted that the shedding of the TE vortices plays a central
role in frequency locking based on their analysis of structural sensitivity. Two distinct
flow configurations were identified, which exhibited a significant correlation with the
interaction between the LE and TE vortices. When the LE vortex coincides in phase with
the development of a new TE vortex on the same side, the overall frequency is determined
by the shedding of the TE vortices. Conversely, when the LE vortex reaches the TE out
of phase with the shedding of the TE vortex on the same side, it can induce the shedding
of TE vortices on the opposite side. As a result, the shedding frequency is locked to the
passing frequency of the LE vortices over the TE. In another study by Zhang et al. (2023),
three-dimensional unsteady flows around rectangular cylinders were investigated using
large-eddy simulation (LES) at Re = 1000. The aspect ratio of the cylinders ranged from
3 to 12. The researchers found that the phase difference between the LE and TE vortices
is a critical factor contributing to the stepwise growth of St(L) as L/D increases. The
self-sustained oscillation in the flow is sustained by two types of pressure feedback-loop
mechanisms. For L/D = 4 and 5, the flow exhibits the ISL instability, and the separation
region is covered by the pressure feedback loop. On the other hand, for L/D = 3 and
L/D = 6 − 12, the flow is characterized by the ILEV instability along with the pressure
feedback loop covering the entire rectangular cylinder.

Understanding the instability mechanism of flow around a rectangular cylinder is
crucial for studying vortex dynamics and the generation of various structures. However,
compared with the flow around circular cylinders (Jackson 1987; Monkewitz, Huerre
& Chomaz 1993; Giannetti & Luchini 2007; Marquet, Sipp & Jacquin 2008) or square
cylinders (Robichaux, Balachandar & Vanka 1999; Blackburn & Lopez 2003; Sheard,
Fitzgerald & Ryan 2009; Blackburn & Sheard 2010; Park & Yang 2016; Jiang, Cheng
& An 2018), the instability mechanism of this flow has received less attention. Chiarini,
Quadrio & Auteri (2021) investigated the primary instability of flow around a rectangular
cylinder at low Reynolds numbers, considering the influence of the aspect ratio and
the rounded LE and TE corners. The aspect ratio ranged from 0.25 to 30. They found
that the primary instability results from a Hopf bifurcation, similar to the flow around
a circular cylinder (Provansal, Mathis & Boyer 1987; Noack & Eckelmann 1994) or a
square cylinder (Sohankar, Norberg & Davidson 1999; Saha, Muralidhar & Biswas 2000;
Jiang & Cheng 2018). The critical Reynolds number (Rec) for the primary instability
increases from approximately 34.8 for L/D = 0.25 to 140 for L/D = 30. Direct numerical
simulation (DNS) conducted by Hourigan et al. (2001) focused on the three-dimensional
flow around a rectangular cylinder at Reynolds numbers ranging from 350 to 400.
They observed the formation of three-dimensional vortical structures on both sides of
the cylinder and in the wake region. The hairpin-like vortical structures, arranged in a
staggered manner, resemble ‘Pattern B’ structures identified by Sasaki & Kiya (1991).
Although the spanwise wake shedding modes are similar to those observed for a circular
cylinder (referred to as ‘mode A’ and ‘mode B’) (Williamson 1988), the spanwise
wavelengths are larger due to the thicker boundary layers near the TE, which lead to
more diffused vortices. In a recent study by Chiarini, Quadrio & Auteri (2022b), the
three-dimensional instability of flow around a rectangular cylinder with an aspect ratio
of 5 was investigated using Floquet analysis and DNS. A new quasisubharmonic (QS)
unstable mode was discovered, which becomes unstable at approximately Re = 480 with
a spanwise wavelength λ = 2π/k ≈ 3. This is different from the flow around cylinders
with lower aspect ratios or smooth LEs. The structural sensitivity analysis revealed that
the wavemaker region of the QS mode is located on the upper/lower side of the cylinder.
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Furthermore, the mutual inviscid interaction of vortices from the LE layer triggers the
instability.

When the Reynolds number is sufficiently high, the flow exhibits significant turbulence.
Cimarelli, Leonforte & Angeli (2018b) conducted the first investigation of this flow
through DNS at L/D = 5 for Re = 3000. Their findings revealed that the developed flow is
predominantly characterized by quasistreamwise vortices and streamwise streaks induced
by hairpin-like vortices. Conversely, reverse flow is characterized by spanwise vortices.
They identified a self-sustaining mechanism in which large-scale pressure fluctuations
alternate between promoting and suppressing the reverse flow, while small-scale motions
trigger the formation of LE shear layers. Subsequently, Cimarelli, Leonforte & Angeli
(2018a) explored the physical mechanisms driving the behaviour of separating and
reattaching flows. The study by Cimarelli et al. (2019a) also unveiled negative turbulence
production mechanisms in the LE shear layer. To gain further statistical insights into
this flow, Chiarini & Quadrio (2021) conducted a comprehensive investigation of
the single-point budget of Reynolds stresses at the same Re. The study focused on
the most relevant production, redistribution and dissipation terms. Although the LE
shear layer starts as laminar, its instability drains energy from the mean flow to feed
downstream streamwise fluctuations. The other two components of turbulent kinetic
energy (TKE) result from the redistribution of the streamwise TKE component driven
by the pressure-strain term. In a study by Chiarini et al. (2022a), the contribution
of structures with various scales to the sustaining mechanism was examined using
anisotropic generalized Kolmogorov equations. The forward and reverse energy transfers
occur simultaneously in this flow presented by the scale-space fluxes. The researchers
identified two independent sources of velocity fluctuations: large Kelvin–Helmholtz (KH)
rolls and small streamwise vortices. Near the TE, the turbulent structures are affected by
the sudden disappearance of the wall, leading to a progressive vanishing of streamwise
vortices and the transformation of spanwise structures into vertical fluctuations due to
pressure-strain effects. In experimental research conducted by Moore, Letchford & Amitay
(2019), separated shear layers from rectangular cylinders with aspect ratios of 5, 3 and 1
were investigated at Reynolds numbers ranging between 1.34 × 104 and 1.18 × 105. The
study revealed that certain characteristics of the shear layer behaviour remained invariant
as the Reynolds number changed, such as the time-averaged position of the shear layers.
However, other characteristics were found to be dependent on the Reynolds number,
including the spatial amplification of TKE.

Furthermore, the rectangular cylinder with an aspect ratio of L/D = 5 has emerged as
the benchmark for studying the aerodynamics of the 5 : 1 rectangular cylinder (BARC)
(https://www.aniv-iawe.org/barc-docs). This benchmark was introduced during the
6th Colloquium on Bluff Body Aerodynamics and Applications, serving as a platform
for scientists involved in bluff body aerodynamics research, with a particular focus on
analysing turbulent separation flow around an elongated rectangular cylinder (Bruno,
Salvetti & Ricciardelli 2014). Bruno et al. (2014) conducted a comprehensive summary
of experimental and numerical investigations related to the BARC. They found that
lift generation is highly sensitive to test set-ups and modelling approaches, leading to
notable discrepancies between experimental measurements and numerical predictions.
Subsequently, Cimarelli et al. (2018a) performed well-converged statistical analyses
that were unaffected by turbulence modelling, providing valuable insights into the
quantification of numerical and modelling inaccuracies for relevant aerodynamic statistics.
In addition, Cimarelli et al. (2019a) presented conceptual arguments for modelling
turbulence production in the transitional shear layer, further expanding the understanding
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of this complex flow phenomenon. Moreover, Cimarelli et al. (2019b) utilized DNS data
of the BARC flow to evaluate the combined influence of numerical resolution and subgrid
turbulence closure on LES. Recently, Corsini et al. (2022) presented a new and well
resolved DNS around the BARC at Re = 3000. Despite the use of different numerical
methods and grids, their findings suggest that the primary differences can be attributed
to the different grid spacings used. This serves as an initial exploration into studying the
impact of spatial resolution in the DNS of flows around elongated rectangular cylinders
with sharp corners.

As mentioned above, numerous studies have focused on investigating the flow behaviour
around a rectangular cylinder. The influence of aspect ratio on the generation and evolution
of vortex structures has primarily been examined at low Re, while investigations at high
Re have generally concentrated on flows with an aspect ratio of L/D = 5. However,
there remains a dearth of research exploring the evolution of the boundary layer on the
upper and lower sides of the rectangular cylinder at different aspect ratios, as well as the
development of the wake. Consequently, the uniqueness of this study lies in its examination
of vortex dynamics, encompassing the relationships between various flow processes and
typical frequencies, the formation of hairpin vortices and hairpin vortex packets, and
the interaction between the LE vortex and TE vortex. Additionally, the present work
will propose mechanisms for the transition and relaminarization of the wall boundary
layer to characterize its development. This investigation is conducted using DNS for a
medium Reynolds number (Re = 1000) and three different aspect ratios L/D = 5, 10 and
15. To the best of the authors’ knowledge, such comprehensive research has not been
previously reported. It is anticipated that the elucidation of the flow physics in this study
will facilitate a deeper understanding of vortex dynamics, boundary layer transition, and
reverse transition. The remainder of this paper is organized as follows: § 2 presents the
physical model, numerical method and data analysis methods; the main findings are then
discussed in § 3; finally, § 4 provides the conclusion.

