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ON NECESSARY MULTIPLIER CONDITIONS 
FOR LAGUERRE EXPANSIONS 

Dedicated to RG. Rooney on the occasion of his 65 th birthday. 

GEORGE GASPER AND WALTER TREBELS 

ABSTRACT. Necessary multiplier conditions for Laguerre expansions are derived 
and discussed within the framework of weighted Lebesgue spaces. 

1. Introduction. The purpose of this paper is to enlighten the structure of multipli
ers for Laguerre expansions on LP spaces from the point of view of necessary conditions. 
From the theory of Hankel and Jacobi multipliers (see Gasper and Trebels [6], [7]) it is 
known that necessary conditions may very well reflect the behavior of multipliers in so 
far as they are (up to a natural smoothness gap) comparable with sufficient conditions. 
Following Gorlich and Markett [9] we consider the Lebesgue spaces 

Km = if • l l / lk m = (f \me-xl2\px" dxfl» < <x>}, 1 < p < oo; 

in particular, for 7 = ocpj 2, these are the L^(a)-spaces in [9]: 

Lu{a)={f-\\f\\L:m = {j0 \fMu(x,a)\"dx) < o o } , l < p < o o , 

where u(x, a) — xccl2e~xl2. Let L%(x), a > — 1, n G No, be the classical Laguerre 
polynomials (see Szegô [19, p. 100]), 

n + a\ T(n + a + \) 
J T O = I£(*)/I£(0). ^ ( 0 ) = A« = ( * + " ) T(n + \)T(a + \) 

Define the Fourier Laguerre coefficients of a function/ G ^ ( 7 ) with respect to the or
thogonal system { R® } by 

fa(n) = Jo f(x)RZ(x)xae-xdx, 

if the integrals exist. Then the formal Laguerre expansion off is given by 

/(*) ~ ( H a + 1)) j:fa(k)La
k(x). 

k=0 
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LAGUERRE EXPANSIONS 1229 

A sequence { mk} is called a multiplier on lfwiriy notation {rrik} € Mp
w{1), if 

oo 

IIE^WII^O/il^ 
&=0 

for all polynomials/; the smallest constant C for which this holds is called the multiplier 
norm \\ { m^} \\^f . Generic positive constants that are independent of the functions (and 
sequences) will be denoted by C. In the case of Laguerre multipliers on Lp

w(^a) there seems 
to occur a surprising phenomenon: whereas for 4 / 3 < p < 2 the necessary conditions 
quite well reflect the boundedness behavior of the well understood example of the Cesàro 
means, there is a broadening (towards/? = 1 ) growth/smoothness gap between our (at 
p = 1 best possible) necessary conditions and the Cesàro multiplier; it seems that the 
space L(a, plays a crucial role for the theory of Fourier Laguerre multipliers. The bound
edness of the Cesàro means of the Laguerre expansion off 

(C,6%(f,x) = (Ai)'1 t<-Mk)La
k(x) 

is discussed in a number of papers by Askey and Wainger [2], Muckenhoupt [16], Poiani 
[17], Markett [12], and Gorlich and Markett [9] ; e.g. there holds for a > 0 and 6 > 0 

(i) \\ic,m\\^<c\\A\L^ ^ { ( j i ^ r i ^ i i]Ta
p'2 

uniformly in n\ by interpolation one easily gets results also for other 7 -values. By Trebels 
[20, p. 21] this implies in particular that any sequence {m^}, converging to zero and 
being sufficiently smooth, is a multiplier on Lp

w(1), more precisely, 

oo oo 

(2) || Y, mtfa{k)La
k\\L: < C £ A*|A*+,m*|||/|U 

for all polynomials/ when è and 7 satisfy the conditions in (1). Here the fractional 
difference of order 6 is defined by 

oo 

7=0 

whenever the sum converges. Within the setting of the L^(a)-spaces our main result reads 

THEOREM 1.1. / / / e Lp
w{(x), 1 < p < 2, and a > - 1 , then 

sup|(^+l)A^+1)/^AAAW|<C||/||L, 
k w(a) 

provided 

a)0<\ <(2a + | ) ( i - | ) - | ( / l < p < \, 
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1230 G. GASPER AND W. TREBELS 

b) 0 < A < ( 2 a + 2 ) ( i - i ) - i ( f | < p < 2 . 

