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On a Linear Partial Differential Equation of
Hyperbolic Type.

By E. T. COPSON.

{Read 1th December 1923. Received 26th June 1923).

§ 1. Rieniann's method of solution of a linear second order
partial different ;al equation of hyperbolic type was introduced in
his memoir on sound waves.* It has been used by Darboux f in
discussing the equation

dxdy dx dy

where a., /?, y are functions of x and y.
The method involves finding a particular solution of the partial

equation adjoint to 1.1, viz.,

dx dy ex cy

This particular solution has to satisfy certain first order differential
equations on the characteristics % = £, y = i) through the point at
which z is to be determined.

§ 2. Suppose that we are given the value of a function z(x, y)
and its first derivatives on the straight lines x — a. (a>0) and
y = 0, and that z satisfies a partial differential equation which is
a particular case of 1.1, viz.,

„ . . crz adz b dz
F() — =0 2.1

dF(z) = + +
ox dy x dx x dy

where a, b are constants (o>0, 6>1). I t is required to find z at
the point (£, »?)• The adjoint equation is

d2u a du b du au
— + — =0 2.2

dx dy x+
cxoy x dx x dy x

* Uebtr die Fortpflanzung ebener Luftwellen (Werke, p. 145).

t Theorie OeneraU dea Surfaces, t. II., ch. IV.
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We easily obtain that

f (Mdy - Ndx) = f f {uF(z) - z£ (w) } dx dy

where C is the closesd boundary of a region £ in the (a;, y) plane, and

dz du\, , auz , / oz ou\
x 2 \ dy dy J

buz / oz du\

x \ dx dx J

If 2 and M are solutions of equations 2.1 and 2.2 respectively
throughout the region S, then

Applying this result to the rectangle whose sides are x = o-,
x = £, y = 0, y = rj, we obtain the solution

z(Z,V) = u(a., 0; £,V)Z(CL, 0)

u (x, 0 ; £ ,,) - { 8 3 ~ - } + - ^ (*, 0) } dx

+ f «(«s y; & ,) ( S 2 ^ ) + ̂  2(a, „) } dy 2.3

where u (x, y; £, TJ) is a solution of equation 2.2 which satisfies the
relations

du au
(i) = 0 whena; = f,
w dy x

du bu
yn) r — = 0 when y = y,

(iii) u ( £ r); g, JJ) = 1.

, , . . . > / a : ^ «(y
In fact, u(x, y ; £, ij) = ^ J e

, °° ( 6 - 1 ) ( 6 - 2 ) . . . ( 6 - « )
w h e r e / • ( « ) - 1 + ^ '-Vil (-«*)" 2"4
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3. Now let <x tend to zero. The solution 2 . 3 becomes

Lfc

Holmgren* has considered this limit problem by finding an
asymptotic expansion of F (t) for large negative values of the
argument. If s (a;, 0) = <£ (%) z (0, y) = <A (y), Holmgren's result is

<«, 0 ; £,

3.1

The object of this note is to show how Holmgren's result may
be obtained by the more simple series solution method of T. W.
Chaundy. f

§ 4. Using the notation

dx dy x

the equation 2.1 can be written in the form

(88r + t8 + b&')z = O 4.1

Assuming a series-solution of the form

z = xaff {l+c,< + c,<t+ . . . -+cX+ •••} 4.2

we have the identity

048 +c, (a.- 1) 0 + \)t+ ... +cn(a. -n)(/3 + n) t"+ ...

+ a.t +...+ c ,_!(a . -n- 1)«" + . . .= 0
This gives us the indicial equation a/? + 6/8 = 0 and the

» , (n - 1 - a.) cn_,
recurrence formula cn = —

* Cinquiime congr&s dts malhdmaticitns scandinaves. HelsiDgfors (1922),
p. 260.

t Proe. Land. Math. Soe. Series 2. Vol. 21, p. 214.
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We have therefore either /3 = 0 or a. = - b, and also

(n - 1 - a.) (n - 2 - «.)...( - a.)

6 - n - l ) .

§5. Take a. 6.

Then c ( - )

If we substitute in 4.2 and omit a constant factor throughout
we obtain the solution

/ 2 JV+*-1 (1 - df-" .dd. ^ f

Here /3 is arbitrary. Multiplying by a arbitrary constant
coefficient and summing for all possible values of /3, we have the
solution

f being an arbitrary function

5.1

where i? is an arbitrary function.

To consider what value this has when x = 0, put a^~p' _ ? .

The solution 5.1 becomes

https://doi.org/10.1017/S0013091500077865 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500077865


80

which has the value
do

E (y) er1 q'-1 -f when x = 0
o a

E(y)Y{b)

The value of the expression 5.1 at the point (£, rj) is therefore

"(y-")/*/ vy-irfv 5.2

§ 6. In the case when /J = 0, equation 4.3 gives

_ I1 (a. + 6 - n) T (n - «.)
C" = r (a. + 6) T ( - a.) n ! "

The solution in this case is, omitting a constant factor throughout,

I" a
2 I" xa—<l-

m = 0 J o n •

= a.a f1
 eteHl-

Jo
- a - l

__
0 » ! T(6-n)

Omitting a constant factor, this may be written

Jo

! n!- n ) n! n ! j 0

where F is the function of 2.4

Here a. is arbitrary. Multiplying by an arbitrary constant
coefficient and summing for all values of a., we obtain the solution

where g is an arbitrary function.

r
g(p)u(p, 0; x, y)c?p

o
where M is the function defined in 2.4.
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As this expression has the value (j> (x) when y = 0, we easily
find that

The solution just obtained is then

= 1 { t ' ( ) P J
The value of this at (̂ , rj) is

^ } 6.1

§ 7. From 5.2 and 6.1, we see that if z is a solution of the
equation 2.1 which has the value

</> (a>) when y — 0
\p (y) when x = 0

then

which is Holmgren's result.
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