2. Numerical methodology

2.1. Flow configuration and numerical method
Figure 1 shows a sketch of flow around a rectangular cylinder. The streamwise and vertical
scales of the cylinder are L and D, respectively. The computational domain extends for
−10D ≤ x ≤ L + 50D in the streamwise direction, for −15.5D ≤ y ≤ 15.5D in vertical
direction and 0 ≤ z ≤ 2πD in the spanwise direction. The fluid motion is described by the
incompressible Navier–Stokes equations in dimensionless form, and are as follows:

∇ · u = 0, (2.1)

∂u
∂t

+ u · �u = −∇p + 1
Re

∇2u. (2.2)

Here, u ≡ (u, v, w) is the velocity vector, t is the time and p is the pressure. The Reynolds
number Re = U0D/ν is defined based on the thickness of the rectangular cylinder D and
the inflow velocity U0, where ν is the kinematic viscosity. In this study, Re is fixed at 1000.
Three aspect ratios (L/D = 5, 10, 15) are considered.

A uniform flow velocity U0 is specified at the inlet boundary. The far-field condition
(∂u/∂y = 0, v = 0, ∂w/∂y = 0) is imposed along the upper and lower surface of the
domain. The high-order outflow boundary condition is imposed at the outlet (Dong,
Karniadakis & Chryssostomidis 2014). A no-slip boundary condition (u = v = w = 0)
is applied on the surface of the rectangular cylinder.
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Figure 1. Sketch of flow around a rectangular cylinder in an x–y plane. Here L and D are the streamwise and
vertical dimensions of the rectangular cylinder, and U0 is the inflow velocity.
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Figure 2. The partial domain with a macromesh for L/D = 5 in the x–y plane. The inset is a close-up view of
the mesh near the rectangular cylinder.

The Fourier spectral/hp element method (Bolis 2013) is used in the numerical
simulations, which is embedded in the open-source code Nektar++ (Cantwell et al. 2015;
Moxey et al. 2020). A second-order implicit–explicit time integration scheme is chosen
from the incompressible solver, and the time step is fixed at 0.001. Applying this method,
the problem is discretized spatially in the x–y plane along with a Fourier expansion
in the z direction, revealing the three-dimensional features of the flow (Bolis 2013). In
this study, the three-dimensional flow is resolved by performing a Fourier expansion in
the spanwise direction, due to the assumption of being homogeneous in the spanwise
direction (periodic conditions). In the spanwise direction, N Fourier planes are used, and
the spanwise resolution is 2N. In the x–y plane, the spatial resolution is determined by
the distribution of h-type elements with P-order interpolation polynomials for the p-type
expansion.

The simulations are first advanced for 300D/U0 to allow for the flow to reach a
truly statistically stationary state. When the flows reach the statistically steady state,
the simulations accumulate statistics at each time step for further 200D/U0, while the
sampling interval of the instantaneous three-dimensional flow fields is 0.25D/U0.

2.2. Validation and Mesh independence study
Figure 2 shows the macromesh in part of the domain for L/D = 5. In the present study,
the polynomial order and the number of Fourier planes are set to P = 5 and N = 96 for all
three cases, following the simulations at the same Re in the studies of Li et al. (2022a,b),
in which the flow past a circular cylinder in proximity to a plane wall was investigated.

The Strouhal number St(L) based on the streamwise dimension of the rectangular
cylinder is used to validate the present numerical model. The present results are shown
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L/D
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1.0

1.5

2.0

2.5

3.0

3.5

4.0

St
(L

)

Nakamura et al. (1991) by experiment, ReD = 1000

Zhang et al. (2023) by LES, ReD = 1000

Present results by DNS, ReD = 1000

Figure 3. The Strouhal number based on the streamwise dimension of the rectangular cylinder St(L) at
different aspect ratios compared with the results from the literature.

P Nv Nd N �CD CD,rms CL,rms

4 21 347 3.28 × 107 96 1.00 1.04 0.80
5 21 347 5.12 × 107 96 1.01 1.01 0.71
6 21 347 7.38 × 107 96 1.01 1.01 0.70
7 21 347 1.00 × 108 96 1.01 1.01 0.72

Table 1. Time-averaged drag coefficient C̄D, the root-mean-square (r.m.s.) values of CD, and the r.m.s. values
of lift coefficient CL with different orders of polynomial interpolation P at Re = 1000 for L/D = 5. Here Nv is
the number of elements, Nd is approximate degree of freedom and N is the number of Fourier planes.

in figure 3, compared with available experimental and numerical results carried out by
Nakamura et al. (1991) and Zhang et al. (2023), respectively. It can be found that the
current St(L) is in great agreement with the experimental results. The present results also
match the LES results from Zhang et al. (2023), although there is a very small deviation,
which may be due to the difference in numerical methods.

For mesh independence check, the convergence of drag coefficient CD, the r.m.s. values
of CD (CD,rms) and r.m.s. values of lift coefficient CL (CL,rms) are evaluated. The drag and
lift coefficients are defined as

CD = Fx

0.5ρDU2
0
, CL = Fy

0.5ρDU2
0
, (2.3a,b)

where Fx and Fy are the spanwise-averaged total forces acting on the rectangular cylinder
in the streamwise and vertical directions, respectively. Here �CD, CD,rms and CL,rms are
shown in table 1 for different orders of polynomial interpolation P. Here, only the typical
case at L/D = 5 is displayed, as the other two aspect ratio cases are similar to it. Four
meshes are generated along with P varying from 4 to 7. It can be found that �CD, CD,rms
and CL,rms show good convergence as P increases, when the time step is fixed at 0.001
referring to the studies of Li et al. (2022a,b). Therefore, it indicates that P = 5 and N = 96
are sufficient for current simulations.
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2.3. Data analysis methods

2.3.1. Mode analyses
Dynamic mode decomposition (DMD) (Schmid 2010) and Fourier mode decomposition
(FMD) (Basley et al. 2011; Ma et al. 2015; Zhang & Zhou 2024) are significant mode
analysis tools, and were widely used in the previous studies (He, Wang & Pan 2013; Wang
et al. 2018; Wang & Wang 2021a,b; Li et al. 2022a).

The DMD can extract a set of modes from the original unsteady dynamic flow. Each
mode is associated with the spatial structures in the flow field, which is dominant at a
certain frequency. Therefore, DMD can be applied to extract the dominant modes with
characteristic frequencies. The snapshots of the flow fields can be decomposed as

Φ(x, t) = U(x) +
r∑

k=1

bkφk(x) eωkt, (2.4)

ωk = log(μk)/�t, (2.5)

here, U, Φ, φk, bk, μk are the mean field, reconstructed field, kth DMD mode, the
magnitude of the kth DMD mode and the eigenvalue of the kth mode, respectively. In
present study, DMD analysis is based on the three-dimensional flow fields, and each
sample consists of the three velocity components u, v and w to extract the typical flow
structures.

Different typical frequencies are generated due to the shedding of the LE vortex or TE
vortex. The reconstructions of the fluctuating velocity with different frequencies could
help to investigate the vortex dynamics of the shear layer. The FMD is conducted by
applying single-point discrete Fourier transformation to fluctuating velocity sequence.
A Fourier-transform matrix vk is obtained as follows:

vk = 1
M

M−1∑
m=0

F m e−i(2πk/M)m, (2.6)

where M and F m are the total number of the samples and the matrix of fluctuating velocity
sequences, respectively. The fluctuating velocity with different frequency bands F band

m can
be reconstructed by using inverse Fourier transformation to vk:

F band
m =

∑
band

vk ei(2πk/M)m. (2.7)

2.3.2. Finite-time Lyapunov exponents method
The finite-time Lyapunov exponents (FTLEs) method can track Lagrangian coherent
structures (LCSs) successfully (Haller & Yuan 2000; Haller 2001; Shadden, Dabiri &
Marsden 2006; Green, Rowley & Haller 2007; Shadden, Astorino & Gerbeau 2010),
especially in complex flows (He et al. 2016; Wang et al. 2018; Wang & Wang 2021a,b;
Cheng et al. 2022). The flow map is denoted by Φ

t0+t1
t0 : x(t0) −→ x(t0 + t1), which maps

fluid particles from the initial location x(t0) at time t0 to the location x(t0 + t1) at t0 + t1.
The FTLE at t0 can be calculated as follows:

σ(x, t0, t1) = 1
|2t1| ln

(
λmax

{[
∂x(t0 + t1)

∂x(t0)

]T [
∂x(t0 + t1)

∂x(t0)

]})
, (2.8)

here, σ(x, t0, t1) is the exponential growth rate of nearby trajectories over a finite time
interval t1, and λmax denotes the largest singular value of the deformation gradient matrix.
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In the current work, t1 < 0 is used to conduct backward computations to obtain the ridges
of LCSs σ(x, t0, t1).

3. Results and discussion

3.1. Vortex dynamics
In this section, the effects of aspect ratio on the vortex dynamics around a rectangular
cylinder are examined. The visualization of instantaneous vortical structures are presented
first, including the evolutions of different vortex structures. Then the typical characteristics
of mean flow statistics are discussed, contributing to an overview of the vortex generation
and evolution. Furthermore, the vortex dynamics associated with several prominent
frequencies are discussed.

