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Abstract

In this paper we derive precise tail-area approximations for the sum of an arbitrary finite number of inde-
pendent heavy-tailed random variables. In order to achieve second-order asymptotics, a mild regularity
condition is imposed on the class of distribution functions with regularly varying tails.

Higher-order asymptotics are also obtained when considering a semiparametric subclass of distribution
functions with regularly varying tails. These semiparametric subclasses are shown to be closed under
convolutions and a convolution algebra is constructed to evaluate the parameters of a convolution from
the parameters of the constituent distributions in the convolution. A Maple code is presented which does
this task.

2000 Mathematics subject classification: primary 62E17; secondary 62E20, 60G70.
Keywords and phrases: convolution, convolution algebra, tail area, asymptotic expansion, regular varia-
tion, heavy tail.

1. Introduction

In this paper we make a precise study of tail-area calculations for sums of indepen-
dent random variables with heavy tails. The need for such evaluations occurs in a
variety of situations. Statistical applications include p-value computations as well as
construction of confidence intervals. In the nonheavy tailed case, a good reference
for such statistical applications is Field and Ronchetti [9]. In insurance risk, tail-areas
provide a measure of liability against large claims. The monograph by Embrechts et
al. [7] provides extensive coverage of this topic. The recent monograph by Willmot
and Lin [14] is another reference. In queueing theory, tail-areas model the likelihood
of long waits. In portfolio analysis, attention has been given to a quantity referred to
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as tail risk. Advocates of this financial theory can apply the results in this paper to
assess the effect of diversification in a portfolio on this type of risk.

Let F denote a distribution with regularly varying tails. Recall F = 1 - F is
regularly varying at oo with index —a if

* - , x>0.
'-°° F(t)

We write F e R-a to signify the above relation holds. We also consider d.f.'s with
regularly varying left tails. F is such a distribution provided F(—t) e /?_o, that is,

— — — — — • — m v V <- -*^ •

' -« . F ( - / )

Let us also introduce the following notation to indicate two functions are of the same
asymptotic order at oo. We write / ( / ) x g(t) as t tends to infinity to signify that

0 < lim inf < lim sup < oo.
f-oo /(/) ^ ^ f(t)

Regular variation has the useful property that it is inherited by convolutions. Thus,
for example, as shown in Feller [8, page 278], for distribution functions Fiti = 1,2
with Ti(x) = x-aLj(x) where L, 6 Ro, i = 1, 2,

Fi *F2(x)~-x-a(Li(x) + L2(x)) as x -> oo.

In the case of Ft = F2 € /?_„, the result gives

hm — = 2.
'-°° F(t)

Thus, the result not only tells us that the property of regular variation is preserved
under convolution but also gives the exact magnitude of increase to the tail-area as
a result of convolution. This asymptotic doubling of the tail under convolution is
itself an important property and distributions with this property are referred to as
subexponential. An extensive literature exists describing properties of this class and
we refer to [2, Appendix 4] for the basic results and references.

In Section 2 we introduce a subclass of distribution functions with regularly varying
tails for which the second-order behaviour of tail areas under convolution may be
determined. In a related paper Geluk et al. [10] address similar problems to ours.
In that paper they derive their results under an assumption of second-order regular
variation. Also very much related to the present paper, Borovkov and Borovkov
[3] introduce an asymptotic differentiability condition. This condition appears to
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be more natural than that used by Geluk et al. [10]. Equipped with this condition,
Borovkov and Borovkov [3] obtained asymptotic expansions for the tail of a sum of
i.i.d. r.v.'s. The striking aspect of these expansions is that they are valid uniformly
in the number of summands. Here, our results are obtained under the first order
asymptotic differentiability assumption in Borovkov and Borovkov's [3] terminology,
which we refer to as asymptotic smoothness. A distinctive feature of this property
is that it is preserved under convolutions, thus allowing us to deduce second-order
results for arbitrary convolution powers.

In Section 3 we examine higher-order expansions for the tail-areas of arbitrary
convolution products. This section is strongly related to the work of Borovkov and
Borovkov [3], but our perspective is radically different. Our goal is to develop effective
computational tools to obtain tail expansion for weighted sums, while Borovkov and
Borovkov [3] focus on the uniformity with respect to the number of i.i.d. r.v.'s involved
in a nonweighted sum. In order to provide a clean theory for constructing such
expansions, we require that the distributions being convolved belong to a class having
a representation of the form F(0 = raP{\/t) + o{rm), where P{x) = L0<t<m c***
for some real constants ck, nonnegative integer m and positive real a. For example,
this applies to the Student distribution with a degrees of freedom. This class is
closed under convolutions and we give a formula for computing the coefficients of the
associated tail-area polynomial to the convolution power or product. In the case of a
weighted sum of i.i.d. random variables with underlying distribution in this class, this
procedure is easily done on a computer and we provide the Maple code to achieve this
goal. The methodology is quite broadly applicable, and we indicate what adjustments
are required to apply the method for a distribution function outside our class but having
a finite series representation in some basis other than r"~k, k = 0,1,... ,m described
here.

A number of authors for a variety of applications have derived first-order asymptotic
results for tail-areas under convolutions of heavy-tailed distributions. We mention
Embrechts and Goldie [6] for an application in transient renewal theory, Cohen [5]
for the stationary distribution of waiting time in a stable queue, Greenwood [11]
and Resnick [12, Section 6] for randomly stopped sums, Resnick [13] for weighted
sums, and Bingham et al. [2, page 406] for an application to a supercritical branching
process.

Finally, we describe the outline of the paper. Section 2 provides the definition of
asymptotic smoothness and our general theorem on second-order expansion of tail-
areas. Proofs of the results in this section as well as additional supporting lemmas
are presented in Section 5. Section 3 presents our algebraic calculus on tail-areas of
convolutions. Since the proofs of the statements in this section are short and so as to
make the section nearly self-contained, proofs of the propositions are given following
their statement. Section 4 addresses the question of the accuracy of these asymptotic
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expansion and their use in statistics.

2. Convolutions of asymptotically smooth distributions

Recall that a function / is regularly varying at infinity with index p if

lim ^ - ^ =xp, for all x > 0.

We denote by Rp the set of all such measurable functions. Karamata's representation
theorem (see, for instance, Bingham et al. [2, page 12]) asserts that these functions are
those of the form xpc(x) exp (f* M~'e(w) du), where c(x) tends to c e (0, oo) and
e(x) tends to 0 as x tends to infinity. In particular, the function c(x) is in Ro.

We now introduce a class of functions of main concern for the paper. This class is
related to the function satisfying condition [£>,] of Borovkov and Borovkov [3].

DEFINITION. We say that a function / is asymptotically smooth with index —a if

lim lim sup sup
*>0 xf(t)

— a = 0.

Asymptotically smooth functions of index a are related to regularly varying ones
with the same index. To make this assertion precise, let us introduce the upper and
lower densities of a function / ,

fu(t) = hmsup , /L(f) = liminf .
x-+0 X *-+0 X

PROPOSITION 2.1. (i) Let f be an asymptotically smooth function with index
—a. Then tfu(t)/f(t) andtfL(t)/f(t) have limit —a as t tends to infinity. Moreover,
if f is differentiable, then f is in /?_o.

