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Abstract

D. Przeworska-Rolewicz developed an algebra-based theory around linear, not necessarily continuous,
operators D : X —> X which admit a right inverse, the elementary example being D = d/dt or, more
generally, D = Yl?=i a' 9/dx' where a, are constants. We give conditions for the right invertibility of D
in the case where a' are functions, or more generally, where D is the Lie or covariant derivative associated
with a vector field on a (Banach) manifold M.

1991 Mathematics subject classification (Amer. Math. Soc): 47D40, 58F99.

1. Introduction

Let M be a smooth (that is, C°°) Banach manifold, and v a smooth vector field on M.
Denote by &(M) the R-algebra of smooth real valued functions on M. The vector
field v can be identified with its Lie derivative, an R-linear map£v : j£"(M) —> J?(M).
Recall that £vf is also written as vf which in coordinates — assuming dimAf = m
— can be expressed as (vf)(x) = J™=i v'(x)dif(x) whenever v(x) = Yl?=i v'(x)di-

In general, if Ts
r(M) denotes the bundle of r-contravariant and s-covariant tensors

on M, and <5^(M) its IR-vector space of smooth sections, that is, (r, s)-tensors on M,
then the Lie derivative associated with v € S?(M) == 3?\{M) is an K-linear self-map
A : STS(M) -+ 5^(M) for any pair (r, s), r, s = 0 , 1,2....

Finally, if M is the base of a vector bundle E{M) with a connection, then for each
v € ^"(M) the covariant derivative is an R-linear self-map VK : S'(M) ->• S{M) of
the space of smooth sections of E(M) —>• M.

We shall be concerned with the problem of right invertibility of £.v and Vv starting
with the case of functions: Given a vector field v e ^(M), does the associated Lie
derivative Lv : &(M) ->• &{M) admit R-linear self-maps R = Rv : =F(Af) ->•
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such that £v o R is the identity on ^"(M)? The motivation for this problem
can be found in [3] from where we recall some basic definitions.

If X is an [R-vector space, End(X) the [R-vector space of its R-linear self-maps
X - • X, define for each D e End(X) the subspace RightD(X) c End(X) of its
right inverses, that is, of such R e End(X) for which D o R = id*. Note that in the
quoted book D does not have to be defined on the whole of X, but for our purposes
this simplified situation suffices. If D e End(X) is such that RightD(X) ^ 0, call
the subspace KerD c X its space of constants. An initial operator for D is a map
F e End(X) satisfying F2 = F and ImF = KerD. Denote by InitD(X) c End(X)
the subspace of initial operators for D. Given any F e InitD(X), c is a constant (of
D) if and only if c = F(c). The initial operator F for D is said to correspond to
R e RightD (Z) if moreover F o R = 0. This condition defines an R-isomorphism
J : RightD(X) ->• InitD(X) given explicitly by J(R) = F = id* - R o D or

= /? = / ? ! - F o Ru where Ri e RightD(X) is arbitrary.

2. Conditions for right invertibility

We shall apply this situation to X = &{M) and D = £v, where M is a Banach
manifold modelled on the Banach space E. Thus let v be a smooth vector field on M,
and let <f> : R x M ^* M be the flow associated with v. In other words, <t> is defined
on an open subset {JX€M[IX x M ] C R x M, where /* = (ax, fix) c IR is an open
interval for each x € M and satisfies 4>(0, x) = x and <!>(? + s, x) = 4>(f, 4>(5, x))
for each x e M, and t,s,t + s e /x. Also /d>(,,X) = Ix — t. Association with
v means that (£vf)(x) = (3/9f)/(*(',*))l/=o for / € &{M). It follows that
(A/)(<I>(f,jc)) = (9/9f)/(<*>(*,*)) for any r e /x. KerD c «^(M) consists of
functions which are constant along the trajectories t i—>• <!>(/, x), that is, are first
integrals of the corresponding dynamical system.

First observe that if D admits a right inverse R, then / = /?(1) gives Df =
£v(f) = 1, hence necessarily v is a nowhere zero vector field. Thus if D admits
a right inverse then the associated dynamical system must be non-singular, and its
trajectories form a [codimension m — 1 if dimM = w] foliation of M.