3.1.1. Instantaneous vortical structures and mean flow statistics
Figure 4 illustrates the instantaneous three-dimensional vortical structures for the three
different aspect ratios, identified through the Q criterion with Q = 0.1. Since the flows
exhibit symmetry, the evolution processes of various vortex structures on the upper side of
the cylinder will be described only. For L/D = 5 in figure 4(a), the onset of KH instability
is observed in the LE shear layer, resulting in the formation of spanwise KH vortices.
The subsequent secondary instability of the KH vortex indicates its limited persistence
over a short range. This secondary destabilized KH vortex then transforms into the LE
vortices, as also noted in the study by Zhang et al. (2023). However, the present DNS
results provide clearer identification of hairpin vortices compared with previous studies.
These hairpin vortices arise from the LE vortices due to the background mean shear. The
intense shear effects cause regions of high momentum to form the head of the hairpin
vortices, while regions of low momentum develop into their legs. This generation process
of hairpin vortices is akin to that observed in the interaction between the wake of a circular
cylinder and a wall boundary at a very small gap ratio (Li et al. 2022a). Although these two
flow configurations are different, the hairpin vortices in both flows are evolved from KH
vortices. Furthermore, the LE vortices composed of multiple hairpin vortices appear more
irregular than those observed at lower Reynolds numbers in the studies of Hourigan et al.
(2001) and Chiarini et al. (2022b). It should be noted that the scale of hairpin vortices
appears larger than the results reported by Cimarelli et al. (2018b), Chiarini & Quadrio
(2021) and Chiarini et al. (2022a), which can be attributed to the higher Reynolds numbers
employed in their investigations.

The mean shear, denoted as τ = (1/Re)(∂U/∂y), is illustrated in figure 5. The figure
clearly demonstrates the presence of strong shear in the LE shear layer and the forward
wall boundary layer after the reattachment. Furthermore, it can be observed that as the
aspect ratio increases, the duration of the mean shear becomes longer, resulting in a greater
amount of shear experienced by the flow. Consequently, the intensified mean shear in cases
with larger aspect ratios significantly impacts the evolution of hairpin vortices.

The vortical structures associated with larger aspect ratios have received limited
attention in previous researches. Figure 4(b,c) demonstrate that the generation and
three-dimensional instability processes of the KH vortices at L/D = 10 and 15 are similar
to those observed at L/D = 5. Nevertheless, the formation of KH vortices is observed
to take place at larger distances from the LE as the aspect ratio increases. The evolution
of KH rolls into hairpin vortices along the shear layer is less abrupt as the aspect ratio
increases, although the mean shear increases. The increased streamwise dimension of the
rectangular cylinder allows the hairpin vortices to travel farther downstream along the
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Figure 4. Instantaneous three-dimensional vortical structures visualized by isosurfaces of Q = 0.1, coloured
with the instantaneous streamwise velocity u/U0: (a) L/D = 5; (b) L/D = 10; (c) L/D = 15.

wall at larger aspect ratio. As they progress downstream, the hairpin vortices experience
stretching due to the enhanced mean shear. The high-momentum heads of the hairpin
vortices tend to be lifted up, leading to the formation of hairpin vortex packets for both
aspect ratios (L/D = 10 and 15). Furthermore, despite a portion of the packet being
convected downstream of the TE, the hairpin vortex packet retains its shape due to memory
effects.

For all three aspect ratios, the TE vortex is generated and subsequently sheds into the
wake. However, it is evident that the wake for L/D = 5 exhibits larger-scale oscillations
in the vertical direction compared with the other two aspect ratios. At the current medium
Reynolds number, the oscillation in the L/D = 5 flow appears to be more apparent than
what was observed in the studies conducted by Cimarelli et al. (2018b), Chiarini & Quadrio
(2021) and Chiarini et al. (2022a) at a high Reynolds number (Re = 3000). This can be
observed not only in the instantaneous vortical structures, but also quantitatively reflected
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Figure 5. Mean shear τ/U2
0 : (a) L/D = 5; (b) L/D = 10; (c) L/D = 15.

in CL,rms. Specifically, at L/D = 5, the present work reports a value of CL,rms = 0.71, as
shown in table 1. This is larger than the value of CL,rms = 0.29 obtained under the same
aspect ratio for Re = 3000 (Chiarini & Quadrio 2021). Furthermore, the wakes for all
three aspect ratios exhibit a Kármán-like vortex street formation, which has rarely been
paid close attention to in studies investigating high Reynolds number (Cimarelli et al.
2018b; Chiarini & Quadrio 2021; Chiarini et al. 2022a).

Figure 6(a,c,e) present the time and spanwise-averaged streamwise velocity U/U0 for
L/D = 5, 10 and 15, respectively, in pseudocolour with the superimposition of streamlines.
Due to the flow symmetry, the discussion of mean flow statistics focuses solely on the
upper side of the cylinder as well. The observations reveal a consistent flow behaviour
across all three aspect ratios. The flow separates at the LE and subsequently reattaches
downstream on the upper side of the rectangular cylinder. This phenomenon gives rise to
the formation of separation bubbles. The streamwise scales of these separation bubbles
are found to be 4.42D, 6.28D, 7.12D for aspect ratios of L/D = 5, 10, 15, respectively.
Additionally, the vertical scales are determined to be 0.92D, 1.04D, 1.10D. This indicates
that both the streamwise and vertical scales of the separation bubble increase with an
augmentation in the aspect ratio. Notably, it is worth mentioning that, unlike the mean
flow characteristics observed in the studies for L/D = 5 conducted by Cimarelli et al.
(2018b), Chiarini & Quadrio (2021) and Chiarini et al. (2022a), there is only one primary
separation bubble above the upper side of the rectangular cylinder in the present results.
In those previous studies, a secondary counter-rotating bubble was observed beneath the
primary bubble at higher Reynolds number (Re = 3000) (Cimarelli et al. 2018b; Chiarini
& Quadrio 2021; Chiarini et al. 2022a). Consequently, at the current Reynolds number, the
reverse flow induced by the primary bubble generates a boundary layer that moves directly
upstream without a secondary detachment of this reverse boundary layer.

The flow undergoes a conversion into a boundary layer downstream following the
reattachment point, and subsequently separates at the TE. As a result, another bubble
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Figure 6. Time- and spanwise-averaged streamwise velocity U/U0 in pseudocolour with the superimposition
of streamlines: (a) L/D = 5; (c) L/D = 10; (e) L/D = 15. The spanwise-averaged r.m.s. of the streamwise
fluctuation u′

rms/U0: (b) L/D = 5; (d) L/D = 10; ( f ) L/D = 15. The black crosses are designed to monitor
the local power spectral densities (PSDs) in the LE shear layer, the boundary layer over the upper side of the
rectangular cylinder, and the wake. The inverted triangle is designed to monitor feedback signal. The orange and
magenta lines are designed to track the fluctuations in the LE shear layer and the boundary layer, respectively.

forms in the wake region immediately after the TE due to the shedding of the TE vortex.
The streamwise scale of these bubbles are 0.73D, 1.16D and 1.31D for L/D = 5, 10, 15,
respectively. Therefore, similarly to the bubble originating from the LE, the streamwise
scale of this wake bubble also increases as the L/D rises.

The spanwise-averaged r.m.s. of the streamwise velocity fluctuation, u′
rms/U0, is

depicted in figure 6(b,d, f ) for aspect ratios L/D = 5, 10 and 15, respectively. It is
evident from the figure that the initial LE shear layer exhibits laminar flow characteristics.
However, with the generation and destabilization of the KH vortex, there is a significant
increase in the intensity of velocity fluctuation. For aspect ratios L/D = 10 and L/D = 15,
the intensity of u′

rms/U0 gradually diminishes within the downstream boundary layer.
In contrast, this trend is not as pronounced for L/D = 5 since the distance between the
reattachment point and the TE is comparatively small at this aspect ratio. As the flow
detaches at the TE and forms the TE vortex, there is a subsequent increase in the intensity
of u′

rms/U0 in the wake region just behind the TE. Figure 7 illustrates the profiles of the
spanwise-averaged intensity of vertical velocity fluctuation v′

rms/U0 at various streamwise
locations in the near wake. A comparison of the three aspect ratios demonstrates that the
intensity of wake oscillation is significantly greater for L/D = 5 in contrast to L/D = 10
and 15. This finding confirms that the wake strength is significantly greater for an aspect
ratio of L/D = 5, as illustrated in figure 4. In addition, it is worth noting that while the
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Figure 7. Profiles of the spanwise-averaged vertical velocity fluctuation intensity v′
rms/U2

0 at different
streamwise locations in the near wake: (a) x′/D = 1; (b) x′/D = 3; (c) x′/D = 5, where x′ = x − L.

intensity v′
rms/U0 for L/D = 15 is indeed larger than that for L/D = 10, this discrepancy

can be attributed to the different vortex-shedding patterns investigated in § 3.3.1.

3.1.2. Flow processes with typical frequencies
The inherent instabilities in the complex flow give rise to distinct frequencies that
correspond to different physical phenomena. As a result, investigations have been
conducted on the frequency characteristics associated with various vortex dynamics in the
LE shear layer, boundary layer and wake regions. The signals of the streamwise velocity
fluctuations are extracted from the points marked by black crosses in figure 6(b,d, f ).