This theorem and an extension of it are proved in Section 2. The proof relies heavily 
on the particularly simple formula for fractional differences of the R" polynomials 

(3) AxRa
k(x) = ^(a + l) xxRa

k
+X(xl x > 0, A > -(a + 1/2)/2, 

1 \OC + A + 1 ) 

which is just formula 6.15(4) in [4] when setting c = a + l,c' = a + A + 1 and observing 
that/*£(*) = iF i ( -^ ; a + 1;JC) = 0(-fc,a + 1;JC). 

COROLLARY 1.1. Lef 1 < /? < 2, A > 0, awd {m^} be a Fourier Laguerre multi
plier sequence on l?w<ay Then 

sup|(/:+l)AAAm,| <C| |{m*} |U 

provided A satisfies the conditions in Theorem 1.1. 

REMARKS. 1) This result is best possible for/? = 1 and a > 0 in the sense that there 
is a uniformly bounded multiplier family which satisfies the above necessary condition 
onlyforA < a + 1/3. For consider the multiplier sequence {m^(0} ,^ (0 = e"^2R^(t), 
which is uniformly bounded in t > 0 (see [9]). By (2) it follows that 

|fcAAAm*(0| = C|lfcVér'/2/Ç+A(0| w |jrVe>~'/2L£+A(0|. 

The sup-norm over t of the last expression behaves like kx~a~1/3 by the fourth case of 
Markett's Lemma 1 in [14], hence it diverges when A > a + 1 / 3. 

2) Corollary 1.1 gives unboundedness of the Cesàro means in the p interval 1 < p < 
4/ 3 only for 8 < (2a + 4/ 3)( 1 / p — 1 / 2) — 1 / 3, whereas the correct critical index 8C at 
which still divergence happens is6C — (2a + 2)(1//? — 1/2)— 1/2 (see [9]), i.e., there 
is a considerable gap between the real range of unboundedness and the one given by 
Corollary 1.1 in the case 1 <p< 4 / 3 for the Cesàro test multiplier. This is in contrast 
to the Jacobi and Hankel multiplier case (see [6], [7]) where, except for the endpoint, 
the correct range for the unboundedness of the Cesàro means is given by the general 
necessary conditions. We note that for 4 / 3 < p < 2 Corollary 1.1 gives divergence for 
6 < 6C with the right divergence order. 

3) In summability theory for numerical series the following result is well known (see 
[22, p. 105]): The factor sequence {m^} maps each Q summable series £ Uk into a Q, 
summable series £ ra& ut if and only if the sequence is bounded and 

oo 

£Ai|A6+1m*|<oo. 

If one wants to discuss this problem in a Banach space setting (see [20]) one may de
compose the Banach space X when assuming the existence of a sequence of projections 
{ Pk}keNQ C [X], where [X] is the space of all bounded linear operators from X to X, with 
the following properties: 
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LAGUERRE EXPANSIONS 1231 

i) the projections are mutually orthogonal: PkPj — SjjcPk, 
ii) they are total: Pjf = 0 for all k implies/ = 0, 

iii) the linear span of the ranges P*(X) is dense in X. 
iv) the Cesàro means 

(Q6)nf=(AirlJ2K-kPkf 
k=0 

are uniformly bounded for some 6 > 0 : 

(4) | | (C ,«)^ | |<C | | / | | V/GX. 

If we introduce multipliers analogous to the above Laguerre case, then an analog to the 
sufficient direction holds for such Cesàro bounded expansions (see [20, p. 21]). But one 
cannot expect that the converse is also true since concrete orthogonal expansions in gen
eral satisfy additional properties, e.g. they are (C,6) bounded for all 6 greater than a 
critical index but not for the critical index itself. Nevertheless, motivated by the case of 
Jacobi expansions (or Hankel transforms) one may look at the following problem in the 
above Banach space setting: 

Suppose that 
a) (4) holds for all 6 > Sc > 0, 
b) for some/ G X one has 

limsup||(C,<y,/|| = oo. 
n—»oo 

Is it true that the multiplier norm of a sequence { m,} can, up to a constant, be estimated 
from below by supfc | k

x AA m\\ for all À, 0 < À < 8C1 
Corollary 1.1 answers this question with no: the (C, a + 1/2)" means of the above 

Laguerre expansion are not uniformly bounded (see [9]) so that according to (1) the 
critical index in Ll

w(^a) is a +1 / 2, whereas only À < a +1 / 3 is admitted by the example 
in Remark 1. 