Put &D(M) = {r € ^"(M) : Dr = - 1 and r(jc) € lx for all x e M}. Observe
that Dr = - 1 means {B/dt)r(p{t, x)) = - 1 and so

(2.1) r(4>(f, x)) = r(x) -t for any r e &D(M), x e M, t e Ix.

THEOREM 2.1. Let v e 5"(M). Then for each r e &D(M) the formula

(2.2) (I -f
Jr{x)
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defines a right inverse of D : &{M) -+ &(M), that is, an ^.-linear Rr :
&(M) such that D o Rr is the identity on ^(M). In particular, Rr(— 1) = r. Any
other right inverse R of D satisfies

(2.3) = /
JrW

where nr(x) = <i>(r(x), x).

PROOF. Let / e &{M). We have (DRrf)(x) = (d/dt)(Rrf)(<i>(t, x))\l=0 =

— I /(*(rt*(r,Jc)))rfT % [
/=0

Substituting s = t + x and using (2.1) we obtain

(DRJ)(x) = A f f($>(s,x))ds\l=0 = f((P(t,x))\l=0 = fix).
Ot Jr(x)

This proves the first part. In general, the condition DRf — f means that we have
(d/dt)(Rf)(Q(t,x)) = /(<!>(*,*)) for each fixed x e M and all t e Ix. Anti-
differentiation gives

= I
Jo

Substitution t = r{x) gets (2.3).

THEOREM 2.2. Let v e 3^{M) and r e &D(M). Then nr(x) = ®(r(x),x)
satisfies

(a) nr : M —> M is constant along trajectories, and r onr = 0;
(b) the subset Nr = {x G M : x = nr(x)} = [x e M : r(x) = 0} of M is a regular

submanifold of codimension one transversal to each trajectory;
(c) nr is a projection onto Nr C M, that is, it} = 7iy.

PROOF, (a) nr(<t>(t,x)) = <$>(r(<i>(t,x)), <i>(t,x)). By (2.1) this is <&(r(x) - /,
*(r,jc)) = *(r(jc),jc) = jrr(jc). Also, r(*(r(x), JC)) = r(x) - r(x) again by (24).
(b) If r(x) = 0 then nr(x) = <t(0, x) = x, and conversely, if x = Ttr(x) then r(x) =
r(7tr(x)) = 0. To see that Nr C M is a regular submanifold it suffices to show that
<4r ^ 0 at each * e Nr. This follows from the fact that —1 = (Dr)(x) = (dxr, v(x)}
at each x e M. This relation also shows that v{x) is not in the tangent plane to Nr

at x, which implies transversality. (c) Follows from (b) and the fact that r o nr = 0.
This completes the proof.

https://doi.org/10.1017/S1446788700038398 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038398


414 George Virsik [4]

We shall call Nr C M the initial submanifold corresponding to r e &D(M).
Observe that Theorem 2.2 implies that 4>(f, x) e Nr if and only if t = r(x). In
particular, none of the trajectories t i—> <!>(?, x) is periodic. It also follows that there
is a surjective submersion pr : M -> Nr such that nr = ir o pr, where ir : Nr -> M
is the natural embedding.

Thus each r e &D(M) defines a submanifold Nr transversal to the trajectories of
<£ as described in Theorem 2.2. Also the converse is true.

THEOREM 2.3. Let v e 3T(M), admit a regular submanifold N c M which is
transversal to each trajectory ofv, and has the property that each trajectory crosses
N exactly once, that is,

(2.4) for each x e M there is a unique r(x) e Ix such that <J>(f, x) € N

if and only ift = r(x).

Then r € &D{M), hence D admits a right inverse.

PROOF. The function r : M —>• K is well defined and satisfies r(<t>(*>-*)) =
r(x) — t because $>(r(x),x) = 4>(r(^) — t, <$>(t,x)) for t e Ix. It follows that
(d/dt)r(®(t, x)) = —1 which means Dr = —1, and so it remains to show that
r is smooth. Since for each x0 € M, x i—> <$>o(x) = ^(K^o),*) ls a C°°-
diffeomorphism from a neighbourhood of x0 onto a neighbourhood of 4>(A-(X0), X0)