Figure 8 illustrates the fluctuation tracking using PSD. The PSDs have been averaged
across the spanwise direction to identify dominant frequencies. A second Strouhal number,
based on the vertical dimension of the rectangular cylinder, is defined as St = f D/U0. In
each flow scenario, a characteristic fundamental frequency peak denoted as St0 is clearly
observed in all velocity signals, both in the LE and TE shear layer regions. Therefore, it
can be inferred that the LE and TE vortices shed at the same frequency (St0), indicating the
presence of frequency locking in all three flows with different aspect ratios at Re = 1000.
This observation aligns with previous studies of Nakamura et al. (1991) and Zhang
et al. (2023), which reported similar findings. However, the experimental investigation
conducted by Liu & Zhang (2015) did not observe frequency locking, possibly due to
the influence of blockage ratios in the open-water channel. Furthermore, the topological
structure of the DMD for the shedding of LE and TE vortices is presented in figure 9.
These structures correspond to the frequency St0 in all three flow cases. The LE vortex
formation exhibits alternating structures dominantly in this mode, arranged regularly
in the streamwise direction. This indicates that the DMD mode captures the coherent
structures of the LE vortex. In the wake region behind the TE, the DMD mode is
dominated by the Kármán-type vortex street, representing the coherent structures of the
TE vortex. Notably, the distance between adjacent topologies in the wake for L/D = 5 is
significantly larger than that in the other two flows, suggesting a lower shedding frequency
for L/D = 5 compared with L/D = 10 and 15, consistent with the PSD results presented
in figure 8. Consequently, the findings from this DMD mode analysis confirm the existence
of frequency locking in all three flow scenarios.
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Figure 8. Local PSDs of streamwise velocity fluctuation in the LE shear layer, the boundary layer and the
wake: (a,b) L/D = 5; (c,d) L/D = 10; (e, f ) L/D = 15. The PSDs are calculated at crosses 1–7 in figure 6
and remain marked by the same numbers as in figure 6. The amplitudes of PSDs for crosses 2–4 and 6–7 are
amplified step-by-step by 103 along the serial number. Labels StL, St0, StFB and StKH denote the low frequency,
vortex-shedding frequency, feedback frequency and KH fluctuation frequency, respectively. The dashed lines
define the frequency bands related to the typical frequencies.

982 A5-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

87
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.87


Vortex dynamics for flow around a rectangular cylinder

LE vortex shedding

LE vortex shedding

LE vortex shedding

TE vortex shedding

TE vortex shedding

TE vortex shedding

y
x

z

(a)

(b)

(c)

Figure 9. Isosurfaces of the real part of the DMD mode for the streamwise component, corresponding to the
LE and TE vortex-shedding frequency. The red parts are positive and the blue parts are negative: (a) L/D = 5;
(b) L/D = 10; (c) L/D = 15.

In the LE shear layers (marked as crosses 1–3 in figure 6), multiple types of frequency
peaks can be observed in figure 8(a,c,e) for different values of L/D (5, 10 and 15). Of
particular interest is the relatively large range of frequencies denoted as StKH , which
corresponds to the KH instability in the LE shear layer. Similar high-frequency behaviour
with a wide bandwidth has also been observed in flows at high Reynolds numbers in
previous studies (Cimarelli et al. 2018a; Moore et al. 2019; Chiarini & Quadrio 2021).
For the case of L/D = 5, the value of StKH is close to 3St0, indicating that every three
KH vortices are destabilized and merge into one LE vortex during one shedding cycle
of the LE vortex. This flow process was also reported by Zhang et al. (2023) for the same
aspect ratio. However, the bandwidth of the KH instability frequency in their study appears
to be narrower compared with the current work. On the other hand, for L/D = 10 and
L/D = 15 in our study, it is observed that StKH is close to 2St0. This suggests that every
two KH vortices merge into one LE vortex during one shedding cycle of the LE vortex for
these flow configurations. In the reverse boundary layer, monitored at cross 4 in figure 6,
the prominence of the KH instability peak diminishes progressively as L/D increases.
A similar trend is also observed in the downstream boundary layer. This indicates that the

982 A5-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

87
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.87


J.-H. Li, B.-F. Wang, X. Qiu, Q. Zhou, S.-X. Fu and Y.-L. Liu

0 20 40 60 80 100 120 140 160 180 200

t

–0.5

0

0.5

u′
/
U

0 ta tb

Figure 10. The time signals of streamwise velocity fluctuation for St0 and StFB at L/D = 5. The blue and
orange curves are the signals of the FMD mode extracted from the cross 3 for St0 and the inverted triangle for
StFB in the plane z/D = π presented in figure 6(b), respectively. Here ta and tb mark the typical instances for
the presence and absence of the fluctuation of StFB, respectively.

KH instability is primarily present in the LE shear layer and its significance decreases in
the downstream boundary layer.

The fractional harmonic StFB corresponds to the feedback of the LE shear layer. Previous
studies have not reported this fractional harmonic, nor have they explored the related
physical mechanism involved in the flow process. Therefore, the present work aims to
investigate the flow mechanism associated with StFB. To analyse this, the FMD is applied
to extract the characteristic frequency and reconstruct the flow fluctuations. For brevity,
only the flow process of StFB at L/D = 5 will be described, as the same flow mechanism
is present in the other two cases. The signal for StFB is extracted from the point marked
by an inverted triangle in figure 6(b). For comparison, the signal for St0 is also extracted
from the point marked cross 3 in the plane z/D = π depicted in figure 6(b). Figure 10
illustrates the time signals of streamwise velocity fluctuation for St0 and StFB. As depicted
in figure 10, the fractional harmonic (StFB) is present at t = ta, but it is absent at t = tb.

Figures 11(a,c,e) and 12(a,c,e) illustrate the evolution of the reconstructed instantaneous
streamwise velocity fluctuation field for the presence and absence of StFB, respectively.
When StFB is prominent (around time ta), fluctuations related to StFB appear below the
LE shear layer presented in figure 11(a,c,e) and are marked by an ellipse. In contrast,
the fluctuations related to StFB are pretty weak at the same location illustrated in
figure 12(a,c,e) when StFB is absent (around time ta). For additional insight into the flow
process of StFB, the instantaneous spanwise vorticity fields are shown in figures 11(b,d, f )
and 12(b,d, f ) corresponding to the presence and absence of StFB, respectively. As shown
in figure 11(b,d, f ), it can be observed that the LE shear layer splits into two parts after
impinging on the wall boundary layer when StFB is present. One branch of this LE shear
layer convects downstream towards the free flow, while another branch moves upstream
along the reverse boundary layer and is marked by feedback in figure 11(b,d, f ). On the
other hand, when StFB is absent as shown in figure 12(b,d, f ), the LE shear layer convects
downstream instead of splitting into two parts after impinging on the wall. This behaviour
could be caused by the rapid lift-up of the reverse boundary layer. Therefore, the flow
process of StFB involves one part of the split LE shear layer moving upstream along the
reverse boundary layer. Moreover, the feedback causes an interaction between the upstream
LE shear layer and the reverse flow, generating local fluctuations.

3.2. Evolution of the wall boundary layer
The investigation of the wall boundary layer development on the upper or lower side
of the rectangular cylinder has been relatively limited in previous studies. Therefore,
this section focuses on discussing the transition mechanism of the boundary layer in
detail. Specifically, analysis is conducted on the profiles of streamwise velocity fluctuation
intensity, as well as the growth of disturbances along the LE shear layer and inside the
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Figure 11. The reconstructed instantaneous streamwise velocity fluctuations related to StFB and the
instantaneous spanwise vorticity fields in the plane z/D = π for L/D = 5. (a,c,e) The reconstructed velocity
fields and (b,d, f ) the vorticity fields. Here (a,b) t = ta; (c,d) t = ta + 2�t; (e, f ) t = ta + 4�t, where �t =
0.25D/U0 and ta is presented in figure 10.

boundary layer. These analyses provide insights into the transition process of the wall
boundary layer. Additionally, a novel relaminarization process of the boundary layer is
examined, which is closely associated with a favourable pressure gradient (FPG).

3.2.1. Transitional characteristics
As shown in figure 4, the formation of hairpin vortex packets is observed downstream at
L/D = 10 and 15, indicating a potential transition in the boundary layer on the upper or
lower side of the rectangular cylinder. To quantify this transition, the shape factor H is
employed as an indicator of the laminar-to-turbulent transition. The calculation of H is
performed as follows:

H = δ∗

θ
, (3.1)

where, δ∗ and θ are displacement thickness and momentum thickness, respectively. Here
δ∗ and θ are defined as

δ∗ =
∫ δ

0

(
1 − U

Uδ

)
dy, θ =

∫ δ

0

U
Uδ

(
1 − U

Uδ

)
dy, (3.2a,b)

where δ is the boundary layer thickness and Uδ is the velocity at the boundary layer
edge. For the downstream boundary layer following reattachment, the boundary layer
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Figure 12. The reconstructed instantaneous streamwise velocity fluctuations related to StFB and the
instantaneous spanwise vorticity fields in the plane z/D = π for L/D = 5. (a,c,e) The reconstructed velocity
fields and (a,d, f ) the vorticity fields. Here (a,b) t = tb; (c,d) t = tb + 2�t; (e, f ) t = tb + 4�t, where �t =
0.25D/U0 and tb is presented in figure 10.

edge is determined using the standard assumption, where the velocity equals 0.99U0.
However, for the upstream reverse boundary layer, the boundary layer edge is defined
as the separatrix between positive ωZ and negative ωZ , where ωZ represents the time-
and spanwsie-averaged spanwise vorticity. This approach has been adopted by Wang et al.
(2018) and Wang & Wang (2021b). The evolution of H (shown in figure 13) illustrates that
the curves of H for all three aspect ratios progressively cross the line H = 2.59 (the laminar
stage) along the streamwise direction after the reattachment point. For L/D = 10 and 15,
the shape factor tends to approach H = 1.4, indicating the attainment of the turbulent stage
in the boundary layer. However, the shape factor curve for L/D = 5 does not approach
H = 1.4 due to the proximity of the reattachment point to the TE. Moreover, the shape
factor curve for L/D = 15 gradually deviates from H = 1.4 towards H = 2.59 near the
TE, which is a result of the relaminarization process discussed in § 3.2.2.