4) According to a written communication of C. Markett there exists, apart from the 
obvious sufficient condition of type (2), the following unpublished result due to V. Diet
rich, E. Gôrlich, G. Hinsen, and C .Markett 

|| §>^«(fc)L?||L, < C J sup l/ii,! 4-sup ( J |AZA7m*|2M ||/||L, 
*=0 Ma) [ k n \k=n Kl J 

provided 1 < p < oo and 7 > oc + 1 > 1. This condition is comparable with the 
necessary one in Corollary 1.1 (see [5]); in particular, their combination gives 

COROLLARY 1.2. If the sequence {rrik} G Mp
w{a)for all a > 0 and some fixed p ^ 2, 

then {ntk} G Mp
w{a)forall a > 0 and for all p, 1 < p < oo. 

For the proof observe that by duality one can assume without loss of generality that 
1 < p < 2. For fixed p < 2 and fixed a1 > 0 the necessary condition guarantees for 
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1232 G. GASPER AND W. TREBELS 

the multiplier sequence in question a A smoothness of order greater than a' + 1 since 
by hypothesis a may be chosen sufficiently large, and so application of the sufficient 
condition with respect to the parameter a' gives the assertion. 

Better sufficient conditions would allow better transplantation theorems for multipli
ers with respect to Laguerre expansions of different parameters. 

5) Corollary 1.1 may be extended by considering multipliers acting on Lp
w{a) intoL^^, 

p < r, i.e., more precisely, we say m G Mp
w

r^a) if 

^rnkfaimWu <C\\f\\LP 
k=0 M 

for all polynomials/, and define HmH^ to be the smallest constant C for which the 
preceding inequality holds. 

COROLLARY 1.3. Let 1 < p < r < 2, A > 0, and{mk) e Mp
w

r
{ocy Then 

sup|( / ;+l)A + ( TAV| <C\\{mk}\\^ 
k 

where \j r — \j p — a /(a + 1) and 
a) 0 < A < (2a + f) (I - i ) - \ if 1 < r < f, 

b) 0 < A < (2a + 2) ( i - \) - \ if \ < r < 2. 

Corollary 1.3 nicely indicates how fractional integration (with multiplier sequence 
{(k + \ya } ) should work. 

Theorem 1.1, Corollary 1.1, and Corollary 1.3 are proved in Section 2 along with 
some extensions. In Section 3 expansions with respect to the orthonormal i zed Laguerre 
functions 

LZ(x) = (n\/T(n + a + l))1 '2W2éTx/2L£(jt) 

will be considered. We define modified Fourier Laguerre coefficients 

(whenever the integrals exist, e.g., when/ G Lp
u(ay 1 < p < oo, a > 0) and have the 

expansion 

f(x)xa'2e-x/2 ~ £ /„£««• 

Since fn = (A%/T(oc + \))l'2fa(n) we may state the standard Parseval formula in the 
following form 

— - — £ Aa
k\fa(k)\2 = £ l/*|2 = L \f(x)u(x,a)\2dx 

(5) i(a + i) k=0 k=0 J» 

~~' \f{x)e~-xl2\2xa dx 
Jo JO 

r2 whenever/ G L2
u{a) = L^ay In Section 3 it is shown that even though the associated 

multiplier spaces Mp
u(a) and ^f(a) for expansions of functions in Lp

u(a) with respect to L% 
and, respectively, to L% coincide, there is an interesting different Lx

u{a) behavior of the 
Cesàro kernel x%,S (-*) in (7) and the modified Cesàro kernel k^6 (x) defined in Section 3. 
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2. Proofs and extensions. Theorem 1.1 is an immediate consequence of the 7 = oc 
case of the following basic 

LEMMA2.1. Let a > -l,f eLp
w(1), 1 <p < 2,andl > (a + l)p/2 - 2 /3 . Then 

a) 

suplik+lf/^/^A^^^r-^fAVl < C\\f\\LP , 1 <p < 4 / 3 , 
k W{V 

provided! > -l/3ifp = 1 orl > - 1 / 3 if1 < p< 4 /3 . 