and r o $o = r - r(x0), it suffices to show that r is smooth in a neighbourhood of
any y e N. Since $ : I x M ~» M is smooth and iV C M is a regular submanifold,
then also <S>N : R x N ~> M is smooth in a neighbourhood of (0, y) e I x J V .
Because N is transversal to the trajectory through v e Af we have T(M)y = T(N)y +
]mT(<$>y)o = Imr(4>w)(o,3,), which shows that r(4>w)(0>) is an isomorphism, toplinear
in case of Banach manifolds, (cf. [2, p. 29]). By the inverse function theorem
<t>N : R x N ~> M is therefore a local diffemorphism from a neighbourhood of (0, y)
onto a neighbourhood of y and so it suffices to verify that r o Q>N : R x Af ~> R is
smooth in a neighbourhood of (0, y). The last statement is obvious, since for x e N
and t € 4 we have (r o <PN)(t, x) = —t. This completes the proof.

In this sense there is a one-to-one correspondence between elements of &D(M)
and regular submanifolds N C M satisfying (2.4), further referred to as initial sub-
manifolds for D. We have therefore

COROLLARY 2.4. Let N C M be an initial submanifold for D. If Rx and R2 are
two right inverses ofD which coincide on N — thatis, (/?i/)(x) — (R2f)(x)forany
f e &(M), x G N — then R^ = R2.
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COROLLARY 2.5. Let r e &D(M). The general form of a right inverse R of D is
given by Rf = Rrf + (///) o prfor some tit-linear H : ^"(M) -

PROOF. It follows from Theorem 2.1 that the general form of R is R = Rr +
K, where K 6 End(^"(M)) takes values in KerD, that is, Kf is constant along
trajectories, that is, Kf = Kf o nr for all / e &(M). Clearly, / i—>• f\Nr defines
an isomorphism KerD -*• &{Nr) whose inverse is g i—> g o pr and so Kf can also
be written as (///) o pr for some K-linear / / :

If D admits a right inverse/? € Righto(^"(M))thenr = /?(- l) satisfies Dr = - 1 ,
but we cannot conclude that r 6 <^"D(A/), that is, that r(;c) e /, unless i> is complete,
that is, Ix = R for all * e M. However, if M is paracompact, (and the Banach space E
on which M is modelled admits smooth partitions of unity subordinate to any locally
finite cover), there is a nowhere zero function p e &(M) such that p v is a global vector
field on M, whose flow <&* is equivalent to that of v, that is, is a reparametrisation of
$ (cf. [4]). The last statement means that there is a smooth t* : {JX^M[IX

 x M l —• ^
such that for each x e M the map t* = t*(.,x) : Ix —*• R is a smooth diffeomorphism,
and <t>(f, JC) = **(r;(r), Jt). Writing D* for2pi) = pD we see that r* = R(-l/p)
satisfiesDV* = — 1 which implies r* e J?D« (Af) because pv was a global vector field.
Therefore by Theorems 2.1 and 2.2, the flow 4>* must admit a transversal submanifold
JV = Nr. such that for each x e M, <&•(*', JC) = <^U*~l (O, x) e N if and only if
t' = r*(jc). Thus <t> has the property described in (2.4) with /•(*) = t* ~l (r*(x)). We
have proved

THEOREM 2.6. Ler v e ^(M). Then D admits a right inverse if and only if it
admits an initial submanifold, that is, a regular submanifold N C M which has the
property that each trajectory crosses N transversally and exactly once as described
in (2.4).

The initial operator corresponding to R e RightD(X) is defined in [3] as *#(R) =
F = idx — R o D. If R is referred to some r e FD(M) as in (2.3), then this gives
(Ff)(x) = f(x)-f°(x)(d/dr)f(<P(r,x)dr - {RDf){nr{x)) = (/ - RDf)(nr(x))
or [ / | j v r - ( / / o D ) / ] o p r . In particular, the initial operator corresponding to R = Rr

is given by Frf = f o nr. In other words, (Frf)(x) 'is the value of / at the point
where the trajectory through x intersects Nr\ Note that Frr = 0 and that (2.3) can be
written as R = Rr + Fr o R, which is in fact the formula for J~x(Fr) from [3].