(ii) Let f be regularly varying. Its asymptotic smoothness is equivalent to that of
c(-) in the Karamata representation off, with index Ofor the function c ( ) . Moreover,
if f has an ultimately monotone derivative, then f is asymptotically smooth.

The first part of statement (ii) implies that if the slowly varying function xaf(x) can
be normalized, that is, the function c(-) in its Karamata representation can be choosen
constant (see, for example, Bingham et al. [2, page 15]), then / is asymptotically
smooth. Note the Karamata representation is not unique, nor does every regularly
varying function have a normalized form; for instance, a normalized slowly varying
function must be differentiable. Moreover, (ii) provides that if / is asymptotically
smooth, then any choice of c ( ) in the Karamata representation of / is asymptotically
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smooth with index 0. In other words, although the function c ( ) is not unique,
asymptotic smoothness places restrictions on its choice. The first statement also
shows that asymptotic smoothness is quite analogous to smooth variation (see [2,
Section 1.8]); the main distinction is that smooth variation implies differentiability
while asymptotic smoothness is only a form of asymptotic differentiability.

For the applications that we have in mind, the last statement of (ii) is the most
important. It tells us that if F is regularly varying and has an ultimately monotone
density, then it is asymptotically smooth. For instance, this implies that the Student,
the log-gamma and the Pareto distributions are asymptotically smooth.

For a tail-area function F, asymptotic smoothness has an interpretation in term of
random variables. Indeed, if X has an asymptotically smooth tail-area function F,
then

limlimsup sup |e~'P{; < X < t + et \ X > t] - a\ = 0.
J - > 0 /->oo 0<e<S

This implies that, when it exists, the hazard rate of X at t is equivalent to a/t as t
tends to infinity. Notice that if the hazard rate exists, then F has a density. Then,
Proposition 2.1 (i) implies that F is regularly varying with index —a.

DEFINITION. A distribution function F is right tail dominant if

F(-tS)
lim —= = 0 for any positive <5.
'-<» F(t)

For any distribution function F, denote the truncated mean by

lxF{t) = jxdF(x), f > 0 .

If F has a finite absolute moment of order 1,

vF = \x\dF(x) = (l-F(x) + F(-x))dx,
J -oo Jo

the truncated mean /J.F(t) has a limit as t tends to infinity. This limit is the usual mean

fiF= [ xdF(x)= f (l-F(x)-F(-x))dx.
J -oo Jo

We can now state a first tail-area expansion for convolutions.
THEOREM 2.2. Let F and G be two distribution Junctions such that F € /?_„ and

G € R-p with a A ft > 1. Assume F and G are asymptotically smooth and right-tail
dominant, with J_oo x dF(x) and J_oo x dG(x) both finite. Then, as t tends to infinity,

\-F* G(t) = F(f) + G(t) + j (oF(r)Mc(O + PG(t)fiF(t)) (1
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In particular, if vF and vc are finite, the conclusion of Theorem 2.2 yields

_ _ 1 _ _
l-F * G(t) = F(t) + G(t) + - (aF(t)(iG + PG(t)nF) (1 + o(l))

REMARK. If /xF = /zG = 0, the statement of Theorem 2.2 reads

— — /~F(t) + G(t)\
l-F * G(t) = F(t) + G(t) + o — ^ — as t - • oo.

V ' /
REMARK. It is quite striking that though asymptotic smoothness is not a second

order type condition on tails, it yields a two-term expansion on the tail of the con-
volution. In that aspect, asymptotic smoothness is very much like differentiability:
convolution regularizes.

The following result is useful in extending the result in Theorem 2.2 to higher-order
convolutions. It asserts that within the class of distribution functions with regularly
varying tails, the properties of asymptotic smoothness and right tail dominance are
preserved under convolution.

THEOREM 2.3. Under the assumptions of Theorem 2.2, F*G is also asymptotically
smooth and right tail dominant.

REMARK. When F and G are identical, the last assertion in Theorem 2.2 follows
from [3]. It is noticeable that Borovkov and Borovkov [3] give a more direct proof of
this last assertion, but do not prove that their condition [Dk] is stable by convolution.
Theorem 2.3 asserts that their condition [Di ] is stable by convolution. Similar remarks
apply to the other results of the current paper.

This stability under convolution has the following interesting consequence. It gives
a two-term expansion for the tail of sums of n independent and identically distributed
random variables.

PROPOSITION 2.4. Under the assumptions of Theorem 2.2, we have

lim = — (1 - F*"(t) - nF(t)) = an(n - 1).
'-<» F(t)fiF(t)

REMARK. AS before, if iiF — 0, Proposition 2.4 reads
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In particular, if vF is finite, the conclusion of Proposition 2.4 reads

lim J— (1 - F*"(t) - nT(t)) = an(n -
f-oo f(t) V '

The previous results were obtained under the assumption that a > l o r a A ^ > 1.
We now present the analogous results for the case a V j6 < 1. First for a v /} < 1,
define the quantity

,.1/2
/

Jo

THEOREM 2.5. If F and G are asymptotically smooth distribution functions sup-
ported on R+ with F € R-a and G € /?_^ where a v ^ < 1, then

l -F*G(O-F(r)-G(O = 2(8+w _ T _
F{t)G{t)

The next result shows that in the a v fi < 1 case, asymptotic smoothness is still
preserved by convolution.

THEOREM 2.6. Under the assumptions of Theorem 2.5, F * G is supported on R+

and is asymptotically smooth.

We deduce from Theorem 2.6 the following two-term expansion.

PROPOSITION 2.7. Under the assumptions of Theorem 2.5,

=»(n-!) ( / (« ,«)+ 2 - ' - 2 " ) .

We now present an application of the above results which illustrates the difference
between our result and those of Geluk et al. [10]. Consider the c.d.f.

F(r) = l ( l + - ) i f f > f o .
ta \ log t)

where t0 > 1 is such that F(/o) = 0. Its density / is ultimately decreasing, since
fit) ~ —a(a + \)/ta+2 as t tends to infinity. Consequently, F is asymptotically
smooth, thanks to Proposition 2.1 (ii). When a > 1, Theorem 2.2 yields

LLF

(2.1) F*2it) = 2Fit) + 2aFit)— + o
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as t tends to infinity. On the other hand, one can check that F{t) is second-order
regularly varying, with auxiliary function a(t) = (logf)"2* since

lim(logf)2 I — x~" I = -;c~°log;t.
' - » y F(t) j

Theorem 2.1 (ii) of Geluk et al. gives, for a > 1, ~F*{t) = 2F(t) + o{a{t)T{t)),
which is a coarser estimate than (2.1). We will see in Section 3.4 how to obtain even
sharper estimates than (2.1).

3. An algebraic calculus on tails of convolutions

The purpose of this section is to explain how variations on our assumptions can
lead to results in the same spirit. The key idea is the obvious fact that convolution
is a bilinear operation. This suggests that algebraic arguments may be useful. In
particular, if one wants to prove a result on how a bilinear operator acts, then one
can first derive this result on a basis and extend its scope by bilinearity. To be more
specific, let us rewrite the convolution in a more synthetic way. To a c.d.f. F we
associate an operator TF acting on the space of functions which are integrable with
respect to the measure dF by

TFh(t)= f h(t-x)dF(x).
J —oo

Moreover, we define the multiplication operator Mc by Mch{t) = h(t/c). Then,
Lemma 5.1 asserts that

(3.1) F*G = TF(G) + TC(F) + M2(F G).