b) 

sup\(k+ir+x+l-(1+l)/t>Axfa(k)\ < C\\f\\LW 1 <p < 2, 

provided 

0< \ < | ( 2 7 + 4 / 3 ) / p - ( a + l) if\<p<4/ 
^ \ ( 2 7 + 2 ) / p - ( a + 3/2) if4/3<p< 

PROOF. By the definition of the Fourier Laguerre coefficients, formula (3), and 
Holder's inequality it follows that (1//7+ 1/g = 1) 

A A / « « = J0 f(t)AxRa
k(t)e~'ta dt 

= cJo°°f(t)Ra
k
+x(t)e-ta+x dt (= Cfa+X(k)) 

<C\\f\\,r l{S0
oo\RrX(t)e-'^a+X-"\"fdty/'1 ifp>l 

""' 1 supr>0 \R
a
k
+x(t)e-'l2ta+x^ | ifp = 1. 

The observation that /?"+A = L"+A / A"+x and a direct application of Lemma 1 in [14] 
now give for A > 0 

|AA/«(£)| <C\\f\\L[ 

(6) 
x < 

k-i/p-\/(3p) ifA > ( 2 7 + 4 / 3 ) / / 7 - ( a + l), \<p<4/3 
£-(a+A+l)+(7+l)//> i f A < ( 27 + 4/ 3)//? - (a + 1), 1 < p < 4/ 3 

k\/2-<y+i)/p if A > (27 +1)/p - (a + 3 / 2), 4/ 3 < p < oo 
^/2-(7+D/p( logit)i-i/p i f A = ( 2 7 + 2 ) / / ? - ( a + 3 / 2 ) , 4 / 3 < / 7 < o o 

I -̂(ar+A+iMT+D/p i f A < ( 2 7 + 2 ) / p - (a + 3 / 2), 4 / 3 < p < oo, 

where, as usual, k and log & on the right hand side are replaced by positive constants 
when k = 0 or 1. The assertion of the Lemma is now evident. 

In order to deduce necessary multiplier conditions from Lemma 2.1 we need on the 
one hand boundedness of the multipliers involved and on the other control over suitable 
test functions; the latter will be guaranteed by 
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LEMMA 2.2. Let 1 < p < 2, 7 > — 1, and let N he a fixed integer greater than 
2(7 + l)/p - (a + 3 / 2). If{gk} e l°° has compact support and g(x) = E ^ 0 8kL%(x), 
then 

OO 

ML' <CZ(k+lfHa+l)-(1+y)/p\AN+lgk\. 
*(7) k=o 

PROOF. Start with the Cesàro kernel given by 

-l 

fc=0 

Then g may be represented as 

(7) xï*(x) = (AiUa + 1)) ' YsK-tâix) = (Aô
nr(a + 1)) ' z ^ + l ( * ) . 

g(x) = r(a + l)j:AN
k(A

N+lgk)xr(x). 
k=0 

Since the third case of Lemma 1 in [14] gives 

(8) H X ^ H L ' < C ( £ + l ) ( a + 1 M 7 + 1 ) ^ , 6 > 2(7 + 1 ) / / ? - ( a + 3/2), 
K " wen ' 

when 1 < p < 2, a + 6 > —2, and 7 > — 1, Lemma 2.2 follows after taking the 
Lp

w(1)-normofg(x). 
Consider a monotone decreasing C°°-function </> (x) with 

Then 

1 i f 0 < . x < 2 , • 
0 i f * > 4 ' Hx) = Hx/2). 

Y^(j+\)N+{a+X)~{1+X)lp\kN+x<j>ti)^ < C(2,")(a+1)"(7+1)/A', 

which can be easily verified by using a slight modification of Lemma 3.6 in [20], and it 
follows by applying Lemma 2.2 to the function 

oo 

^i\x) = ^2^i(j)Lf(x) 
7=0 

that 

(9) l|O(0ll/> <C(2 / ) ( a + 1 ) - ( 7 + 1 )^ 

when 1 <p < 2,a > - 1 and 7 > - 1 . 
Let us turn to the problem of dominating the /°°-norm of the multiplier sequence in 

question by its multiplier norm. First observe that by the second and fifth case of formula 
(6) there holds 