EXAMPLE 1. IfM = (a,b) c R,Df = /'then<&(*,*) =x+t, Ix = (a-x,b-x)
and Dr = — 1 means r(x) = — x + c and so /• € J^D(M) if and only if a < c < b, in
which case Wr = {c}, nr : * i—• c, (/?r/)(x) = / / /(0</r, and (Fr/)(x) = /(c) .
The general right inverse must satisfy (Rf)(x) = f f(x + r) dx + (/?/)(c), or, by
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Corollary 2.5, it must be given by (Rf)(x) = f°_x f(x + x) dx + Hf, where H is
an arbitrary R-linear map from &(M) into R. In particular, Hf = f(x0) for some
x0 e (a, b).

EXAMPLE 2. If M = R.m and t> = a # 0 is a constant vector, that is, £> =
2Ii=i a ' <V9*' is a directional derivative on W", where the coefficients a' are constants,
then<J>(r,;c) =x+tazndro(x) = - £ "=1 a{ xl / J^^iaf)2 is one element of &D(M).
Any other element /• 6 j£"o(M) must be of the form r0 + s, where Ds = 0, that is,
5 is constant along the trajectories t 1—> x + ta. The intial operator Fr is given
by (Frf)(x) = f{x + r(x)a). Observe that No = {x e M : x = x + ro(x)a] =
{x e W" : ro(x) — 0} is the hyperplane through origin perpendicular to a, hence the
corresponding n0 is the perpendicular projection of IRm onto this No. For a general
r e ^D(M) the submanifold Nr C Rm is a hypersurface intersecting transversally
each trajectory t 1—> x + ta. Formula (2.3) gives then the general form of a right
inverse of D as

r° r°
(Rf)(x) = f(x + x)dx + (rt/)(*oOO) = / f(x + x)dx + (Hf)(pro(x)),

(2.5)

where H is an R-linear map &{W) -

In particular, ifa is the first coordinate vector, that is, D = d/dx1 ,thenro(x) = — xl

and^D(M) = [r e &(W") : r{x) = -x1 + s(x2,...,xm),s e ^(W"-1)}.
Przeworska-Rolewicz (cf. [3]) defines the definite integral l£ : X -> KerD de-

termined by the initial operators Fa and F$ by l£ = Fp o R — Fa o R and shows
that this is independent of the choice of R e Rights (X), hence can also be expressed
as Fp o Ra. It is not hard to see that in our case—where the initial operators Ft are
determined by r, e &D(M), i = 1, 2—the definite integral 'from F, to F2' is simply

/

'0

i(<Dfo

Exponentials, defined as solutions of D j = Xj for A. e R, are functions y €
satisfying y(<b(t,x)) = ^(JC)^' for* e M,t e Ix. In particular, any such exponential
is uniquely determined by its values on an initial submanifold N c M.

The result of Example 2.2.2 in [3] can also be generalized.

THEOREM 2.7. Let v e &(M), r e «^"D(Af). 7/ien /?r givgw fey (2.2) is a Volterra
right inverse, that is, the operator id* — ^Rr is invertible for any A e l l , its inverse
being id* + XBr, where the operator Br is given by

f°
(2.6) (BJ)(x)= e-kaf(<t>(a,x))da.

Jr(x)
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PROOF. We shall only verify (idx + XBr)iidx - X/?,.) = idx, the other equality
following similarly. We have

(idx + WGdx - XRr)fix) = f(x) + X[(Brf)(x) - (Rrf)(x)] - X2{BrRrf){x)

= f(x) + X / ie~Xa - l)/(*(a, x)) da
Jr(x)

-X2 f e~k° I I /(<D(T + a, x))dx] da

= fix) + X / ie~Xa - l)/(4>(a, x)) da

-X2 f e~Xa ( [ fi$is,x))ds) da
Jr(x) \Jr(x) )

= fix) + X / ie~Xa - l)/(*(or, x)) da

-X2 I fi<i>is,x))e-ka ( [ e-Xada) ds

Jr(x) \Js /

= fix).

