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Abstract

D. Przeworska-Rolewicz developed an algebra-based theory around linear, not necessarily continuous,
operators D : X — X which admit a right inverse, the elementary example being D = d/dt or, more
generally, D = Y 7", a'3/3x' where a; are constants. We give conditions for the right invertibility of D
in the case where a' are functions, or more generally, where D is the Lie or covariant derivative associated
with a vector field on a (Banach) manifold M.

1991 Mathematics subject classification (Amer. Math. Soc.): 47D40, 58F99.

1. Introduction

Let M be a smooth (that is, C*°) Banach manifold, and v a smooth vector field on M.
Denote by % (M) the R-algebra of smooth real valued functions on M. The vector
field v can be identified with its Lie derivative, an R-linearmap £, : # (M) — F(M).
Recall that £, f is also written as vf which in coordinates — assuming dimM = m
— can be expressed as (vf)(x) = .., v (x)3; f (x) whenever v(x) = ) | v'(x)3d;.

In general, if 7 (M) denotes the bundle of r-contravariant and s-covariant tensors
on M, and 7 (M) its R-vector space of smooth sections, that is, (r, 5)-tensors on M,
then the Lie derivative associated withv € (M) = 7 (1,(M ) is an R-linear self-map
ZL,: T(M)—> T(M) for any pair (r,s),r,s =0,1,2....

Finally, if M is the base of a vector bundle E (M) with a connection, then for each
v € J (M) the covariant derivative is an R-linear self-map V, : &(M) — &(M) of
the space of smooth sections of E(M) — M.

We shall be concerned with the problem of right invertibility of £, and V, starting
with the case of functions: Given a vector field v € J (M), does the associated Lie
derivative £, : (M) — (M) admit R-linear self-maps R = R, : F(M) —
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F (M) such that £, o R is the identity on # (M)? The motivation for this problem
can be found in [3] from where we recall some basic definitions.

If X is an R-vector space, End(X) the R-vector space of its R-linear self-maps
X — X, define for each D € End(X) the subspace Righty(X) C End(X) of its
right inverses, that is, of such R € End(X) for which D ¢ R = idy. Note that in the
quoted book D does not have to be defined on the whole of X, but for our purposes
this simplified situation suffices. If D € End(X) is such that Right,(X) # @, call
the subspace KerD C X its space of constants. An initial operator for D is a map
F € End(X) satisfying F?> = F and ImF = KerD. Denote by Init,(X) C End(X)
the subspace of initial operators for D. Given any F € Initp(X), ¢ is a constant (of
D) if and only if ¢ = F(c). The initial operator F for D is said to correspond to
R € Rightp(X) if moreover F o R = 0. This condition defines an R-isomorphism
# : Rightp(X) — Initp(X) given explicitly by #(R) = F = idy — Ro D or
# Y (F)= R = R, — F o Ry, where R, € Right,(X) is arbitrary.

2. Conditions for right invertibility

We shall apply this situation to X = # (M) and D = £,, where M is a Banach
manifold modelled on the Banach space E. Thus let v be a smooth vector field on M,
and let ® : R x M ~ M be the flow associated with v. In other words, ® is defined
on an open subset | J, ., [/ x {x}] C R x M, where I, = (a,, B;) C R is an open
interval for each x € M and satisfies ®(0, x) = x and ®(¢ + 5, x) = (@, P(s, x))
foreach x € M, and t,s5,t +s € I,. Also lg¢,y = I. —¢t. Association with
v means that (£, f)(x) = (8/3t) f(®(t, x))|,= for f € F(M). It follows that
L, )P, x)) = (3/3t) f(®(t,x)) for any ¢t € I,. KerD C F(M) consists of
functions which are constant along the trajectories t — ® (¢, x), that is, are first
integrals of the corresponding dynamical system.

First observe that if D admits a right inverse R, then f = R(l) gives Df =
L,(f) = 1, hence necessarily v is a nowhere zero vector field. Thus if D admits
a right inverse then the associated dynamical system must be non-singular, and its
trajectories form a [codimension m — 1 if dimM = m] foliation of M.

Put Fp(M) ={r € F(M): Dr = —1 and r(x) € I, for all x € M}. Observe
that Dr = —1 means (3/0¢)r(® (¢, x)) = —1 and so

Q1) r@¢x)=r(x)—t forany reFpM), xeM, tel,.