We can now make our algebraic construction.

3.1. Some elementary distributions on K+ In this subsection, we focus on some
very specific distributions. Namely, we assume that F and G are concentrated on K+

and satisfy T{t) - t~a{\ + o{ra)) and G(t) = t~^{\ + o{rb)) as t tends to infinity,
where a, b > 0. Those distributions with the o(-) term replaced by a monomial times
1 + o(l) are known in the statistical literature on extreme-value theory as the Hall and
Weisman [11] model—but this fact is rather irrelevant to what follows, and should not
prevent the reader from proceeding. For such distributions,

/

<
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Let € be a positive number. Then, there exists a positive S such that for any u in [0, S],

l<jfc<m

Thus

c! r(^)

< €Um.

dF(x) < -j-EFXm.

Moreover,
pi/2

/ G(t-x)dF(x) <G(t(l-S))J(St) = O(FG(t)),
Jsi

and for any k less than a, an integration by parts show that f™ xk dF(x) = 0{tk~a).
Hence, provided that m < a,

TFG(t) =
0<k<m

Permuting F and G and using formula (3.1), we obtain

l</t<n r(«) it!

+ o(r
l<t<m

V i

T(fi) k\

v /-"-" v r""")

whenever m < a and n < p.
There are two important features in this formula. First, the expansion of F * G is

in powers of t of the form t~a~k or t~fi~k. Second, the error is in \/t at the power
min(a + a, f$ + b, a + n, /5 + m). Two conclusions can be drawn.

First, all the terms in the expansion of F * G are meaningful for example if a+n =
ft + m < min(a + a, fi + b).

The second conclusion is that if one wants to have a class of distributions with tails
which have asymptotic expansions in powers off, and which is stable by convolution,
then the choice is very limited. Here we will only study those in t~"~k, k € N. This
class is suitable to handle the classical distributions, yields a theory which is neat and
easy to use, and which we believe is sufficient for most applications. We will expound
this theory in Sections 3.2-3.4.

There is no insight gained in exploring tails with any arbitrary series expansion in
power of t; nor is there in adding powers of log t or other specific functions.
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3.2. The class £?+m Let us denote @>+m the set of all c.d.f.'s F on the positive
half-line, such that ~F(t) = t~aPF<m{\/t) + o{t~a~m), as t -+ oo, where Pf,m is a
polynomial of degree at most m. In this context, F(t) x t~a as ? tends to infinity if
and only if PF m does not vanish at the origin. More generally, if 0 is a root of degree
k of /V,m, then T{t) x t~a~k as t tends to infinity.

Before we discuss convolutions in the class &*m, let us make a few remarks. First,
^am contains £?*m+k f°r a ny positive integer k. Moreover, &a+k m is a subset of
^am+k- Thus a c.d.f. F may be viewed as variously belonging to these sets, as soon
as it belongs to one of them. In practice, one should work with a as large as possible;
maximal a occurring when the polynomial PF,m does not vanish at the origin.

One way we can represent the polynomial P F m is through the vector of its
coefficients. If PF,m(x) = E o ^ ^ P f . i ^ ' ' w e c a n think of PFjn as the vector
pF = (pF0,..., pF,m)T in Km+I. Now, if a random variable X has c.d.f. F be-
longing to &*m, and r is a positive real number, then rX has c.d.f. Fr = F(-/r). The
c.d.f. Fr belongs to 3?*™ a s we^> anc^ ^V,.m0O = raPF<m(rx). Thus, changing scale
amounts to multiplying the vector pF by raS^r, where yr is the diagonal matrix

/ I \
r 0

- 2

rm /

We denote by [ikF = / xk dF(x) the k-th moment of F, which is finite whenever
k < a. Define the (m + 1) x (m + 1) lower triangular matrix AF, whose (/, j)
coefficient is given by

if 0 < j < i < m;

otherwise.0

Note that we label the rows and columns of AF from 0 to m (and not from 1 to m + 1
as would be customary).

All diagonal elements of AF are equal to 1. In particular, the determinant of AF

is 1, and AF is invertible. Using the binomial identity expressing (x + v ) \ we see that

0<i<*

Equipped with this relation, one checks that AFtG = AFAG = AGAF. Moreover, to
calculate AFr is easy, since fik,Fr = rkfikF. It follows that AFr =
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The following result is the key to our tail calculus. It shows that the class !?+m

is stable by convolution (which should be rather obvious given what precedes), and
it tells us how to calculate the polynomial associated with the expansion of F * G.
When F and G are identical, it follows from Borovkov and Borovkov [3]; but we will
see that our algebraic viewpoint seems much more suitable for practical computation
and extension to different classes of distributions.

PROPOSITION 3.1. IfF, G are in &>+m with m < a, then pFtG = AFpG + AGpF.

The proof of Proposition 3.1 is given here because of its simplicity, importance and
because the last sentence of the proof illustrates a key argument.

PROOF. When both PFm and PG,m are monomials,

/-»-'• + o(t -""") = rc-i(l+o(ti"n)),

and the expansion for G is obtained from that of F by substituting j for /. The con-
clusion follows from the formula for 1 — F * G(t) obtained in Section 3.1. In general,
the conclusion follows from linearity of the operators TF and TG or, analogously, by
bilinearity of the convolution. •

Let us make a comment on the proof. In general, if one has an expansion not in
powers of t~a~k as we assume but in other functions such as t~a~(k/2) or f ~a~*(log t)/i+/,
one could still use a linearity argument. Thus the problem of approximating tails of a
sum can always be broken into simpler problems where the tail is given by a simple
function plus a o(-) term. Everything works in the same way provided these simple
functions (here the monomials of degree —a — k) are reasonably well behaved. In
any such case, provided one introduces the right basis, one can transform the problem
of expanding the tail of the convolution into linear algebraic manipulations as we did,
eventually even on an infinite-dimensional space.

In the same spirit, we could perfectly well replace the o(-) error terms in our
simple functions by an explicit error bound. This would lead to error bound on the
convolution in exactly the same way.

3.3. Distributions on K. The class &a,m Now that we know how to manipulate
distributions on the positive half line, we can move on to distributions on the whole
line. The key ingredient is again the bilinearity of the convolution. We can decompose
any c.d.f. F as a mixture of a c.d.f. supported on the positive half-line and a c.d.f.
supported on the negative half-line. More precisely, if F is given, set

a n d F +

https://doi.org/10.1017/S1446788700008570 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008570


350 Philippe Barbe and William P. McCormick [12]

If F(0) vanishes then F is supported on R+, and we set F_ to be whatever distribution
we like; while if F(0) = 1, then we set F+ to be whatever distribution we like. With
these notations, F = F(0)F_ + (1 - F(0))F+.

However, to deal with convolution, it is easier to change notations, writing

F = (1 - M ) F _ + UF+ and G = (1 - u)G_ + vG+.

Observe that

F*G = uvF+ * G+ + (1 - u)vF_ * G+ + (1 - v)uF+ * G_

The distribution F_ * G_ is that of the sum of two independent random variables
concentrated on the negative half-line. Thus, F- * G-(t) = 0 for any positive t.
Consequently, on the positive half-line,

(3.2) F*G = uvF+ * G+ + (1 - u)vF_ * G+ + (1 - v)uF+ * G_.