To investigate the mechanism of boundary layer transition, we examine the profiles
of spanwise-averaged streamwise velocity fluctuation intensity at various streamwise
locations after reattachment (see figure 14). The grey solid curve represents the optimal
disturbance theory proposed by Luchini (2000). This theory is further supported by the
disturbance distributions of bypass transition induced by free stream turbulence (FST) in
the experimental study of Matsubara & Alfredsson (2001). Additionally, the u′

rms profiles
obtained from the wall boundary layer transition induced by a wake of a circular cylinder
with large gap ratios are consistent with the theory (Ovchinnikov, Piomelli & Choudhari
2006; Mandal & Dey 2011; He et al. 2013). However, for small gap ratios, these profiles
deviate from the optimal disturbance theory due to the strong direct interaction between
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Figure 13. Shape factor of the wall boundary layer for different aspect ratios. The shape factor of the turbulent
boundary layer with zero pressure gradients (H = 1.4) and laminar Blasius boundary layer (H = 2.59) are
provided as a dashed line and dash–dotted line, respectively. The dotted lines present the locations of
reattachment in the streamwise direction for the three aspect ratios. Here RP stands for the reattachment point.

the boundary layer and the wake, as reported by Li et al. (2022a). In present flows,
the u′

rms profiles also deviate from the optimal disturbance theory, indicating that the
boundary layer transitional mechanism here differs from the bypass transition induced by
FST. This deviation may be attributed to the significant interaction between the boundary
layer and the KH vortex during the destabilization of the KH vortex. Furthermore, another
noteworthy observation is the gradual appearance of a second peak in the u′

rms profiles
within the boundary layer at streamwise locations corresponding to L/D = 10 and 15,
as depicted in figure 14(b,c), respectively. This second peak signifies the occurrence
of boundary layer transition. However, at L/D = 5, the u′

rms profiles exhibit only one
peak near the wall. This observation aligns with the findings regarding the shape factor,
indicating that the boundary layer fails to transition at this particular aspect ratio.

Figure 15(a,b) depict the streamwise velocity fluctuation structures for L/D = 10 and
15, respectively. The negative streaks emerge as low-speed structures, a phenomenon
observed in both the plane turbulent boundary layer with zero pressure-gradient (Dennis
& Nickels 2011a,b) and the transition of the wall boundary layer induced by a wake of a
circular cylinder with small gap ratios (Li et al. 2022a). On the other hand, the high-speed
structures include positive streaks as well as local motions exhibiting an arch-like shape.
The arch-like shape of the high-speed structures seems to be inherited by the shape of
the hairpin vortices. They induce a velocity field, which pushes fast flow towards the wall
between their legs, and slow flow farther from the wall in the outer region. These arch-like
structures straddle the low-speed streaks, resembling the behaviour of hairpin vortices
observed in experimental studies (Dennis & Nickels 2011a,b). Notably, for L/D = 15,
the low-speed streaks are lifted up near the TE, which is consistent with the motion of
hairpin vortices depicted in figure 4. This lift-up mechanism can be attributed to the
strong mean shear (Zaki & Saha 2009; Monokrousos, Åkervik & Henningson 2010).
Additionally, the second peak of fluctuation observed in figure 14(b,c) for L/D = 10 and
15, respectively, may be attributed to the sheltering effect caused by the mean shear (Hunt
& Durbin 1999; Jacobs & Durbin 2001; Li et al. 2022a). Figure 15(c,d) illustrate the
DMD mode corresponding to the low frequency StL, indicating that the low-frequency
mode is associated with the streaks present inside the boundary layer. This suggests that
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Figure 14. Profiles of the spanwise-averaged streamwise velocity fluctuation intensity normalized by the
maximum value of u′

rms at different streamwise locations: (a) L/D = 5; (b) L/D = 10; (c) L/D = 15. The
height in the vertical direction ( y′ = y − 0.5D) is normalized by the displacement thickness δ∗. The thicknesses
of the boundary layer are marked by diamonds. The grey solid curve is the optimal disturbance growth theory
from Luchini (2000).
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Figure 15. (a,b) Isosurfaces of the streamwise velocity fluctuations and (c,d) isosurfaces of the real part of
DMD mode corresponding to StL: (a,c) L/D = 10; (b,d) L/D = 15. The red parts are positive and the blue
parts are negative.

low-frequency disturbances penetrate the sheltering edge, giving rise to the generation of
streaks (Wang, Mao & Zaki 2019).

The disturbance energy, Erms, is used to quantify the growth of disturbance strength in
the LE shear layer and the wall boundary layer along the streamwise direction. It is defined
as Erms(St∗) = [(u′

rms(St∗))2 + (v′
rms(St∗))2 + (w′

rms(St∗))2]/U2
0. Figure 16 presents the

results of Erms for different aspect ratios, including several components (Erms(St0),
Erms(StKH), Erms(StL), Erms(StFB)) associated with typical frequencies extracted by FMD
within the same bandwidth. In the LE shear layer, the overall behaviour of the total
disturbance energy Erms(Stall) exhibits similarities, and it can be divided into four regimes
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along the streamwise direction for all three flows. In regime I, the LE shear layer is
predominantly laminar, as indicated by figures 4 and 6. Therefore, Erms(Stall) experiences
multiple orders of magnitude growth along the streamwise direction in this regime.
As the flow progresses, the LE shear layer enters regime II, where Erms(Stall) grows
exponentially following the scaling law Erms(Stall) ∼ e2x/D. Recalling the evolutions of
vortices shown in figure 4, it can be inferred that the formation of the KH vortex results
in this growth. In regime III, a second exponential growth stage occurs with Erms(Stall)
increasing according to Erms(Stall) ∼ e0.6x/D. The three-dimensional destabilization of
the KH vortices leads to the development of hairpin vortices (LE vortices), which is
the primary cause of the second growth in this regime. This mechanism is similar to
the transition flow induced by a wake of a circular cylinder with gap ratios less than or
equal to 1.8 (He et al. 2013; Li et al. 2022a). Moreover, the three-dimensional instabilities
cause a redistribution of disturbance energy during the second exponential growth, as
also observed in the transition induced by a circular cylinder wake (Li et al. 2022b). The
three-dimensional instabilities eventually lead to the nonlinear saturation of Erms(Stall).
Before entering regime IV, where the LE shear layer begins to reattach to the wall and
evolve into the wall boundary layer, Erms(Stall) reaches its maximum value and saturates.
In regime IV, as the hairpin vortices takes shape, Erms(Stall) gradually decreases following
an exponential decay with Erms(Stall) ∼ e−0.75x/D. As the flow continues downstream,
transitioning into the wall boundary layer, it is noteworthy that Erms(Stall) continues to
decrease for L/D = 10 and 15, while remaining stable for L/D = 5. This difference can
be attributed to the different relaminarization processes of the boundary layer, which will
be further investigated in subsequent subsections. For L/D = 10 and 15, the transition of
the boundary layer occurs downstream after reaching the saturation state. This confirms
that the transitional mechanism in these flows differs from bypass transition induced by
FST, probably due to different receptivity processes (Morkovin 1969; Westin et al. 1994;
Westin & Henkes 1997; Kendall 1998; Jacobs & Durbin 2001; Matsubara & Alfredsson
2001; Fransson, Matsubara & Alfredsson 2005).