THEOREM 2.1. Let v € J(M). Then for eachr € & p(M) the formula
0

2.2) (R Hx)= [ [f(®(r,x))dr

r(x)
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defines a right inverse of D : (M) — F (M), that is, an R-linear R, : F(M) —
F (M) such that D o R, is the identity on # (M). In particular, R,(—1) = r. Any
other right inverse R of D satisfies

0
(2.3) (Rf)Y(x) = f(®(z, x))dt + (Rf) (7, (x)),
r(x)
where 7, (x) = ®(r(x), x).
PROCF. Let f € F(M). We have (DR, f)(x) = (3/01)(R, fY(P(t, x))|i=0 =

0

d
== f(@@+1,x))dr
=0 9 Jroan _

9 0

— f(®P(r, P, x)))dT
3t Jr @)

1=0

Substituting s = ¢ + 7 and using (2.1) we obtain

a t

(DR, f)(x) = 3 F@(s, x)dsli—o = f(@(, X))o = f ().
rix)

This proves the first part. In general, the condition DRf = f means that we have

@/at)(Rf)(®(t,x)) = f(P(t,x)) for each fixed x € M and all t € I,. Anti-

differentiation gives

(RF)(@®(t, x)) — (RF)(x) = fo F(@ (1)) dr.

Substitution t = r(x) gets (2.3).

THEOREM 2.2. Let v € (M) and r € Fp(M). Then m,(x) = ®(r(x),x)
satisfies

(@) m : M — M is constant along trajectories, and r o w, = 0;

(b) thesubset N, ={x e M :x=nm(x)}={xeM:r(x) =0}of M is aregular
submanifold of codimension one transversal to each trajectory;

(¢) m, is a projection onto N, C M, that is, n? = n,.

PROOF. (a) 7, (P (t, x)) = O (r(P(z, x)), D(z, x)). By (2.1) this is ®(r(x) — ¢,
D(t, x)) = P(r(x), x) = m(x). Also, r(®(r(x), x)) = r(x) — r(x) again by (2.1).
(b) If r(x) = O then 7, (x) = ®(0, x) = x, and conversely, if x = 7, (x) then r(x) =
r(m.(x)) = 0. To see that N, C M is a regular submanifold it suffices to show that
d,r # 0 ateach x € N,. This follows from the fact that —1 = (Dr)(x) = {d,r, v(x))
at each x € M. This relation also shows that v(x) is not in the tangent plane to N,
at x, which implies transversality. (c) Follows from (b) and the fact that r o m, = 0.
This completes the proof.
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We shall call N, C M the initial submanifold corresponding to r € % p(M).
Observe that Theorem 2.2 implies that (¢, x) € N, if and only if t = r(x). In
particular, none of the trajectories ¢t — ® (¢, x) is periodic. It also follows that there
is a surjective submersion p, : M — N, suchthatz, =i, o p,, where i, : N, > M
is the natural embedding.

Thus each r € % p(M) defines a submanifold N, transversal to the trajectories of
® as described in Theorem 2.2. Also the converse is true.

THEOREM 2.3. Let v € J (M), admit a regular submanifold N C M which is
transversal to each trajectory of v, and has the property that each trajectory crosses
N exactly once, that is,

2.4) Jor each x € M there is a unique r(x) € I, such that (t,x) € N
ifand only if t = r(x).

Thenr € Fp(M), hence D admits a right inverse.

PROOF. The function r : M — R is well defined and satisfies r(®(, x)) =
r(x) — t because ®(r(x),x) = ®(rx) —t, P(t,x)) for t € I.. It follows that
(8/0t)yr(®(t, x)) = —1 which means Dr = —1, and so it remains to show that
r is smooth. Since for each xo € M, x — ®y(x) = P(r(x), x) is a C*-
diffeomorphism from a neighbourhood of x; onto a neighbourhood of ® (r(xp), xo)
and r o ®y = r — r(xp), it suffices to show that r is smooth in a neighbourhood of
any y € N. Since ® : R x M ~» M is smooth and N C M is a regular submanifold,
then also @y : R x N ~» M is smooth in a neighbourhood of (0, y) € R x N.
Because N is transversal to the trajectory through y € N we have T(M), = T(N), +
ImT (®,)o = ImT (Py),y), Which shows that T (P ), is an isomorphism, toplinear
in case of Banach manifolds, (cf. [2, p. 29]). By the inverse function theorem
®y : R x N ~ M is therefore a local diffemorphism from a neighbourhood of (0, y)
onto a neighbourhood of y and so it suffices to verify that 7 o &y : R x N ~» R is
smooth in a neighbourhood of (0, y). The last statement is obvious, since for x € N
and ¢ € I, we have (r o ®y)(t, x) = —t. This completes the proof.