From the preceding sections, we know how to derive an asymptotic expansion for
the term F+*G+. For the other two terms, notice that

fO

= / _
G+(t-x)dF_(x),

and we can proceed similarly to what we have done in Section 3.1. As a consequence,
let us define the class t?a,m.

DEFINITION. We say that F belongs to &a,m if both 1 - F-(-t) and F+(t) belongs

Thus, if F is in <^o,m, then F(-t) = raPpm(\/t) + o(r""m) as t tends to infinity
for some polynomial Ppm. We denote by Ppm the polynomial associated with the
upper tail of F. Notice that P~ = (1 - M)P~_ and P£ = uP£+.

We can now extend our tail calculus to the class &a,m.
First, if X has distribution F, then write Fr the distribution of rX. We write p£

(respectively p}) the vector associated to Pp (respectively Pp). Clearly,

Thus, we now know how to compute the tail of a multiple of a given random variable
whose distribution is in ^ a m . The next result tells us, as far as the tail is concerned,
how to calculate the polynomial associated with the addition of such variables, when
they are independent.
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THEOREM 3.2. If F, G are in £?m,a, with m < a, then p$tG = AFpG + AGp^.

PROOF. Given (3.2), the upper tail of F * G is given by the polynomial

PF*G = UVPF+*G+ + (1 - U)VPF.*G+ + 0 - V)UPF+*G--

Since p£ — pG_ = 0, we have, applying the same arguments as in Section 2,

F*G = UVP~F+*G+ + 0 -

= (uAF+ + (1 - M)AF_)U/>++ + (vAG+

Since AF = uAF+ + (1 — M) Af_ and up<t+ = pG and the like with the roles of F and G
reversed, the result follows. •

This completes our calculus. It allows one to calculate the tail of weighted sums of
random variables in the class &a,m only by formal linear algebra.

To make this clear, let us derive a neat formula for the tail expression of ^i<,<n ^>
when the X, 's are independent and X, has c.d.f. Ft belonging to &aM.

THEOREM 3.3. IfX\,..., Xn are independent, respectively with c.d.f. Ft belonging
to &a,m, then Sn = Xt + • • • + Xn has a distribution which belongs to &a,m, and
whose polynomial is given by

PROOF. The first formula follows from Theorem 3.2 when n = 2. For n larger, we
proceed by induction, using that AF*G = AFAG. The second formula follows from
the first one, using the commutativity and the invertibility of the matrices AFj. D

To apply our calculus, there are a few useful observations which we now relate.
Define the lower triangular matrix

RF:= 0 - jfi
0 otherwise.

Again, the binomial identity yields RFtG = RFRG- Let & be the diagonal matrix

& = diag (r(a), T(a + 1) T(a + m)).
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Then AF = tfRptf^K Thus, the computation of AF and multiplication of such
matrices can be done with the RF matrices.

Next, observe that & and 5fr being both diagonal, they commute. In particular,

A F r =

Moreover, yrys = ysr.

3.4. Examples

EXAMPLE 1. Tail approximation for the mean. Let Xu ..., Xn be n independent
random variables, identically distributed. Assume that their common c.d.f. belongs to
^a,m. Let Sn = Xi + • • • + Xn be their sum, and Xn = Sn/n be their mean. We are
seeking for an expansion of P[Xn > t) = P{Sn > nt). Applying Theorem 3.3, we
deduce p£ = nAF.c-i>pF'. Thus, for 0 < k < m,

Then, for m < or,

± ?) = ^ E (P*)* 7^1 + °(r""m) as r- , oo.

A quite explicit formula! To make this expansion even more explicit, we need to tell
how to calculate the moments of Sn-\. We will address a more general problem in the
next example. In the case of a symmetric distribution about 0, the first terms in such
expansion are simple. By virtue of symmetry, the odd moments of 5n_i vanish and

q2 = 2! ''-' = T '

Consequently, whenever F is a symmetric c.d.f. belonging to ^ o , m for some 6<m<a,

we write PF(x) = X̂ o<;<m P<x' ' t s t a ^ polynomial, and we have

> t \ - l (n -I- ( " + l)Ctq

n — *J = ;— I Po H T~

n"-lt" \ n2t
3/3n't

.- . . . -,--^r^ .-(a + 3)(a + 2)q2p2 +p4

{a + 4)(a + 3)(a + 2)(a + \)q*p\ + (a + 4)(a + 3)q2p^ + p5

5*5n'f

https://doi.org/10.1017/S1446788700008570 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008570


[15] Expansions for heavy tail convolutions 353

Notice that if F belongs to &aM for some a < 6, this expression is still valid, provided
we truncate it to the last term for which q, is well defined.

Various formulas of this type can be derived. However, in many applications, it
is not clear that it makes too much sense to seek for a very long expansion. Indeed,
one should not forget that a probabilistic model never fits perfectly, and that the lack
of fit may induce more important errors than the hundredth term of an asymptotic
expansion. With regard to this point, we are reminded of Box's admonition, 'all
models are wrong; some models are useful', Box [4].

EXAMPLE 2. Let us now turn to the more general problem of approximating the
tail of a positively weighted sum. Thus, let X = (Xu . . . , Xn) be a random vector
with independent and identically distributed components. Again, assume that their
common c.d.f. belongs to £?a,m. Let c = (clt..., cn) be a vector of nonnegative
constants. Denote by Wn = X!i<,<n

 C-X' = (c- x) the weighted sum of the X,'s. Let
us explain how to obtain an approximation of P{ Wn > t} up to o(t~a~m) for m < a.

It is convenient to define

Applying Theorem 3.3, and using the remark that follows its statement, we need to
calculate the matrix

The formula

(3.3) 2 J c " ^ c , = diag(Ca, Ca+i,..., Ca+m)
l<i<n

is useful for an actual computation.
We now need to explain how to calculate RFc *...*FCII. It is plain that this reduces to

a calculation of the moments E(Wk) for any integer k. The trick is to derive a formal
expression using much more integrable random variables and a computer algebra
system. Let indeed Y be a random vector with independent and identically distributed
components having a moment-generating function finite in the neighborhood of the
origin. Set Vn = (c, Y). Then,

E(Vn
k) = 1 dk

k\ k\dtk

1=0
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The following Maple code gives E(V*)/kl as a function of the C,'s and the moments
of Yi. Once the formal expression is obtained, we substitute the moments of Xx for
that of Y\. This gives us the moments of Wn expressed solely in terms of the C, 's and
the moments of Xt.

mu(0):=l: # We represent EYf by mu(k). Thus mu(0)=l.
# We now write E exp(tCiYj) as a polynomial Pi plus a
# remainder term of order t~m~l.
for k from 0 by 1 to m do:
Q[k]:=t~k*c~k*mu(k)/k!:

od:
Pl:=add(Q[k],k=0..m):
# We expand log£'exp(rc,T,) as a polynomial P2 plus a
# remainder term.
P2:=convert(series(In(PI),t=0,m+1),polynom);
# now, summing over i corresponds to substitute c*
# with Ck. We write C(k) for Ck.
P3:=add(C(k)*coeff(P2,c,k),k=0..m) :
# We then take the Taylor series of
# exp (£.<,<„ log E(exp(rc, Y,))) .
P4:^convert(series(exp(P3),t=0..m),polynom):
# We pull out Q[k] = E(W£)/k\.
for k from 0 by 1 to m do;
Q[k] :=coeff(P4, t,k) ;