The disturbance energy of several typical frequencies also increases rapidly and then
decreases gradually along the LE shear layer, shown in figure 16, except for Erms(St0) at
L/D = 5. The large-scale oscillation in the vertical direction at L/D = 5 shown in figure 4,
as well as the small distance between the reattachment point and the TE shown in figure 6,
could be reason for the increase of disturbance energy Erms(St0) inside the boundary layer.
The LE shear layer plays a crucial role in the rapid amplification of disturbance energy
at different frequencies from regime I to III. At L/D = 10 and 15, the disturbance energy
Erms(StL) for the low frequency StL is dominant near the LE. As the flow develops in
the streamwise direction, it is exceeded by the disturbance energy Erms(St0), while the
disturbance energy Erms(St0) is always dominant at L/D = 5, rather than Erms(StL). As a
matter of fact, the instantaneous reattachment point exhibits periodic oscillations around
the mean reattachment point. Therefore, the separated shear layer cannot always reattach
to the upper/lower surfaces of the cylinder, meaning that the instantaneous reattachment
point falls outside the side surface temporarily (Zhang et al. 2023). Hence, the intermittent
flapping behaviour of the shear layer destroys the integrity of the LE separation bubble,
which directly hinders the development of low frequency disturbance. Therefore, the LE
shear layer amplifies the St0 disturbance preferentially rather than the StL disturbance,
which can be an important connection with the failure of the flow transition at this aspect
ratio. The disturbance energies of the high frequency StKH and StFB are weaker than those
of StL and St0 at L/D = 10 and 15, while the development of the StFB disturbance is almost
of the same magnitude as that of StL at L/D = 5. It could be due to the sheltering effect at
higher aspect ratios, closely related to boundary layer transition.
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Figure 16. The streamwise growth of the fluctuations within different frequency bands in the LE shear layer
and the boundary layer: (a) L/D = 5; (b) L/D = 10; (c) L/D = 15. The fluctuations are extracted from the
orange line (for the LE shear layer) and magenta line (for the boundary layer) in figure 6(b,d, f ). The LE shear
layer is divided into four regimes labelled I–IV, and the last regime corresponds to the wall boundary layer.
Here StL, St0, StFB and StKH denote the low frequency, vortex shedding frequency, feedback frequency and KH
fluctuation frequency as presented in figure 8.
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3.2.2. Relaminarization of the boundary layer
In order to further explore the characteristics of the boundary layer, the mean streamwise
velocity profiles in wall units at different streamwise locations are presented in figure 17.
Both flows (L/D = 10 and 15) exhibit turbulent boundary layer characteristics. The
profiles very close to the wall agree well with U+ = y′+, while those in the outer region
follow the log-law. In the case of L/D = 10 shown in figure 17(a), the velocity profiles
still satisfy the classical slope of 1/κ = 1/0.4 at y′+ > 30. However, for 10 < y′+ < 30,
the profiles exhibit a slope of 1/κ = 1/0.7, and the velocity values are significantly smaller
compared with that in the buffer layer for a normal turbulent boundary layer. For L/D = 15
shown in figure 17(b), the slopes of the velocity profiles change from 1/κ = 1/0.4 to
1/κ = 1/0.7 due to the larger streamwise space provided for boundary layer development.
These low-slope velocity profiles are reminiscent of boundary layer relaminarization or
reverse transition, related to FPG (Spalart & Watmuff 1993; Na & Moin 1998; Manhart
& Friedrich 2002; Dixit & Ramesh 2008; Coleman, Rumsey & Spalart 2018). Previous
studies mainly focused on the effects of the adverse pressure gradient (APG) and FPG on
the boundary layer with flows over bumps and hills (Webster, DeGraaff & Eaton 1996; Wu
& Squires 1998; Cavar & Meyer 2011; Matai & Durbin 2019; Balin & Jansen 2021). In
the present study, the effect of FPG on the development of the wall boundary layer on the
upper/lower side of the rectangular cylinder is investigated, which has not been reported
in previous studies.

To observe the relaminarization phenomenon, it is essential to closely examine the
region near the wall. In this regard, we investigate the profiles of the time- and
spanwise-averaged pressure coefficient Cp and skin friction coefficient Cf on the surface
of a rectangular cylinder (see figure 18a,b), given by

Cp = P̄ − P̄ref

0.5ρU2
0

, Cf = τw

0.5ρU2
0
, (3.3a,b)

where P̄ref is the reference free stream pressure, P̄ the mean surface pressure and τw the
mean wall shear stress. Prior to reattachment, an apparent FPG is observed, as depicted in
figure 18(a). Following reattachment, a small section of APG still exists, but it is overcome
by a FPG, which persists until the TE. Notably, the FPG is significantly intensified near the
TE. Figure 18(b) illustrates that initially, the inverse boundary layer leads to a negative Cf .
However, after reattachment, Cf develops positively due to the forward boundary layer.
The enhanced FPG near the TE contributes to a rapid increase in Cf , indicating further
acceleration of the flow.

The time- and spanwise-averaged pressure coefficient field is depicted in figure 19,
illustrating the formation of pressure gradients, including the APG and FPG. Notably,
regions of low pressure emerge in areas where the LE vortex or TE vortex is generated.
Consequently, the flows first undergo an APG, developing along the streamwise direction,
which directly leads to transition (L/D = 10, 15) or transition tendency (L/D = 5) in the
boundary layer. Subsequently, the flow encounters a FPG, leading to its acceleration and
ultimately facilitating the relaminarization of the boundary layer.

Two parameters are applied here to examine the accelerated flow quantitatively. The first
parameter is the acceleration parameter �P (Matai & Durbin 2019; Balin & Jansen 2021;
Uzun & Malik 2021), and the second one is the relaminarization parameter K (Balin &
Jansen 2021; Uzun & Malik 2021), defined as

�P = ν

ρu3
τ

∂P̄
∂x

, K = ν

U2
e

∂Ue

∂x
, (3.4a,b)
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Figure 17. Mean streamwise velocity profiles in wall units at different streamwise locations: (a) L/D = 10;
(b) L/D = 15. The height in the vertical direction is y′ = y − 0.5D. The log-law expression used here is U+ =
1/κ ln(y′+) + B0, where B0 is the logarithmic layer intercept constant.
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Figure 18. Time- and spanwise-averaged pressure coefficient profiles Cp (a) and skin friction coefficient
profiles Cf (b) on the surface of the rectangular cylinder.
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Figure 19. Time and spanwise-averaged pressure coefficient field Cp: (a) L/D = 5; (b) L/D = 10;
(c) L/D = 15.

where uτ is the wall friction velocity, P̄ the mean surface pressure and Ue the boundary
layer edge velocity. It should be noted that �P accounts for the wall region of boundary
layer because of the friction velocity incorporated, but K accounts for the outer region
of the boundary layer, based on the boundary layer edge velocity (Uzun & Malik 2021).
Furthermore, when �P is less than −0.018, a departure from the logarithmic layer takes
place, which is believed to indicate the onset of relaminarization (Patel 1965; Patel &
Head 1968; Uzun & Malik 2021). The threshold value of K = 3 × 10−6 has been widely
accepted as a point above which relaminarization can occur (Narayanan & Ramjee 1969;
Narasimha & Sreenivasan 1973; So & Mellor 1975; Balin & Jansen 2021; Uzun & Malik
2021).

The variations of these two parameters along the streamwise direction are shown in
figure 20. At the boundary layer wall region, the parameter �P reaches its critical value
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Figure 20. Acceleration parameter �P and relaminarization parameter K: (a) L/D = 5; (b) L/D = 10;
(c) L/D = 15.

for all three flows and remains below the threshold until the TE. This indicates strong
accelerations in the near-wall region for these three situations, which have a strong
relationship with the FPG. These findings are consistent with the results of Cp and Cf
shown in figures 18 and 19. For L/D = 10 and 15, the parameter K reaches the threshold
as the flow progresses in the streamwise direction. Although K initially increases and
then decreases after exceeding its corresponding threshold, it always remains greater
than this value until the TE. Therefore, relaminarization occurs in the outer region of
the boundary layer for these two flows. However, the parameter K for L/D = 5 cannot
reach the threshold because the boundary layer is in a transitional state, as illustrated
in figures 13 and 14. Furthermore, �P reaches the corresponding threshold earlier than
K, indicating that the FPG in the near-wall region is stronger than in the outer region
for L/D = 10 and 15. The flow of L/D = 15 experiences acceleration by the FPG over
a longer distance compared with the flow of L/D = 10, resulting in a more prominent
boundary layer relaminarization phenomenon for L/D = 15. As presented in the result
of H (see figure 13), the shape factor curve for L/D = 15 deviates from that of a
turbulent boundary layer and approaches that of laminar flow. However, this deviation is
not observed in the flow of L/D = 10. Similarly, the mean streamwise velocity profiles
at L/D = 10 still exhibit a slope of 1/κ = 1/0.4 in the outer region, while they have
transitioned to 1/κ = 1/0.7 for L/D = 15.

The influence of the FPG on the turbulent structures in the boundary layer is being
further investigated, with a particular focus on its impact on the geometrical characteristics
of the hairpin vortex packet. To analyse this influence, the two-point correlation ρuu is
employed (Dennis & Nickels 2011a), and defined in the x–y plane as

ρuu(xref , yref , x, y′) = 〈u′(x, y′)u′(xref , yref )〉√
〈u′2(x, y′)〉〈u′2(xref , yref )〉

, (3.5)

where (xref , yref ) is the reference point. In this study, specific reference points are chosen to
analyse the influence of the FPG on the hairpin vortex packet. For the case with L/D = 10,
the reference points are (8, 0.1δ) and (9, 0.1δ), while for L/D = 15, the reference points
are (12, 0.1δ) and (14, 0.1δ), where δ represents the local boundary layer thickness. The
results are presented in figure 21. The streamwise scales of the hairpin vortex packet
gradually increase as it develops downstream in both flows. This growth is attributed
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Figure 21. Two-point correlations of the streamwise fluctuation velocity in the x–y plane: (a,b) L/D = 10;
(c,d) L/D = 15. The reference points are (a) (8D, 0.1δD); (b) (9D, 0.1δD); (c) (12D, 0.1δD); (d) (14D, 0.1δD),
where δ is the local boundary layer thickness. The straight dash–dotted line (black) is inclined to show the
inclination angle of the correlational structure. The inclination angle α is (a) 16.77◦; (b) 15.84◦; (c) 13.94◦;
(d) 10.03◦.

to the generation of new hairpin vortices by the background mean shear. Interestingly,
the inclination angle α of the hairpin vortex packet decreases during the downstream
development for both L/D = 10 (from 16.77◦ to 15.84◦) and L/D = 15 (from 13.94◦
to 10.03◦). This decrease in inclination angle can be attributed to the influence of the
FPG. Furthermore, it is observed that the inclination angle of the hairpin vortex packet
at locations experiencing less FPG (figure 21a–c) is significantly larger than that in the
zero pressure-gradient boundary layer (between 8◦ and 12◦) (Adrian, Meinhart & Tomkins
2000; Dennis & Nickels 2011a). This difference is primarily due to the rapid lift-up
of the hairpin vortex caused by the strong shear over a short streamwise distance after
reattachment, as discussed in § 3.1.1.