\Uk)\<C(k+\r+V)l"-(a^\\f\\Lr^ 
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if 7 > (a + \)pl 2 - 2/ 3 when 1 < p < 4/ 3, and if 7 > (a + 3 / 2)/?/ 2 - 1 when 
4/ 3 < /? < 2. So if one considers m = { m*} G M^(7) and replaces fa(k) by m^iik) one 
obtains by the previous estimate and (9) that 

sup \mk\ <sup|m*(M&)| < CIIHIA*" 
k<2M k wm 

with constant independent of /, thus 

(10) M? C/°°when7 > M T ) 
(a + \)p/2-2/3 if 1 < / ? < 4 /3 
( a + 3 /2 ) / ? /2 - 1 if 4 /3 < / ? < 2 

in the sense of continuous embedding. 

LEMMA 2.3. If a > - 1 arcd m e Mp
w{1), \ <p <2, then 

a) sup* |(^+l)^+4/3)//?-(a+i)A(27+4/3)/p-(«+i)m)t| < C H I ^ P wfo?/i 1 < p < 4 / 3 

am/7 > (a + l)p/2-2/3, and 
b) sup* |(& + l)AAAmfc| < C||/w||Afp when X satisfies the conditions of Lemma 2.1 

and 7 those of (10). 

PROOF. Set A = (27 + 4/ 3)//? - (a + 1). From Part a) of Lemma 2.1, it follows 
that 

C ( 2 / ) ( a + l ) - ( 7 + l ) / p | | m | | ^ ^ 

>C\\Y,mMk)La
k\\^ 

vv(7) 

> sup |F^+ 1 /^AA(m^-(£)) | 
2''-,<JK2/ 

> SUp | ^ / ^ l / 3 p A A m > t | 

2'-l<^<2' 

Hence 

• SUp | ^ / ^ l / 3 p ^ A - A - l { ^ . ( Â : + y ) _ 1} m ^ . | . 

2'-1<iK2' ./=2' 

IHIA^ > C2 sup |A mid — Csup|m^| 
H'(7) 2'-'<ik<2' k 

and therefore, by (10), 
sup \kxAxmk\ < Cllmll̂ P 

2'-,<JK2« "(7) 

uniformly in /, whence Part a); Part b) follows analogously. 

REMARKS. 1) Corollary 1.1 is the 7 = oc case of Lemma 2.3. Corollary 1.3 can be 
derived analogously from Lemma 2.1 (with 7 = oc) and (9) when observing that 

sup\(k+l)x+a+l~(a+l)/rAx(mk4>i(k))\ 
k 

< CIMI^JI^II^, < C(2Y+l-("+,)/p\\m\\Ka, 

For historical reasons (e.g., see the convolution structure in [8]) and for later use we state 
a special case (7 = ocpj 2) of Lemmas 2.1 and 2.3 (using the notation Mp

u{a) := M^ ,2) 

zndl/p+l/q= 1) 
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COROLLARY 2.4. If a > - 1 and 1 < p < 4 / 3, then 

a) supk\(k+l)x^/2+l/^Axfa(k)\ < C||/||LPa), 0 < A < I - £ , 

fcj supfc |(À:+ l)AAAm*| < C H ^ , 0 < A < 3 3q-

For sufficient multiplier conditions on Lp
u^a) comparable with (of the same type as) 

the necessary ones, see the Corollary for n = 1 in Dlugosz [3]. Using the transplantation 
result of Kanjin [10] one can improve Dlugosz's result to 

£W(*)£?IL', 
*=0 

f (2n 1 
< C < sup|m^| + sup I ^2 \(k + l)Almj(\

2~ 
k n \ t=n k 

1/2] 

n \k=n 

for all a > 0 and 1 < p < oo; namely, Kanjin's result implies 

<a) = Km = Koy « > 0, 1 < p < oo, 

and the assertion follows by the above mentioned result of Dietrich, Gôrlich, Hinsen, 
and Markett. 