Od;
The expressions Q[k] contain E(W*)/k\ as a function of /i, = EX\ (that is,

mu ( i ) in the code) and the Ck (that is, C (k) in the code). For instance, the first ones
are

E W2 C-, C2

C* C 1
f ^(A*3 3/X!M2 + 2fi\) - - U ^ i ( M 2 - lA) + TC\H\ •

3! o 2 o

We can now build the matrices RWn and RF associated with Wn and F, as well as the
matrix <£ and the matrix defined in (3.3) (denoted mat33 in the code).
RW:=evalm(array(1..m+1,1..m+1,identity)):
RF:=evalm(array(1..m+1,1..m+1,identity)):
G:=evalm(array(1..m+1,1..m+1,identity)):
mat34:=evalm(array(1..m+1,1..m+1,identity)):
for i from 1 by 1 to m+1 do:
for j from 1 by 1 to i do:
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od;
G [ i , i ] : = G a m m a ( a l p h a + i - 1 ) :
m a t 3 3 [ i , i ] : = C ( a l p h a + i - 1 ) :

od:
# We can now c a l c u l a t e t h e f i n a l m a t r i x si.
AA:=evalm(G &* RW &* mat33 &* RF"(-1) &* G ~ ( - l ) ) ;
For instance, we can obtain the 3 x 3 matrix si needed to write a 3-term expansion.

Since si is lower triangular we just need to give its entries with row index larger than
the column index. Writing a1 = /x2 — yi\ for the variance of the distribution, we
compute

A - r A _ r(<*+ 1) / n s _
n\.\ — *-or. ^2,1 — _, . . [y^a ~ ^a+l)f^l< A2,2 — W+l>

g - Co+2) + ii]{C]Ca - 2C,CO+1 + Co+2)),

^3,2 = TT,— . . (C\Ca+\ — Ca+2)fX\, A3,3 = Ca+2-

It is needless to say that though these coefficients have been produced by a computer,
the asymptotic expansion that they provide has been proved rigorously. Though the
proof of the validity of this expansion was computer-assisted, it is nonetheless a formal
proof.

EXAMPLE 3. Motivated by some applications in finance, Geluk, Peng and De Vries
[10] make a point that if X and Y are independent from a Student distribution with 3
degrees of freedom, then (X + 7l/3Y)/2 has a tail which coincides with that of X at the
first order, and has a second order which is larger than that of X. Without making any
claim that the whole thing is relevant to money making, this raises an amusing problem.
Consider n random variables X{,..., Xn independent and identically distributed from
a Student distribution with parameter a (which may not be integer). What are all the
linear combinations c\X\ -\ \-cnXn with all c,'s positive, which have the same first
order tail as X|? This is a trivial matter to settle, because (see, for example, Feller [8,
Section VIII.8], or use the result of the previous example), as t tends to infinity

I <i <n J 1 <i <n 1 </ <n

Thus, writing c = (c\,..., cn) and X = (Xx,..., Xn), the tail of (c, X) matches that
of X! at the first order if c has unit 4-norm. In particular, for a — 3 and n = 2, we
see that c = (1/2, 7l/3/2) is such a vector.
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What is more difficult a priori (but is straightforward with our calculus) is to find
among all those vectors, all those which either match the second term of the tail
expansion of (c, X) and X\ or those which maximize or minimize the second term of
the tail expansion of (c, X). For this, assume that a > 2.

To use our calculus we first need to show that the Student distribution belongs
to ^a ,m, and calculate its associated polynomial. Define the beta integral

,q)= f
Jo

B{p,q)= I xp-l(l-x)"-'dx,
Jo

and set Ka = (JaB{\/2, a/2))"'. The tail-area of the Student distribution with
parameter a is

( l + — J dx.

It is easy to prove that Sa is in &aM for any in. Indeed,

-(«+i)/2
dx.

Using the Taylor expansion of (1 + M)"("+ I ) / 2 , we obtain the tail-polynomial of the
Student distribution,

We can now proceed. Let us write p = pSa,i the vector corresponding to the
polynomial of degree 2 in the two-term expansion of Sa. Thus,

I/a
p = Kaa

(a+l)/2 0

We can either use the result of the previous section or make an ad hoc derivation
of the matrix si'. Because the Student distribution is symmetric, the calculation of
the matrix si by hand is quite easy. For any real number a, it is convenient for what
follows to introduce the matrix

J(a) =

One can easily verify the identity J{a)J{b) = J(a + b).
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Next, because the Student distribution is centered, ^ ^ = 0. This gives

yrRs.yr-
1 = J(r2H2,sJ2).

Let us write p<c,X) the polynomial involved in the upper tail expansion of the distribution
of (c, X). Define bt = (C2 — c2)/Li2,so/2. Applying Theorem 3.3, we obtain

P{

Since

C,X)=v YlJI EZ_̂  '
l<i<n \ \<j<n

= 9 E

'1 0 (T
0 r 0

ia 0

c? 0

0

(a + l)(C2Ca - Ca+2)
/ X 2 • s « —:——C.+J

2 2 (a + 2) /

Since /^2,sa = ct/(a — 2), we deduce

P { ( c , X ) > O = -!L-
a

And we hope that the reader enjoys the ease with which this expansion has been
obtained!

If one wants to match this two-term expansion to that of Sa, we must have Ca = 1
to match the first term, and

(a + 1)(C2CO - Ca+1)ix2,Sa -
a (a + 1) a (a + 1)

With the constraint coming from the matching first term, Ca = 1, this equation
defines an (n - 2)-dimensional manifold. We can write it as all the points (cu ..., cn)
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providing a solution to

haCa+2 - (a + 2)C2 = or - 2;

Thus, there are infinitely many such c's as soon as n > 2. Now, it is also plain, for
a given vector c, to decide if the second term of the expansion of (c, X) is larger or
smaller than that of Xt.

Let us now turn to the question of optimizing the second-order term in the tail
expansion of (c, X) subject to matching the first-order term with that of the tail
expansion of Xu that is Ca = 1.

First, if Ca — 1, then all the c, 's are between 0 and 1. Thus, the map r € [ 0, oo) i-»-
Cr is decreasing; it takes values between 0 and 1 on [ a, oo). It follows that C2 > Ca+2

whenever Ca = 1. Thus, using Ca — 1, the coefficient of the second-order term
satisfies

(a + l)(C2Ca - Ca+2) CB+2 > ,
2(ar - 2) 2(a + 2) 2(a + 2)

with equality if and only if one of the c, 's is 1. Thus, if the first-order term of the
tail expansion of (c, X) matches that of Xly then the second term is always larger, and
equal if and only if (c, X) = X, for some i. Thus, if the first term matches, averaging
alway increases the second term!

Finally, to obtain the maximum value of the second term under the constraint
Ca = 1, it can be shown that this occurs by taking all the c,'s equal to n~l/a yielding
maximal value

4. Accuracy

One of the main applications of an approximation for a tail probability is to derive
approximate confidence intervals. Below, we show that the main line of research that
has been carried out by numerous authors, including ourselves, is mainly of theoretical
interest, and should not be used indiscriminately in applications.