3.3. Flow features of the wake
In this section, we concentrate on the generation and evolution of the wake. The shedding
pattern of the TE vortex is researched first, including the interaction between it and
the LE vortex, applying the FTLEs method. Subsequently, the decay of the wake for
various aspect ratios is investigated. The streamwise behaviour of the centreline velocity
defect is analysed to discuss the self-similar power law decay in the wake. Additionally,
the disturbance energy within the wake is calculated to further elucidate its decay
characteristics.

3.3.1. Interaction between the LE vortex and TE vortex
The generation of the LE vortex has been described in detail in § 3.1.1. Here, the shedding
process of the TE vortex from the TE shear layer is explored, including the interaction
between the LE vortex and TE vortex. To reveal the dynamic behaviours of the LE vortex
and TE vortex near the TE, as well as their interaction, the three-dimensional FTLEs is
applied. The FTLEs help to visualize the flow patterns and identify the dominant vortices.
The results are presented in figures 22–24, which depict the flows in a combination of the
x–y plane and z–y plane slices. The abundant turbulent structures can be observed clearly.
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Hairpin vortex Hairpin vortex
Hairpin vortex

TE vortex TE vortex TE vortex

KH vortex

y

xz

(b)(a) (c)

Figure 22. Interaction between the LE vortex and TE vortex revealed by FTLEs presented in the slices for
L/D = 5: (a) t = t0, z/D = π, x/D = 4.5; (b) t = t0 + 4�t, z/D = π, x/D = 4.0; (c) t = t0 + 8�t, z/D = π,
x/D = 4.0, where �t = 0.25D/U0.

Hairpin vortex Hairpin vortex Hairpin vortex
TE vortex (upper)

TE vortex (upper)
TE vortex (upper)

TE vortex (down) TE vortex (down)

Hairpin vortex Hairpin vortex

Hairpin vortex

y

xz

(b)(a) (c)

Figure 23. Interaction between the LE vortex and TE vortex revealed by FTLEs presented in the slices for
L/D = 10: (a) t = t0, z/D = π, x/D = 8.0 and 9.3; (b) t = t0 + 3�t, z/D = π, x/D = 8.3 and 9.8; (c) t =
t0 + 8�t, where �t = 0.25D/U0, z/D = π, x/D = 9.7 and 7.0.

Hairpin vortex Hairpin vortex Hairpin vortex

TE vortex TE vortex
TE vortex

Hairpin vortex

Hairpin vortex Hairpin vortex

y

xz

(b)(a) (c)

Figure 24. Interaction between the LE vortex and TE vortex revealed by FTLEs presented in the slices for
L/D = 15: (a) t = t0, z/D = π, x/D = 14.2; (b) t = t0 + 5�t, z/D = π, x/D = 14.4; (c) t = t0 + 10�t, z/D =
π, x/D = 14.8, where �t = 0.25D/U0.

It is important to note that the focus of the analysis is on the evolution of the LE vortex
(also known as the hairpin vortex) and the TE vortex as observed on the x–y plane.

As depicted in figure 22(a) (L/D = 5), the LE vortex located on the upper side of the
cylinder, takes the form of a hairpin vortex and has moved near the TE at time t = t0.
Simultaneously, the TE shear layer on the same side of the cylinder rolls up, giving
rise to a new upper TE vortex. Indeed, both the LE vortex and the TE vortex on the
opposite side have detached from the cylinder together and evolve into the wake. By the
time the flow reaches t = t0 + 4�t (figure 22b), the upper TE vortex has significantly
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strengthened and increased in size, while the upper LE vortex has moved above the TE
vortex. At t = t0 + 8�t (figure 22c), the LE vortex has overtaken the TE vortex and
almost completely separated from the cylinder. However, the TE vortex has shed from
the TE shear layer induced by the LE vortex. Hence, at this aspect ratio, the TE vortex is
generated and shed in phase with the LE vortex arriving at the TE. This shedding pattern
is referred to as ipsilateral vortex shedding in this paper. Although it has been observed in
two-dimensional flows with the same aspect ratio of L/D = 5 and low Reynolds number
(Re = 400) (Chiarini et al. 2022c), it is reported for the first time in the three-dimensional
flows in this paper.

When it comes to the flow with an aspect ratio of L/D = 10, as depicted in figure 23,
the interaction between the LE and TE vortices follows a different process compared
with that of L/D = 5. At time t = t0, as shown in figure 23(a), the lower LE vortex
has reached the TE, while the upper LE vortex is positioned farther upstream. The phase
difference in the generation of LE vortices on the upper and lower sides contributes to their
disparate locations. Simultaneously, the upper TE shear layer has rolled up, forming a new
upper TE vortex. Moving forward to t = t0 + 3�t, illustrated in figure 23(b), the lower
LE vortex begins to overtake the TE, and the upper TE vortex strengthens and prepares
to shed from the TE shear layer. However, the upper LE vortex approaches the upper
TE, accompanied by the rolling up of the lower TE shear layer. Finally, at t = t0 + 8�t,
presented in figure 23(c), the lower LE vortex completely overtakes the TE, and the upper
TE vortex sheds off. Meanwhile, the upper LE vortex reaches the TE, and the lower TE
vortex grows, albeit being squeezed by the lower LE vortex. Consequently, in this flow,
the shedding pattern of the TE vortex occurs in phase with the opposite-side LE vortex
reaching the TE. This shedding pattern is referred to as contralateral vortex shedding.
It was also observed in a two-dimensional study by Chiarini et al. (2022c) for the flow
with L/D = 7 at Re = 400. This paper reports the first observation of contralateral vortex
shedding in three-dimensional flows as well. The interaction between the LE vortex and
TE vortex at L/D = 15, as depicted in figure 24, is similar to the ipsilateral vortex shedding
observed for L/D = 5 and will not be discussed further here.

To further validate the shedding pattern for various aspect ratios, the cross-correlation of
filtered streamwise fluctuation velocity between the LE vortex and TE vortex is examined.
The cross-correlation is calculated as follows:

RAB(�τ) = 〈u′
A(t)u′

B(t + �τ)〉√
〈u′2

A (t)〉〈u′2
B (t)〉

, RAC(�τ) = 〈u′
A(t)u′

C(t + �τ)〉√
〈u′2

A (t)〉〈u′2
C (t)〉

, (3.6a,b)

where u′
A, u′

B and u′
C are streamwise fluctuation velocities filtered with St0 from the points

A, B and C, respectively. The point A is inside the wake where the upper TE vortex
sheds, while point B and C are situated in the upper and lower boundary layer of the
rectangular cylinder near the TE. At these two points, the upper and lower LE vortices pass
through these two points periodically, respectively. The spatial coordinates of the points
A, B and C are (5.5, 0.35), (4.8, 0.8), (4.8, −0.8) for L/D = 5; (10.8, 0.35), (9.8, 0.7),
(9.8, −0.7) for L/D = 10; (16, 0.35), (14.8, 0.7), (14.8, −0.7) for L/D = 15. The results
of cross-correlation are illustrated in figure 25.

It can be observed that the results for L/D = 5 and L/D = 15 (in figure 25a,c,
respectively) exhibit similar characteristics. In both cases, RAB reaches its maximum first
(�τ < 0), followed by RAC reaching its maximum (�τ > 0) after half of the vortex
shedding period. This indicates that the upper LE vortex passes through point B (the
upper TE) first, followed by the shedding of the TE vortex on the same side, and then
the lower LE vortex passes through point C (the lower TE). Consequently, the phase
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Figure 25. Cross-correlation of streamwise fluctuation velocity between the LE vortex and TE vortex:
(a) L/D = 5, points A(5.5, 0.35), B(4.8, 0.8), C(4.8, −0.8); (b) L/D = 10, points A(10.8, 0.35), B(9.8, 0.7),
C(9.8, −0.7); (c) L/D = 15, points A(16, 0.35), B(14.8, 0.7), C(14.8, −0.7). Circles and diamonds mark the
maximum value of RAB and RAC, respectively.

of the LE vortex passing through the TE coincides with that of the TE vortex shedding
on the same side in these two flows. However, at L/D = 10, RAC achieves its maximum
first, and RAB reaches its maximum after half of the vortex-shedding period. Hence, the
phase of the LE vortex passing the TE coincides with that of the TE vortex shedding
on the opposite side in this flow. These cross-correlation results are consistent with the
evolution processes of these vortices presented by FTLEs in figures 22–24. Although these
two vortex-shedding patterns have been identified in previous two-dimensional studies at
low Re (Chiarini et al. 2022c), it has been verified that they also occur in the present
complex three-dimensional flows at medium Re. Moreover, contralateral vortex shedding
results in stronger interactions between different vortex structures in the wake compared
with ipsilateral vortex shedding. This is because the Kármán-type vortex at L/D = 5 and
L/D = 15 can maintain coherence over a larger streamwise distance in the wake than at
L/D = 10, as shown in figure 9.