In this sense there is a one-to-one correspondence between elements of % p(M)
and regular submanifolds N C M satisfying (2.4), further referred to as initial sub-
manifolds for D. We have therefore

COROLLARY 2.4. Let N C M be an initial submanifold for D. If R, and R, are

two right inverses of D which coincide on N —that is, (R, f)(x) = (R, f)(x) for any
f € g(M),X € N —then Rl = R,.
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COROLLARY 2.5. Let r € # p(M). The general form of a right inverse R of D is
givenby Rf = R, f + (Hf) o p, for some R-linear H : & (M) — ZF(N,).

PROOF. It follows from Theorem 2.1 that the general form of R is R = R, +
K, where K € End(#(M)) takes values in KerD, that is, Kf is constant along
trajectories, thatis, Kf = Kf o, forall f € F(M). Clearly, f —> f|y defines
an isomorphism KerD — % (N,) whose inverse is g —> g o p, and so K f can also
be written as (Hf) o p, for some R-linear H : (M) — F(N,).

If D admits arightinverse R € Rightp(# (M)) thenr = R(—1) satisfies Dr = —1,
but we cannot conclude that r € & (M), that is, that r (x) € I, unless v is complete,
thatis, I, = Rforallx € M. However, if M is paracompact, (and the Banach space E
on which M is modelled admits smooth partitions of unity subordinate to any locally
finite cover), there is a nowhere zero function p € % (M) such that pv is a global vector
field on M, whose flow ®* is equivalent to that of v, that is, is a reparametrisation of
® (cf. [4]). The last statement means that there is a smooth ¢* : UXE ulle x{x}] =R
such that foreach x € M themap ¢} = ¢*(., x) : I, — R is a smooth diffeomorphism,
and ®(¢, x) = &*(¢7 (1), x). Writing D* for £,, = pD we see that r* = R(—1/p)
satisfies D*r* = —1 whichimplies 7* € % p. (M) because pv was a global vector field.
Therefore by Theorems 2.1 and 2.2, the flow ®* must admit a transversal submanifold
N = N,. such that for each x ¢ M, &*(t',x) = ®(¢} ~1(t"), x) € N if and only if
t' = r*(x). Thus & has the property described in (2.4) with r(x) = ¢} L (r*(x)). We
have proved

THEOREM 2.6. Let v € J(M). Then D admits a right inverse if and only if it
admits an initial submanifold, that is, a regular submanifold N C M which has the

property that each trajectory crosses N transversally and exactly once as described
in(2.4).

The initial operator corresponding to R € Right,(X) is defined in [3]as #(R) =
F =idy — R o D. If R is referred to some r € Fp(M) as in (2.3), then this gives
(FHE) = (&) — [1,@/30) f(@(z, %) dT = (RDf)(x,(x)) = (f — RDf) (. (x))
or [f|ny, — (H o D) f]o p,. In particular, the initial operator corresponding to R = R,
is given by F. f = f o m,. In other words, (F, f)(x) ‘is the value of f at the point
where the trajectory through x intersects N,’. Note that F,r = 0 and that (2.3) can be

written as R = R, + F, o R, which is in fact the formula for .# ! (F,) from [3].

EXAMPLE 1. If M = (a,b) C R,Df = f'then®(t, x) = x+t, I, = (a—x, b—x)
and Dr = —1 meansr(x) = —x +candsor € Fp(M)ifandonlyifa < c < b, in
which case N, = {c}, 7, : x —> ¢, (R, f)(x) = [ f(t)dt, and (F, f)(x) = f(c).
The general right inverse must satisfy (Rf)(x) = fc O_x fx+1)dr+ (Rf)(c), o1, by
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Corollary 2.5, it must be given by (Rf)(x) = fco_x f(x+1)dt + Hf, where H is
an arbitrary R-linear map from # (M) into R. In particular, Hf = f(x,) for some
X € (a, b).