We make our point by looking at the sample mean of independent and identically
distributed Pareto random variables. Thus, consider X{,..., Xn independent, with
P{Xt > t) = ra,t > 1. LetXn =n~1(Xl-\ \-Xn) be their mean. Sections 2, 3.3
and 3.4 provide asymptotic expansions for the tail of Xn. In particular, set

/,(/) = nl-T° and /2(r) = " ' . " ~ * - •
a — 1 n t
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When a > 3, Proposition 2.4 or the first example in Section 3.4 show that

(4.1) P(xn >t} = / , (0 ( i + MO) + o(ra-'),

as t tends to infinity. When n is large, it would be natural to rely on the central limit
theorem, possibly with an Edgeworth correction (see Beirlant et al. [1, page 118]) to
estimate the upper tail of Xn. We consider as an example n = 20, a value low for a
safe application of the central limit theorem, but high in terms of the complexity of
the tail distribution of a twenty-fold convolution.

To show how inaccurate expansion (4.1) is, let us give a lower bound on a restricted
part of the tail-area.

PROPOSITION 4.1. For any positive integer n and any t < 2l/a,

1
P{Xn >t}>\-

12n(f-"-0.5)2

This lower bound looks bad, and is indeed poor! But the asymptotic expansions
give a so poor approximation that even this terrible lower bound will do for our
purpose. Since its proof is rather irrelevant to our point, it is deferred to the end of
Section 5.

Now assume that we are willing to use the approximation given by f\ to find a
quantile of order 99% for the sample mean. This gives us t = 1001/an(1/a)"1. When
a > 3, notice that 1001/a < 5 and 5«(l/or)~1 < 2l/a for any useful values of a and n.
Thus, we can use the lower bound from Proposition 4.1,

1 ^ 10,000
~ 12«(«°-7100-0.5)2 ^ ~ 12K2"-1 '

For a > 3, the number n2"'1 is large, if not gigantic, as soon as n > 6 say, making
the lower bound larger than 1/2. Thus, if one wants to use [0, /] as a 99% one-sided
prediction interval for Xn with t = lOO'^w0^"1 = / f '(0.01), the fraction of time
the interval includes Xn would be near 0 for n as large as 20—a complete failure!

One can check in doing numerical computation that adding the term f2 improves
the accuracy, but not significantly compared to the error that is committed. The reason
is the following. The second term is roughly like u/t. It is too small to balance the
underestimation coming from f\.

In the following a comparison is made between the true tail-area based on 100,000
simulations and the estimate of it based on our asymptotic expansions. We considered
tail-areas for the sum of twenty Pareto variables with parameter a = 4.2. We used
a fifth-order expansion as shown in Section 3.4. We chose two different basis to
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construct our expansion. For approximation denoted A\ in Table 1, we used basis
functions

(t- 19)(-42-*\ £ = 0,1,2,3,4.

This shift amounts to shifting the underlying Pareto distribution to have zero left
endpoint. For approximation A2 in Table 1 we used the basis functions

f<-4-2-*>, k = 0,1,2,3,4.

That is, approximation A2 is the approximation discussed in Section 3.4. As the
results show, behaviour of the estimates is sensitive to the basis. We tried a shift to
zero mean in the underlying distribution as a natural step to consider. It did not lead
to a better result. We also tried the first order approximation,

A3(x) = 20P{X, > x}.

The first-order approximation performed uniformly badly in the range considered.
For example, as a measure of performance set

RelError.O:) = |trueU) - A,(;t)|/A,(;t), i = 1, 2, 3,

where true(jc) denotes the true tail area to the right of x. Then, at x = 32 corresponding
to a tail-area about 0.01, and at x = 4 2 corresponding to tail-area around 10~4, we
have

TABLE 1.

approximation
RelError (32)
RelError (42)

Ai

1.16
0.07

A2

26
2

A3

1,000
50

5. Proofs

PROOF OF PROPOSITION 2.1. Suppose that / is asymptotically smooth with index a.
Choose a sequence xn converging to 0, so that

lim
tXn

Now for any e positive by asymptotic smoothness, we have for all n > no(e) and
t > to(€) that

« - e ^ f(t(l-xn))-f(t) ^a + e
t ~ txnf{t) ~ t
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Hence letting n tend to infinity in the above, we obtain for t > to(e),

tfuit)

361

a — € <
fit) <a+€,

which gives the result for fu. An analogous argument shows the result for fL.
Next, suppose that / has a derivative / . Then fv = fL — f. Set h = / / / .

Asymptotic smoothness of / implies lim^oofftC?) = a. Then by Lamperti's result
[2, page 59] / e /?_„. This proves part (i) of Proposition 2.1.

Let us now prove part (ii). Assume that / is regularly varying with index —a.
Writing £(x) =x"f(x).

f(t(\-x))-f(t) J 1 / 1 \
-x)a x \(1 -x)a ) 'xf{t) xl{t)

Since limJ_0((l — x)~a — \)/x = a, asymptotic smoothness may be rewritten as

e(t(i-X))-e(t)
limlimsup sup
S^0 t-HX 0<\x\<S xl{t)

= 0.

By Karamata's representation theorem [2, page 12] we can write

where c(t) has limit c € (0, oo) and e(t) tends to 0 as t tends to infinity. Thus,

x£(t)
-x)) \ (f'(l~x) t(u) , \

— 1 exp / du
/ \Ji u )

du\-\\.

Now observe for arbitrary positive r), t sufficiently large and arbitrary |JC| in (0, S] with
S < 1,

a'll~x) €(U) \
— du\ < ( 1 + |JC|)' < l + »?|a:|.

Since c(t) -+ c > 0, the asymptotic smoothness condition is equivalent to

c(t(l-x))-c(t)
limlimsup sup
i ~ ' 0 /-coo 0<|JE|<S

= 0.
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This is the asymptotic smoothness of c() with index 0.
In particular, this last condition holds in the case £ is a normalized slowly varying

function, that is, c(t) = c is a constant function. For example, I differentiable with
e(jc) = xl'{x)/l(x) continuous and o(l) at infinity suffice for I to be a normalized
slowly varying function. See [2, page 15].

To prove the second assertion of (ii), suppose / belongs to /?_a and has an ultimately
monotone derivative / . By [2, Theorem 1.7.2], if f(x) ~ x~at(x) as x tends
to infinity, then f(x) ~ ax~"~xl\{x), where lx e Ro. This implies asymptotic
smoothness, for

f(t(l-x))-f(t) fnl_x)f(u)du af;(l_x)u—%(u)du

xf(t) xf(t) xf(t)

xjit) '

where tx{u) = (l/a)ua+l f(u) ~ l(u) as u tends to infinity.
Let 8 be a real number in (0, 1). Theorem 1.7.2 in [2] asserts that

lim = 1,
' -°° lx{t)

uniformly in 8 < u < 2. Consequently, we have uniformly in 0 < \x \ < 8

f l H - x ) ~ a - 1)
xf(t) xf(t)

~ as t -> oo.
JC

It is clear that asymptotically smooth follows from this. •

We now turn to the proofs of the remaining results of Section 2. We begin with
several preparatory lemmas.