3.3.2. Decay of the wake
To investigate the features of the plane turbulent wakes, the streamwise behaviour of the
centreline velocity defect Us is conducted, shown in figure 26. Here Us is following the
equation (Pope 2000)

Us(x′) = U0 − U(x′, 0)

U0
. (3.7)

The velocity defect curves for L/D = 10 and 15 exhibit a significant overlap, indicating
similar behaviour. These curves also show higher defects compared with the curve for
L/D = 5 until x′/D = 28 (x′ = x − L). This streamwise position is defined as the point
where the local slope of Usx′1/2 is less than 0.01. However, beyond this point, the
velocity defects for all three flows converge and become nearly identical. Moreover, in this
regime (x′/D > 28), all three flows demonstrate an identical self-similarity characterized
by a power law relationship Us ∼ x′−1/2. This observed self-similarity accords with the
theoretical derivation by Pope (2000), and it has also been documented in studies by
Chiarini & Quadrio (2021) and Cimarelli et al. (2018a) in the wake of L/D = 5 at high
Re. However, it is important to note that the self-similarity of the plane turbulent wake
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Figure 26. Streamwise behaviour of the centreline velocity defect Us in the wake. Inset: the velocity defect
Us compensated with the power-law scaling x′1/2.

emerges at a much earlier stage, specifically for x′/D > 10, at the high Reynolds number
in the investigations conducted by Chiarini & Quadrio (2021) and Cimarelli et al. (2018a).
This finding suggests that as the Reynolds number increases, the plane turbulent wake
reaches the state of self-similarity decay more rapidly.

In order to further investigate the decay characteristics of turbulent wakes, the
disturbance energy along the centreline of the wake is examined. Figure 27(a) illustrates
that the disturbance energy at all frequencies gradually decays after the separation bubble
behind the TE. In the streamwise domain under consideration, the disturbance energy
for L/D = 5 is greater than that for the other two flows. As the wakes decay, the
disturbance energies for L/D = 10 and 15 become almost equal to each other. During
the velocity self-similarity decay regime, the disturbance energy also exhibits self-similar
decay, following a trend of Erms(Stall) ∼ e−0.028x′/D. Figure 4 illustrates the presence of
significant large-scale oscillations in the vertical direction at L/D = 5. These oscillations
provide a plausible explanation for the observed higher wake disturbance energy compared
with the other two flows. To further investigate this phenomenon, the vertical disturbance
energy at all frequencies is examined and depicted in figure 27(b). As anticipated, the
vertical disturbance energy is indeed greater for the flow of L/D = 5 when compared with
the other flows.

The different vortex-shedding patterns could result in various Kármán-type vortex decay
behaviours. Consequently, the disturbance energy at the vortex-shedding frequency St0 is
calculated and depicted in figure 27(c). In the near wake region, the disturbance energy
at St0 is found to be lowest for L/D = 10. This can be attributed to the contralateral
vortex-shedding pattern, which leads to stronger interactions between turbulent structures
in the wake. These interactions directly suppress the development of a Kármán-type
vortex, as shown in figure 9. During the velocity self-similarity decay regime, the
disturbance energy at St0 exhibits a decay behaviour described by Erms(St0) ∼ e−0.038x′/D.
The absolute value of this exponent is greater than that for the total disturbance energy
Erms(Stall), indicating that the decay of disturbance energy at St0 contributes more
significantly to the overall decay of disturbance energy in the wake. In other words, the
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Figure 27. Streamwise development of the centreline fluctuations in the wake. (a) The disturbance energy at
all frequencies; (b) the vertical disturbance energy at all frequencies; (c) the disturbance energy at St0; (d) the
vertical disturbance energy at St0.

decay of the wake is primarily driven by the decay of the Kármán-type vortex street.
Similarly, the vertical disturbance energy at St0 is calculated and presented in figure 27(d).
Its decay process closely resembles that of Erms(St0), with the lowest values still observed
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for L/D = 10. This suggests that the contralateral vortex-shedding pattern preferentially
suppresses vertical fluctuations in the wake.

4. Conclusion

The DNSs are conducted to investigate the flow characteristics around a rectangular
cylinder at Re = 1000, considering the effects of the aspect ratio (L/D = 5, 10 and
15). The study focuses on elucidating the generation and evolution processes of
vortical structures, highlighting their associated frequencies. Additionally, the mechanisms
governing the transition and reverse transition of the wall boundary layer on the upper
and lower sides of the rectangular cylinder are examined. The interaction between the LE
vortex and TE vortex is also illustrated, along with the self-similar decay of the wake.

The KH instability occurs in the LE shear layer and leads to the formation of KH
vortices. These KH vortices survive for a short distance in the streamwise direction before
they undergo three-dimensional instability and develop into hairpin vortices (Cimarelli
et al. 2018b; Chiarini & Quadrio 2021; Chiarini et al. 2022a; Zhang et al. 2023). As
the aspect ratio increases, the formation of KH vortices takes place at larger distances
from the LE. Consequently, in the cases investigated in this study, the streamwise scale
of separation bubble on the lateral side of the cylinder expands with increasing L/D.
The reverse boundary layer moves directly upstream to the LE without undergoing a
secondary detachment, ensuring the existence of an isolated bubble on the lateral sides.
This characteristic distinguishes it from flows at Re = 3000 (Cimarelli et al. 2018b;
Chiarini & Quadrio 2021; Chiarini et al. 2022a). Moreover, at larger aspect ratios, the
hairpin vortices can travel downstream and experience enhanced stretching due to the
stronger mean shear. This amplifies the lift-up motion and results in the rapid formation of
hairpin vortex packets. For all three flows, the TE vortices are shed into the wake, forming
a Kármán-like vortex street. However, the intensity of the wake oscillation at L/D = 5 is
greater than those for the two larger aspect ratios and also greater than those in the flows at
Re = 3000 with the same L/D (Cimarelli et al. 2018b; Chiarini & Quadrio 2021; Chiarini
et al. 2022a; Corsini et al. 2022). Additionally, the scale of the bubbles resulting from the
shedding of TE vortices increases with increasing L/D.

The shedding of the LE and TE vortices occurs at the same frequency, denoted as St0,
indicating the presence of frequency locking, which is consistent with previous studies at
the same Re (Nakamura et al. 1991; Zhang et al. 2023). This observation is supported by
DMD analysis. As reported by Zhang et al. (2023), every three KH vortices destabilize and
merge into one LE vortex during a single shedding cycle of the LE vortex when L/D = 5.
However, this study finds that every two KH vortices merge into one LE vortex at L/D =
10 and 15. Additionally, this study reveals, for the first time, the flow mechanism behind the
fractional harmonic StFB. It is attributed to the feedback effect generated by the upstream
movement of the split LE shear layer along the reverse boundary layer. This triggers an
interaction between the upstream LE shear layer and the reverse flow.

The evolution of the wall boundary layer on the upper and lower sides of the cylinder
has received limited attention. At L/D = 10 and 15, the boundary layer transition occurs,
while it fails to occur at L/D = 5. The transition routes are the same for L/D = 10 and 15.
However, the transition scenario deviates from the bypass transition induced by FST, due to
the strong interaction between the boundary layer and the KH vortex. The growth of total
disturbance energy along the LE shear layer exhibits similarities in all three flows. Two
stages of exponential growth are observed. The first stage is associated with the formation
of the KH vortex, while the secondary stage, characterized by a smaller spatial growth rate,
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results from the three-dimensional destabilization of the KH vortex. After the saturation
of the disturbance energy, the transition takes place. The DMD analysis further supports
that low-frequency disturbances (StL) are selected to generate streaks inside the boundary
layer. As the flow develops downstream, relaminarization of the boundary layer occurs,
leading to low-slope velocity profiles in wall units. At L/D = 10, the velocity profiles in
the logarithmic layer still satisfy the classical slope (1/κ = 1/0.4). However, in the buffer
layer, these profiles exhibit a lower slope (1/κ = 1/0.7), leading to smaller velocity values
in wall units compared with the normal turbulent boundary layer. As L/D increases to
15, the slopes of the profiles change from 1/κ = 1/0.4 to 1/κ = 1/0.7 in both the buffer
layer and logarithmic layer. This change is a result of the increased streamwise distance
for boundary layer evolution at higher L/D. A local low-pressure region forms behind the
TE due to the shedding of the TE vortex, resulting in the formation of the FPG. The FPG
accelerates the flow, promoting boundary layer relaminarization. The FPG is stronger in
the near-wall region compared with the outer region. Additionally, under the influence of
the FPG, the inclination angle of the hairpin vortex packet decreases.

The generation and evolution characteristics of the wake have also been investigated.
At L/D = 5 and 15, the TE vortex is generated and sheds in phase with the LE vortex
arriving at the TE. This shedding pattern is referred to as ipsilateral vortex shedding in
the present study. However, at L/D = 10, the TE vortex is generated and sheds in phase
with the LE vortex from the opposite side reaching the TE. This shedding pattern is
called contralateral vortex shedding. The occurrence of these two shedding patterns has
been quantitatively confirmed through cross-correlation analysis. The self-similarity of the
centreline velocity defect is observed in all three flows after x′/D = 28. This location is
farther away from the rectangular cylinder compared with high Reynolds number flows
(Cimarelli et al. 2018a; Chiarini & Quadrio 2021). Similarly, in the same streamwise
region, the disturbance energy of the wake also exhibits self-similar decay. Furthermore,
the decay at the dominant frequency St0 contributes significantly to the overall decay of
the total disturbance energy. The presence of contralateral vortex shedding suppresses the
development of the Kármán-type vortex, resulting in smaller disturbance energy at St0.
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