EXAMPLE2. If M = R” and v = a # 0 is a constant vector, that is, D =
3, a'd/dx' is adirectional derivative on R™, where the coefficients a’ are constants,
then ®(r, x) = x+taandro(x) = = Y- a'x'/ Y - (a')? is one element of & p(M).
Any other element r € % ;(M) must be of the form ry + s, where Ds = 0, that is,
s is constant along the trajectories t — x + ta. The intial operator F, is given
by (F, f)(x) = f(x +r(x)a). Observethat Ny = {x € M : x = x + ro(x)a} =
{x € R™ : ro(x) = 0O} is the hyperplane through origin perpendicular to a, hence the
corresponding 7, is the perpendicular projection of R™ onto this Ny. For a general
r € & p(M) the submanifold N, C R™ is a hypersurface intersecting transversally
each trajectory t —> x + ta. Formula (2.3) gives then the general form of a right

inverse of D as
0 0

(RAx) = fx+1)dr + (Rf)(W(x)) = f&x+nydr + (Hf)(p,(x),
ro(x) ro(x)

2.5

where H is an R-linear map & (R™) — ZF (Ny).

In particular, if a is the first coordinate vector, thatis, D = 3/9x',thenry(x) = —x!
and ZpM)={re FR™) :r(x) = —x'+s(x2,...,x™),s € F(R"H}.

Przeworska-Rolewicz (cf. [3]) defines the definite integral /7 : X — KerD de-
termined by the initial operators F, and Fg by I = F; 0 R — F, o R and shows
that this is independent of the choice of R € Right,(X), hence can also be expressed
as Fg o R,. Itis not hard to see that in our case—where the initial operators F; are
determined by r; € & p(M), i = 1, 2—the definite integral ‘from F; to F,’ is simply

0 r2(x)
R ,om, : x+— f(@(, P(r(x), x)))dr = f(®(7, x))dr.
r(®(r2(x),x)) 16))

Exponentials, defined as solutions of Dy = Ay for A € R, are functions y € # (M)
satisfying y(® (¢, x)) = y(x)e* forx € M,t € I,. In particular, any such exponential
is uniquely determined by its values on an initial submanifold N C M.

The result of Example 2.2.2 in [3] can also be generalized.

THEOREM 2.7. Letv € T (M), r € Fp(M). Then R, given by (2.2) is a Volterra
right inverse, that is, the operator idy — AR, is invertible for any )\ € R, its inverse
being idy + A B,, where the operator B, is given by

0

(2.6) (B, f)(x) = / e™ f(®(g, x)) do.

r(x)
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PROOF. We shall only verify (idy + AB,)(idx — AR,) = idy, the other equality
following similarly. We have

(idy + AB,)(idx — AR,) f (x) = f(x) + M(B, /)(*) = (R, /()] = A*(B.R, f)(x)

0
= f(x)+A e — 1) f(P(o, x))do
rx)

0 0
—AZ/ e (/ f(@P(t + 0, x)) dr) do
r(x) r(®(o,x))

0
=fX)+Ar ] (¥ —1)f(®(o,x))do
r(x)

0 4
—A2/ e‘*"( F(®(s, x)) ds) do

x) r(x)

0
=fX)+Ar [ (€ =1)f(®(o,x))do
r(x)

0 0
-2 f(®(s, x))e™ ( f e—“’da) ds

rix}

= f ).

This completes the proof.

3. The Lie derivative

Tuming to the more general case of a Lie derivative, let A be a differentiable
functor on Banach spaces ([2, p. 54]), in particular that of r-contravariant and s-
covariant tensors. Denote by T, (M) = A(T (M)) the vector bundle of tensors of type
A (12, p. 109)), in particular T,(M) = T/ (M), and by 7, (M) the R-vector space of
its smooth sections. For each smooth diffeomorphism F : M — M,andeachx € M,
denote by T, (F), : T,(M), — T,(M)g, the corresponding linear isomorphism. If n
is a tensor field of type A, that is, n € (M), and v € J (M) as before, then

d
3.1 (OnE) = ENE = 2 [TUS- )o@, x))]|, o

defines the Lie derivative of n with respect to v as an R-linear self-map £, : T, (M) —
T, (M) (cf. [2, p. 109]).