2) There arises the question whether Lemma 2.3 can be improved by interpolation. 
Observe that from Lemma 2.1 with/? = 1,7 = (a + A ) / 2 — 1/6 and A > 0, we have 

sup 
k 

Aa
k
+X(k + l)l'6Axfa(k)\ < C j°° \f(x)e-xl2x{a+X)/2-xl6\ dx, 

and from (5) with a replaced by a + A and the formula in the first lines of the proof to 
Lemma 2.1 we have 

\a+\ A A A«+AA7«(fc) 
1/2 

<c(l°°\f(x)e-^2x(a+^2\2dx) 
1/2 

Then application of the Stein and Weiss interpolation theorem (see [18]), where we set 
Tf = { Tf(k)}, Tf{k) = y/Â°^Axfa(k), gives 

\Y,\(k+lf/p-l)/6Tf(k)\'< 
u=o 

i/<? 

< c (jT |/(x)e-/V
a+A)/2-<2/"-1)/6|^x) UP 

In particular this implies Part a) of the following 

COROLLARY 2.5. Let a > 0 , 1 <p < 2, and(a + l)(l/p- 1/2) > \/4.Then, 
withX =(2a+2/3)(l/p-l/2), 

a) {ZZo\(k+l)X+a/'<axfa(k)\«y/'' < C||/|L;a), 

b) sup„ {Ytn \(k+\)xAxmk\«\)X>q < C\\m\\K(a). 

Part b) follows along the lines of the proof of Lemma 2.3; observe that the restriction 
on p comes from (10). Part b) does not contain Corollary l.l and vice versa, which 
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may be seen by the examples of the Cesàro multiplier family {As
n_k/ As

n} (where, e.g., 
at p = 4 /3 Corollary 1.1 gives a greater 8 -domain where divergence happens) and 
sequences of type {elk/' (k + l)u} (where, e.g., at p = 4 /3 Corollary 2.5 leads to a 
greater v-domain in which this sequence cannot be a multiplier). The embedding results 
in [5] lead to the conjecture that A = (2a + l / 3 ) ( l / / ? - l / 2 ) + l / 6 f o r 1 <p< 4/3and 
À = (2a + l ) ( l /p — 1/ 2) for 4/ 3 < p < 2 should be the best possible À-parameters. 
One possibility to get these is to try to improve the inequality in Corollary 2.5 a) at the 
point p = 4 / 3 . 

3) Formula (3) is equivalent to the Laguerre expansion (9) in Askey [1] after the 
latter is corrected by replacing the ratio T(n — k + 1 — a + 1)/ T(7 — a + 1) in it by 
T(n — k + 7 — a)/ T(7 — a) . By arguing as on pages 251-252 of Tricomi [21] it can 
be shown that the fractional difference formula in (3) also holds for x > 0 when À > 
— 1 — min (a , a /2 — 1/4). When the more restrictive condition À > —(a + 1/2)/2 
is satisfied, the infinite series for the function AxR%(x) on the left side of (3) converges 
absolutely for x > 0 . 

3. Expansions with respect to the orthonormalized Laguerre functions. The 
orthonormalized Laguerre functions were introduced at the end of the Introduction. A 
multiplier sequence in this new setting, notation { ra*} £ ^f(ct), satisfies 

/ rOO ™ , \ l / P 

U IE^*ftAawr^j <c\\f\k{a) 

for all polynomials/. Since T(a +1 )/*-£" (x) = fa (k)L% (x)u(x, a ) it is clear that fW^a) = 
Mu(a) a nd thus, that Corollary 2.4 b) holds. But it is not obvious that an analogue of 
Corollary 2.4 a) holds with fa{k) replaced by/* . For consider the modified Cesàro kernel 

kaJ(x) = (Airl±A6
n_jL?(x) 

which differs from (7), apart from the weight u(x, a ) , by the additional factor 
—i / ? 

(r(a + l)Aj*) inside the sum. Since (8) implies 

(11) sup(A«r1 / 2 | |x^llz. ( a ) < C,6 > 1/2, 

the following lemma comes as a surprise. 

LEMMA 3.1. For a > 0 and8 > 0 there holds 
TOO c 

sup y \k^(x)\dx= oo. 