LEMMA 5.1. Equality (3.1) holds.

PROOF. Write

/•t/2 />

= T(t- x) dG(x) +
J-oo Ji/

l-F*G(t)= F(t-x)dG(x)+ F(t-x)dG{x).
J-oo Ji/2

The lemma then follows from this by application of the identity

I T(t - x) dG(x) = J(t/2)G(t/2) + f G(t- y) dF(y). D
Jtn J-oo
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The next lemma provides the key estimate to prove Theorem 2.2.

LEMMA 5.2. Under the hypothesis of Theorem 2.2, the following asymptotic equiv-
alence holds as t tends to infinity:

— f xdF(x)(\+o(l)).
' J -t

PROOF. Let € be a positive number. Since G is asymptotically smooth, there exists
a positive S less than 1 /2 such that for all large t

sup
G(t(l-x))-G(t)

-P < e.
xG(t)

We write TFG(t) - G(t) - P(G(t)/t) f'_t x dF(x) as a sum of five terms,

f's _
/ (G(t-x)-G(t)(l + px/t))dF(x)

J-lS
p-iS pt/2

+ G(t-x)dF(x)+ G(t-x)dF(x)
J-oo Jt&

-G(t)(F(-t8)+T(tS))

- rx~G(t)P ( j x dF(x) + I x dF(x)J .

The first term is bounded by

€rlG(t) f \x\dF(x)<a-lG(t) f \x\dF(x).
J-lS J-l

The second term is less than G(t(1 + S))F(-tS). Since EF(X_) is finite, F(-t8) =
o{\/t) as t tends to infinity. Hence, the second term is o(G(t)/t). The third term is
not more than ~G(t/2)F{8t), which is 0{GF(t)). Similarly, the fourth term is at most
o(G(t)/t) + O(G(t)T(t)). The last term is f-'G(f)(o(l) + fti x dF(x)). The lemma
follows if we can prove that

\x\dF(x)

and that

J xdF(x) = o(f \x\dF(x)\
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as / tends to infinity. When vF is finite, this is plain. Thus, we assume that vF is
infinite. In this case, we must have a = 1. Since £>(X_) is finite, we have

/ xdF(x)~nF(t)~ I xdF(x).

Proposition 1.5.9.ain [2] shows that the function L(t) = f'{ x dF(x) is slowly varying.
Consequently,

xdF(x) = L(t) (l - ^ - ) = o(L(t)).

Finally, formula (1.5.8) in [2] implies that tF{t) = o{f'0xdF(xj) as / tends to
infinity, which concludes the proof. The case /xF = 0 proceeds similarly. •

PROOF OF THEOREM 2.2. Combining Lemmas 5.1 and 5.2, we see that

TTG(t) = T(t) + G(t) + r ' (aT(t)fic(t) + VG(t)nF(0) (1 + o(D)

+ M2 (F G(t)).

To conclude the proof, regular variation and the steps in the proof of Lemma 5.2 show
that ~FG(t/2) = o(F{t)fiG(t) A G(t)iiF(?))• •

PROOF OF THEOREM 2.3. First, from Theorem 2.2 we infer that F * G e fl_(

Next using Lemma 5.1 we obtain

(5.1) F*G(r(l -x))-F*G(t)

= [ T(t(l-x)-y)dG(y)- f T(t-y)dG{y)
J-oo J-oo

pt{\ —x)/2 /*'/2

+ / G(t(l-x)-y)dF(y)- G{t-y)dF(y)
J—oo J—oo

+ F(r(l - x)/2)G(t{\ - x)/2) - T(t/2)G(t/2).

The right-hand side of (5.1) is the sum of the following five terms:
r>/2 _ _

(5.2) r, = r,(F, G) = / (F(r(l - JC) - y) - F(r - >-)) rfG(y),

/./(1-JC

,G)= _
(5.3) T2 = T2(F,G)= F(t(l-x)-y)dG(y),

T3 = r,(G, F), T4 = T2(G, F) and

(5.4) T5 = -T{t/2)G(t/2) + T(t{\ - x)/2)G{t{\ -

We complete the proof of the theorem through a series of lemmas.
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LEMMA 5.3. lim lim sup sup
s*° xF*G(t)

-a A/3 = 0.

PROOF. We first consider 7", in (5.2). For 0 < y < t/2 and e > 0, we obtain using
the asymptotic smoothness of F, that

\x\t — — — \x\t —
F(t y)< FVtt - x) - y) - F(t - y) < (a + €)j-^-F(t - y)

for all 0 < \x\ < S, for some positive 8 and all sufficiently large t.
Therefore,

"2 axt -
F{

-oo t - y
F{t-y)dG{y)

C"2 t -
e\x\ / F(t-y)dG(y)

J-oc t - y

/
J—

_
F{t-x)dG{x).

An analogous inequality holds for T3 with the roles of F and G reversed. It follows
that for some positive 8, for any \x\ < 8 and t large

(5.5) -ax f -t—F(t-y)dG(y)-Pxf —G{t-y)dF(y)
J-oc t - y J-oc t - y

<2e\x\(f F(t-y)dG(y)+ I G{t-y)dF(y))
\J—oo J— oo /

<2e\x\F*G(t),

where we used Lemma 5.1 in the last step.
Thus by (5.5) it is clear that Lemma 5.3 holds provided

,,/2 _ ,i/2 t _

(5.6) a F(t-y)dG(y) + p G(t-y)dF(y)
J-oo t-y J-oo t-y

~ (a A 0)T*G(t)

as t tends to infinity. To that end notice that for any r] positive,

(5.7) 0 < f " -^-T(t - y)dG(y) < —|—7(t[l -
J-oc t - y ' ^ l + i)

= o(F*G(t)) as t - • oo,

with a similar result with F and G reversed. Furthermore,

(5.8) 0 < / —T{t - y) dG(y) < lT(t/2)G{r)t) = o(FTG(t)),
J ty

< /

Jn> t-
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as t tends to infinity, and again one can reverse F and G in (5.8). Thus in view of
(5.7) and (5.8), to show (5.6) it is enough to show that

(5.9) limlimsup
1 (a f -L

V J-Vt-
( « A £ ) F * G ( ? ) V J-ntt-y

-G(t-y)dF(y))-l

-F{t-y)dG{y)

'-nt'-y /

To establish (5.9) note that for — rjt < y < r]t, we have

1 t 1

= 0.

1 + r] t - y \-r)

Hence.