THEOREM 3.1, Let v € F(M). Then for eachr € % p(M) the formula

0

(3.2) (Ry;»m)(x) =[ T(®-oann(P(r, x)) dt
r{x}
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defines a right inverse of D = £, : 9, (M) — Z,(M), that is, an R-linear R,., :
T\(M) - T (M) such that D o R,., is the identity on T ;,(M).

PROOF. We have
0
(DRy.rm(x) = 5[TA(¢_,)¢0,X>(Rmn)(fb(t, X)) i=o

which is

a 0
P [TA(q)—t)(D(t,x) / TA(¢—1)¢(:.¢(:,x))TI(‘D(T, D(t, x))) dT]
at (@)

=0
Substituting s = ¢ + 7 in the integral and using r(®(z, x)) = r(x) — ¢ we obtain

8 t
(DRy;,m)(x) = 5 [Tx(d)—r)w:,x)/ TP )oi.nn(P(s, x)) ds]
r(x)

t=0

8 t
o [/ TP ) oi.0n(P(s, x))ds:l

(x)
= [TA(¢_1)¢(LX)"(¢(t’ x))] |t=0
= r)(x).

t=0

On the other hand, we have

0

(RDn)(x) =f T(®P-)oan(Dn)(P(r,x))dT
r(x)

0

0

= / o [TA((D—r)d)(r.x)TA((D—I)‘D(1+r,x)n(q)(t +7, X))]L:O dt
rx)

0

d

= / = (1@ owon@Gs, )], d7
r(x)

= Tu(®-Deeo( @, 0| ()
= n(x) = T(P_rx))r, 0, (x)).

s=0

The initial operator corresponding to this r € #p(M) is F = id — RD, that is, it is
given by
(3.3) (Fm)(x) = TP x)), (77, (X))

which is the value of 5 at the point where the trajectory through x meets the initial
submanifold N, ‘transported to the fibre at x via the infinitesimal transformation v’,
In particular, if n is a smooth vector field w then Dw = [v, w] and (3.2) gives an
expression which can be writtenas R;.,w = Rw = 0'(") (®,),w ds, using the notation
(@).w : x — T(P)osnw(P(—s, x)), (cf. [1, p. 10]). Note that w is a constant

with respect to D if and only if [v, w] = 0, that is, the flow of w commutes with .

https://doi.org/10.1017/51446788700038398 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700038398

[91 Right inverses of vector fields 419

4. The covariant derivative

The situation is similar in the case of the covariant derivative associated with
v € J(M). For simplicity, we shall restrict ourselves to finite dimensional smooth
manifolds. Thus let E(M) be a vector bundle with a connection. Let X = &(M)
be the R-vector space of smooth sections of E(M) — M. The covariant derivative
D =V, : &(M) - &(M) associated with this connection is given by (cf. [1, p. 114])

]
4.1 (Dn)(x) = (Vo) (x) = 3 [AoG) (@@, x))] |, »

where hy(x) : E, — Eg.) denotes the parallel displacement of fibres of E =
E(M) — M along the path T — ®(t, x). Observe that each h{(x) is an isomorph-
ism and that k(P (¢, x)) o hi(x) = h§™ (x).

THEOREM 4.1. Let v € F(M). Then for eachr € & (M) the formula

0

@2) (Rewm)(x) = f B0 (@ (x, ) d
r(x)

defines a right inverse of D = V, : &(M) — &(M), that is, an R-linear Rg., :
E(M) — &(M) such that D o Rg., is the identity on &,(M).

PROOF. We have

0
(DRe; () = o [15(0)™ R (@2, 20)] g
which is
9

0
” [h;,(x)—‘ f hi(D(t, X)) 'n(®(x +t,x))dt]

(®(.x))

t=0

Substituting s = ¢ + t in the integral, using r(®(z, x)) = r(x) — ¢ and the fact that
ho(x)™" o by (P (2, x))™! = h5(x)™! we obtain (DRg.,n)(x) = n(x) similarly as in
the proof of Theorem 3.1.

The same is true about the formula for the initial operator Fg., = id — Rg..D
associated with r € & (M), namely

(4.3) (Fs.,rm(x) = hyP (,(x)) "' n(, (x)),

which is the value of 7 at the point where the trajectory through x meets the initial
submanifold N, ‘displaced parallelly along the trajectory ¢ —> &z, x) to the fibre at x".
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