Observe however that on account of(l) there still holds {As
n_j/Aô

n} G ̂ t^a) ~ ^l(a) 
with its multiplier norm uniformly bounded in n. Let us first give an upper bound for 
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Jo°° | *£•* (JC)| dx in the case S > 1. Since 

k«J(x)=±(Ai_k/Al)L?(x) 
k=0 

= itmk(Al_k/A
è
n)L

a
k(xMx,a), 

k=0 

with mk — (T(a + 1)A") , we have that 

ka/(x) = T(a + l)(Airl J2A\k\mkA^k)x
a
k\x)u{x,a), 

k=0 

where \%,S is defined by (7). Hence taking the L](0, oo)-norm and observing (11) leads 
to 

H \K*(x)\ dx < C(Alrl J2Al
k(k+ir?2\A2(mkA

è
n_k)\. J0 k=o 

Leibniz' formula for differences gives 

|A2(mkA
6
n_k)\ n(k+ \ra'2-2Aè

n_k + (k+ \ral2-xAè
nZ

X
k + (k + ira/2As

nZ
2

k 

and the hypothesis 6 > 1 guarantees that we have only positive terms. Split up the 
resulting three sums into 0 < k < n/2 and nj2 < k < n summations. Then the first 
term with summation over 0 < k < n/ 2 gives a log(n + 1) contribution, and all other 
terms only give (uniformly in n) bounded contributions. Hence, for 6 > 1, 

/ \kZ* (x)\dx<C \og(n+ 1). 

Of course, this is no proof of Lemma 3.1; but by a similar argument its proof can be 
reduced to the problem of showing that when a > 0 the modified Poisson kernel 

oo 

(12) p?(*) = £ ^ t o 
j=o 

has no uniformity in r, 0 < r < 1, bounded L*(0, oo)-norm, i.e. 

roo 

(13) sup / |/?"(JC)| dx = oo, a > 0. 
0<r<l Jo 

Take (13) for the moment for granted and assume that Lemma 3.1 is not true for some a 
and 6. Since 

oo 

p^x)=Yt^(A6+lfJ)kf(x) 
7=0 

and £AJ | A*+V'| < C for all r, 0 < r < 1 (see Chapter 3 in [20]), we immediately 
get a contradiction, for if we take L1 (0, oo)-norms on both sides of the last equation, the 
right hand side is uniformly bounded by assumption, whereas the left hand side is not 
bounded. 
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In order to prove ( 13), we first observe that from the generating function [4,10.12( 17)] 

oo 

£ fLa
n(x) - (1 - rya~xe-xrl{l-r\ \r\ < 1, 

w=0 

and the special case of the beta integral [4, 1.5(1)] 

Jo T(n + a + l) 

it follows, formally, by termwise integration that 

oo r\ 

J2(Aa
nr

lLa
n(x) = a (l- r)a-*~2e-*rl{X-r)dr = f#(x) 

with 
ga'a (x) = ae* j°° f-ae~xt dt = aexxn~(X-x j°° f^e'1 dt, 

where x > 0 and 0 < a < a + 1. Notice that since, by use of the Laplace transform [4, 
10.12(32)], 

j°° ga'a(x)La
n(x)e-xxa dx 

= a f™ ta-a(j°° La
n{x)e-Xtxa dx) dt 

T(n+\) J\ V ; V ; nl n 

for x > 0 and 0 < a < a + 1, we have that 

oo 

g"'a(x) ~ £(A«r'LÏ(x). 

Also notice that, from the above integral representations for ga,a, 

g
a>a(x) = Oix*-"-1) as x - • 0+, 

and, by [4, 6.9(21)] and [11, 4.7(2)], 

gfl'a(jc) = axa-°c~xi){a -a,a- a\x) = 0(1/*) as JC —• oo. 

From these estimates it follows that we have 

LEMMA 3.2. Let 0 < a < a + 1, c > 0, am/ 0 < p < oo. TTien 

/ I g ^ W l ^ C V dx < oo i/am/ orcfy ifl > (1 + a - a)p - 1. 

In particular, ga,a G ^i (a), i.e. 

y°°i^a(jc)i^/2jca/2jx< oo, 
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if and only if a > a / 2. 