(5.10) — j — (a f F(t -y)dG(y) + p f G(t - y) dF(y))
1 + n V J-nt J-n> )

f' t — /"" t —
<a F(t-y)dG(y) + p G(t-y)dF{y)

J-n, t - y J-v t - y

< -r^— (a f T(t - y) dG{y) + /? /" ' G(t - y) dF(y)\ .
1 - T] \ J-v J-nt )

Next, note that by a straight forward argument, one can check that

(5.11) / F(t -y)dG(y) ~ F(t) as t -* oo,
J-nt

with, of course, the result being also true with F and G interchanged. It is clear that
(5.9) now follows from (5.10), (5.11) and the fact that F *G(t) ~ T(t) + G(t) as t
tends to infinity. Hence Lemma 5.3 holds. •

LEMMA 5.4. limlimsup sup ^ — = 0.
«-° (̂ oo 0<\x\<SxF*G(t)

PROOF. For x positive, t large and arbitrary fixed positive e,

I Til < F(r(l - 2x)/2)(/3 + €)xG(t/2),

where we used asymptotic smoothness of G. Thus for 0 < x < 8 < 1/2

7",2
xF*G(t)

F(t(l-2x)/2)G(t/2)(0 + c)
< — = o(l) as t ->• oo,

F*G(t)

where the asymptotic order holds uniformly in 0 < x < 8 < 1/2 by the Uniform
Convergence Theorem for regular variation.
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For 0 < — x < 8 < 1 /2 , we obtain by the same argument that

367

xF*G(t)

2x)/2)G(t/2)(fi
F*G(t)

= o(l) as t -* oo

uniformly in x e [—8, 0). Since the term T4 = T2(G, F) this proves the lemma. •

LEMMA 5.5. limlimsup sup
s>0 xF*G(t)

= 0.

PROOF. Using asymptotic smoothness of F and G, we obtain for e positive, 0 <
\x\ < 8 and/ large,

\FG{t(\-x)/2)-FG{t/2)\

<{a + €)\x\T(t/2)G(t/4)

Hence

(5.12)
F G(t(l -x)/2)-F

xF*G(t)

G(f/2)

e)\x\T(t/2)G(t/2).

= o(l) as t -> oo,

where the order holds uniformly in 0 < \x\ < 8. Thus the lemma holds by (5.4) and
(5.12). •

Thus, by Lemmas 5.3-5.5, we obtain that F * G is asymptotically smooth. Hence
to finish the proof of Theorem 2.3, it remains to show that F * G is right tail dominant,
which can be seen by an easy argument. •

PROOF OF PROPOSITION 2.4. We first establish that

(5.13) fJ-F'*(t) ~ kfj,F(t) as t -*• oo.

To see this, first consider the case where vF is finite. Then (5.13) is clear since
liF.k{t) ~ kEX ~ k/j.F(t) as t tends to infinity. Now assume that vF is infinite. We
have that since \EFX_| < oo,

(5.14) / xdF*k{x) = -tF*i<{t) + J J*
Jo Jo

as t tends to infinity. Note in this case, a = 1. Hence since F*k{t) ~ kF(t) e fi_i,
we have by [2, (1.5.8)],

(5.15) tF*k(t) = F*k(x)dxj as oo.
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Thus (5.13) holds in this case from (5.14) and (5.15) upon noting

hm - = — = 1.
*-°° kF(x)

Now, the proposition follows by induction, using Theorems 2.2 and 2.3. •

The following result provides the key estimate for the proof of Theorem 2.5.

LEMMA 5.6. Under the hypothesis of Theorem 2.5,

/

<
l)J

PROOF. First, observe that by the uniform convergence theorem for regularly vary-
ing functions, for 0 < 8 < 1/2

lim sup
_ 1

(l-yy-l
-1 = 0.

Consequently,

h \ F(,) ) G{i)

I' •dG(ty) as / ->• oo.
G{t)

Next, for 0 < a < b,

fb 1 G(ta-)-G(tb) . B

/ ^dG(ty) = —-—= —~a-p-b-p as / ^ oo.
A G(f) G(0

Thus, the measures G(t)~l dG(ty) converge vaguely on (0, oo) to Py~p~xdy. This
implies,

= dG(ty) ~ / ((1 - y)- - \)py-p~x dy,
G(t) Js

as t tends to infinity. Now, note that since a V ft < 1,

/

1/2

((1 - y)'a - \)Py-p~l dy = I (a, P) < oo.
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Hence by (5.16)—(5.18) to complete the proof of the lemma, it remains to show

(5.19) limlimsup /
*-" (-00 Jo Fit) I G(t)

By asymptotic smoothness we have for e positive and 0 < y < 8 with S sufficiently
small and t large

y fs /T(til-y)) \ 1
dG{ty) < / ^ ^ 1

f1 y f
(5.20) (a-e) J— dG{ty) < /

Jo G(t) Jo

\ 1- 1 =— dG{ty)
) G(t)F(t) ) G(t)

<(<* + €)[ J—dG(ty).
Jo G(t)

Now observe that

(5.21) f J—dG(ty) = ^l—(-t8G(t8)+ f G(y)dy) < [ 2
Jo G(t) tG(t) V Jo / " Jo G

y
G(t)

By Potter's bounds [2, page 25], we have on [SG(t), S] that G(ty)/G(t) < cy~^+()

for all t large and arbitrary fixed positive e and some constant c. Choose e positive
such that ft + e < 1. Then

fmyf dy+rm
o G(t) ' Jsco) G{t) ' Jo G{t)

This upperbound tends to 0 as 8 does. Thus, (5.19) follows by virtue of (5.20)-
(5.21). •

PROOF OF THEOREM 2.5. Use Lemma 5.1 to obtain

I- F*G(t)-~F(t)-G(t)
(5.22)

F(t)G(t)
rt/21 / r"2_

= _ _ / F{t- x) dG(x)
F(t)G(t) \Jo

+ f G(t- x) dFix) + Jit/2)Git/2) - Jit) - Git)\

= r"2 (Tjt - x) _ \ dGjx) r

Jo \ Tit) I Git) Jo

1/2 (Gjt-x) _ \ dFjx)

Git) / Jit)

| Fit 12) Gjt/I) Git/I) Fjt 12)

Tit) Git) Git) Tit)
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Taking limits in (5.22) and using Lemma 5.6, which is also valid with F and G
interchanged, yields

lF,GU)-J(t)G(t) = „ _ T _
F(t)G(t)

proving the result. •

PROOF OF THEOREM 2.6. Argue as in the proof of Theorem 2.3 breaking

F*G(t(l -x))~ F*G(t)

into a sum T\ -\ \- Ts. The proof of Lemma 5.3 goes through up to and including
(5.10), while Lemmas 5.4 and 5.5 still hold. Hence to finish the proof it suffices to
show that f*'t F(t — y)dG(y) x F{t) as t ->• oo. This is a consequence of the
regular variation of F, and, of course, F and G may be interchanged as well in this
relation. •

PROOF OF PROPOSITION 2.7. Use induction and Theorems 2.5 and 2.6. •

PROOF OF PROPOSITION 4.1. If Ux, ..., Un are independent and uniformly distrib-
uted random variables over [0, 1], then U~l/a has a Pareto distribution with index a.
Since the function x € (0, 1] i-> x~l/a is convex, Jensen's inequality gives

Consequently,

P(Xn >t} = P{n-l(U;l/a + ••• + f/;1/o) > t]

+ --- + Un >nra).

Applying Tchebicheff's inequality, we obtain, in the range t" < 2,

> 1 - P[U{ + ••• + £ /„ - (0.5n) > n(ra - 0.5)}
1

> 1 -
12n(f-"-0.5)2 "

This is the desired lower bound. •

NOTE ADDED IN PROOF. Regarding Proposition 2.1, it can be shown that the class
of asymptotically smooth functions with index —a coincides with that of normalized
regularly varying ones. It also coincides with regularly varying functions which
are ultimately absolutely continuous and have a version of their Radon-Nikodym
derivative regularly varying with index —a — 1.
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