This completes the proof.
3. The Lie derivative

Turning to the more general case of a Lie derivative, let A. be a differentiable
functor on Banach spaces ([2, p. 54]), in particular that of r-contravariant and s-
covariant tensors. Denote by TxiM) = X(r(M)) the vector bundle of tensors of type
X ([2, p. 109]), in particular TkiM) = r;(M), and by 3TxiM) the [R-vector space of
its smooth sections. For each smooth diffeomorphism F : M —> M, and each x 6 M,
denote by TkiF)x : 71(M), —• TkiM)FM the corresponding linear isomorphism. If r)
is a tensor field of type X, that is, r) e £?kiM), and v € ^"(M) as before, then

(3.1) (DIJ)(JC) = (Afj)(x) = — [TJi(*-t)«o.x)ri(.*X.t> x»] U

defines the Lie derivative of r] with respect to v as an R-linear self-maplv : TkiM)
TkiM) (cf. [2, p. 109]).

THEOREM 3.1. Let v e SfiM). Then for each r e ^ O ( M ) the formula

(3.2) iRi.rtfix) = [ ri(*_r),(TiJ[)ij(*(T,jc))dT
Jr(x)
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defines a right inverse of D = £v : &k(M) -> &k(M), that is, an R-linear Rk.r :
such that D o /?X;r w tfie wfe/iff/y on &

PROOF. We have

which is

—

"' L

= |-[rx(<i>_,)»(l,Jt)(i?i:r»j)(ci>(r,jc))]|(=o
Of

[
r(<t>(l,x)) , = 0

Substituting s = t + x in the integral and using r(<t>(t, x)) = r{x) — t we obtain

{DRk,r-n)(x) = | - /
r(x)

/=0

J 1=0

lr=0

On the other hand, we have

(RDnKx) = f 7U<J
Jr(x)

f° d r_ r d_
~ Jrto 3 '

- C -
Jr(x) dS

|

= r){x) -

The initial operator corresponding to this r e &D{M) is F = id — /?D, that is, it is
given by
(3.3) (FIJXJC) = 71(4>_r(;c))jrr(;c)r?(7rr(x))

which is the value of r\ at the point where the trajectory through x meets the initial
submanifold N, 'transported to the fibre at x via the infinitesimal transformation v\

In particular, if r\ is a smooth vector field w then Dw — [v, u>] and (3.2) gives an
expression which can be written as Rk-rw = Rw = f^x ($>s)twds, using the notation
(<J>j),u; : x i—• 7(<I>J)<t,(_J )̂u;(<I>(—s, x)), (cf. [1, p. 10]). Note that w is a constant
with respect to D if and only if [v, w] = 0, that is, the flow of w commutes with <1>.
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4. The covariant derivative

The situation is similar in the case of the covariant derivative associated with
v e &(M). For simplicity, we shall restrict ourselves to finite dimensional smooth
manifolds. Thus let E(M) be a vector bundle with a connection. Let X = S'(M)
be the R-vector space of smooth sections of E(M) -> M. The covariant derivative
D = yv : <^(M) —> <?(M) associated with this connection is given by (cf. [l,p. 114])

(4.1) {Dr,){x) = (V.JJHX) = ^ [h'0(x)-lr,(<i>(t, x))]|(=0 ,

where h'0(x) : Ex -> E^,iX) denotes the parallel displacement of fibres of E —
E(M) ->• M along the path T I—> <t(r, x). Observe that each h'0(x) is an isomorph-
ism and that hs

0(<t>(t, x)) o h'0(x) = h'0
+s(x).

THEOREM 4.1. Let v e ^ ( M ) . Then for each r e &D{M) the formula

(4.2) {R*;r*lKx)= hl{xrXT){^{r,x))dx
JrU)

defines a right inverse of D = Vv : <g{M) -»• &(M), that is, an R-linear
D o Rs.r is the identity on

PROOF. We have

{DRs,rr)){x) = A

which is

r(<Ht,x))
(=0

Substituting 5 = f + r in the integral, using r(<I>(f, x)) = /-(A:) — t and the fact that
h'0(x)~l o /io"'(0(r, x))"1 = h^x)'1 we obtain {DRs.rr]){x) = r?(;t) similarly as in
the proof of Theorem 3.1.

The same is true about the formula for the initial operator Fg-j = id — Rg,rD
associated with r e J?D(M), namely

(4.3) (F«rri)(x) = /^Voory^w),

which is the value of r\ at the point where the trajectory through x meets the initial
submanifold N, 'displaced parallelly along the trajectory 11—> 4>(f, x) to the fibre atx\
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