Let a > 0. We will now use Lemma 3.2 to show that 

OO i /~ 

E ( r ( a + l)A«)'1/2L«(x) 
n=0 

is the Laguerre series of a function ga that is not in Ll
u(ay Observe that, by [4, 1.18(4)], 

T(a + 1)A£ ~na and 

(iXcr + \)Aa
ny

Xl2 = ( r ( a / 2 + DA?/2)"1 + c a ( A ^ 2 + 1 r 1 + Z£ 

with £^ = 0((n + l )~ a /2~2) . From the above lemma, the function 

g? = ( r ( a / 2 + l ) ) ~ y / 2 - « 

i s i n L ^ ) , but it is not in Ll
u{a). The function g% = cag

a/2+]'a is in both L ^ andZ^(a), 
and a termwise use of [14, Lemma 1] shows that the function 

OO 

n=0 

is also in both L^(or) and L^a) . Hence, the function ga = g^ + g" + g" is in L^(a), it has 
the Laguerre expansion 

Zina + mty1 La
n(x), 

n=0 

but it is not in L^(a). By Lemma 4 and Theorem 3 in Muckenhoupt [15], the Poisson 
integral ga(r,x) of ga(x) has the Laguerre expansion 

0 0 — 1/9 

X y ( r ( a + l)A«)-1/2L«(x) 

and tends to ga(x) almost everywhere as r —> I - . In view of Parse val's formula (5), 
0 0 — 1/9 

J2^(T(a + l)Aa
ny

/2La„(x) 
AZ = 0 

is the Laguerre series of an L2
u{a) function when 0 < r < 1. Application of the asymptotic 

formula [19, 8.22.1)] shows that the above series converges for x > 0 when 0 < r < 1. 
Since, by L2 theory, it converges to ga(r,x) in the Z^(a)-norm, it must also converge to 
ga(r,x) almost everywhere when 0 < r < 1. Then, using Fatou's Lemma, 

roo ,,_ ,~ roo roo 

o o = / \ga(x)\e-x'2xa'2dx<limmf / \p°(x)\ dx < sup / \pa
r(x)\dx 

JO r—>1~ JQ 0 < r < l 0 

when a > 0, which proves (13)and hence completes the proof of Lemma 3.1. 
So it is not obvious that the following analogue of Corollary 2.4 a) holds. 
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THEOREM 3.1. Iff G Lp
u(a), 1 < p < 4 / 3, a > 0 when p = 1, and a > 2/p - 2 

whenp > 1, then (1/p+ \jq — 1) 

sup|(n+l)A + I /«AA /n |<C| | / |U , A 
3q 

PROOF. Use (3) to write 

\ - r°° \ 
Af" = h fU)A Ln(x)u(X' a)dX 

= (T(a + I))" ' /2 jf°7(x)AA {^Ra
n(x)) u\x,a)dx 

= C / f(x)u{x,a)Y,Ajx•"'l&j(x)y/A° u(x,a)dx 
J0 j=o 

+ C f(x)u(x,a)ZAJx-lRa
n+j(x) (JÂ^j - y/Â°) u{x,a)dx 

= / + //. 

j=0 

From (3) and Holder's inequality it follows that if 1 <p< 4 /3 and À > 1/ 3 — 4/ 3g 
then 

i/i<cii/nCi^iixA/?rAwiiz.!ta) 
<C(n+\T«l^\\f\\eJ|Zr2A~A|L< 2A) 

u(a) u(a+2X) 

< C(n+ira/2^\\f\\L:Jn+l)ia+2X)/2~,/M/3" 
where the latter inequality follows from the fourth case of Lemma 1 in Markett [14]. 
Hence, iff € Lp

u(a), 1 < p < 4 / 3 and A > 1/ 3 - 4 / 3q, then 

|/| < C ( n + l ) - 1 / 3 + l / ^ | | / | U 
u(a) 

In order to estimate // first note that | JÂ^- — y/Â°f\ & j(n+j+l)a/2~l. Then, by Holder's 
inequality and the fifth case of Lemma 1 in [14], 

/•OO ° ° i x , / 

|//| < C I | / ( x ) | M ( x , a ) ^ r 1 _ A | C ^ ) l ( « + y r a | v / A ^ / - 4K\ u(x,a)dx Jo j=l v J 

oo 

<c\\f\\L^xrx(n+jra/2-l\\L% 
<C(n+irX-l/<1\\f\\L^ • 

' u(a) 

If we now set À = 1/3—4/ 3g, then the combination of the above inequalities completes 
the proof of Theorem 3.1. 

There is the question in how far supplementary necessary conditions exist which re
flect a behavior as shown by the modified Cesàro kernel; this is closely connected with 
the problem to gain control over additional test multipliers as one has, e.g., in the case 
of radial Fourier multipliers. 
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