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Integral representation of hydraulic permeability

Chuan Bi
Department of Psychiatry, University of Maryland School of Medicine,
Baltimore, MD 21201, USA (chuan.bi@som.umaryland.edu)

Miao-Jung Yvonne Ou and Shangyou Zhang
Department of Mathematical Sciences, University of Delaware, Newark,
DE 19716, USA (mou@udel.edu, szhang@udel.edu)

(Received 4 August 2021; accepted 25 March 2022)

In this paper, we show that the permeability of a porous material (Tartar (1980))
and that of a bubbly fluid (Lipton and Avellaneda. Proc. R. Soc. Edinburgh Sect. A:
Math. 114 (1990), 71–79) are limiting cases of the complexified version of the
two-fluid models posed in Lipton and Avellaneda (Proc. R. Soc. Edinburgh Sect. A:
Math. 114 (1990), 71–79). We assume the viscosity of the inclusion fluid is zµ1 and
the viscosity of the hosting fluid is µ1 ∈ R+, z ∈ C. The proof is carried out by the
construction of solutions for large |z| and small |z| with an iteration process similar
to the one used in Bruno and Leo (Arch. Ration. Mech. Anal. 121 (1993), 303–338)
and Golden and Papanicolaou (Commun. Math. Phys. 90 (1983), 473–491) and the
analytic continuation. Moreover, we also show that for a fixed microstructure, the
permeabilities of these three cases share the same integral representation formula
(3.17) with different values of contrast parameter s := 1/(z − 1), as long as s is

outside the interval
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]
, where the positive constants E1 and E2

are the extension constants that depend only on the geometry of the periodic pore
space of the material.
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representation formula; Stieltjes class
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1. Introduction

Darcy’s law, which was first proposed by Darcy in 1856 [19] based on experimen-
tal observation of water flowing through beds of sand, describes the relationship
between the spontaneous flow discharge rate of steady state through a porous
medium, the viscosity of the fluid and the pressure drop over a distance. Later,
theoretical/mathematical derivations of Darcy’s law were presented in many works,
e.g. [5, 25, 28, 32, 36, 38], just to name a few.

In the setting of a periodic pore microstructure, as the period goes to zero,
the convergence to the Darcy’s law of the Stokes system with no-slip boundary
condition posed on the boundary of the pore space was proved by Tartar using
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the energy method [40]. Allaire implemented the two-scale convergence method
introduced by Nguetseng [33] to derive the Darcy’s law and show the convergence
[3, 4]. Prior to the proof of Darcy’s law in the 1980s, Brinkman [14] studied the
viscous force exerted by a flowing flow on a dense swarm of particles by adding a
diffusion term to the Darcy’s law so as to take into account the transitional flow
between boundaries. Brinkman’s method was further studied in [30, 37, 39]. In
the case of a porous material where the solid region is much smaller than the fluid
part, Levy [26] and Sanchez-Palencia [38] proposed the same form of Darcy’s law
but with a different representation of the permeability tensor K. Later on, Allaire
[2] showed the continuity of the transition between the two forms of Darcy’s laws
by considering various ratios between the size of the solid inclusion and the size of
the separation. Moreover, instead of considering the porous materials as a periodic
structured material, Beliaev [9] considered the porous materials as a random and
stochastically homogeneous material and deduced the same Darcy’s law. Allaire [1]
generalized the homogenization to handle the more realistic micro-geometries of the
porous medium where both the solid part and the fluid part are connected. Fur-
thermore, in terms of the fluid–solid interface conditions, a slip boundary condition
is considered by Allaire in [1, 17]. In the case of the fluid flow through a porous
medium subject to a time-harmonic pressure gradient, the permeability depends
on the frequency and is referred to as the dynamic permeability. The theory of
dynamic permeability is established [5, 8, 12, 22] and further developed by Ou
[35].

The goal of this paper is to study how the permeability tensor derived from
the homogenization approach for porous materials [40, 41] depends on the
microstructure of the pore space. Details of this will be presented in § 1.1.

The main tool we use will be the integral representation formula (IRF) for com-
posite materials. Composite materials are materials made from more than one
constituent material with different physical or chemical properties. The effective
properties of composites, such as elasticity, conductivity and permeability are of
great interest in different application fields. Homogenization theory for composite
materials has been extensively studied in [10, 31, 34]. Mathematically, for a two-
component composite material, the microstructural information is carried into the
analytical formulation of the effective properties of the composite. Bergman pio-
neered the study of analyticity of the effective dielectric constant [11], and in terms
of integral representation of effective material properties, a rigorous basis of integral
representation of the effective conductivity is established by Golden and Papanico-
laou [21], the effective elastic constants by Kantor and Bergman [23], the effective
diffusivity in convection-enhanced diffusion was derived by Avellaneda and Majda
[6, 7]. Further enlargements of the domain of analyticity of the IRF of elasticity
tensor to the case where one phase is a void or a hard inclusion is studied by Bruno
and Leo [15, 16].

Unlike the problem set-up for calculating effective material properties such as
effective conductivity, elasticity and diffusivity, where the physical property of inter-
est is well defined both in the micro-scale and the macro(homogenized)-scale, the
permeability of porous material is by definition an effective property and hence
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it makes sense only in the macro-scale. To overcome this difficulty, we consider a
porous material as the limit case of a two-fluid mixture.

Specifically, we will start with the two-fluid mixture problem studied in [29],
where the effective property is called the self-permeability. We will derive the IRF
for the self-permeability and show that the permeability for a porous material is
equal to the limit of the self-permeability when the viscosity of one phase becomes
infinite. Similar to the hard/soft inclusion case studied in [15, 16], we will extend
the domain of analyticity of the IRF to ∞ and to 0 by an iterative process. As a
result, the IRF derived here is valid for porous materials with a solid skeleton as well
as for fluid-bubble mixtures. Hence it provides a theoretical connection between the
permeability defined in [40] and the self-permeability for the bubbly fluid studied
in [29] and any mixture in between these two limiting cases.

The paper is organized as follows. The permeability of a porous material is defined
in § 1.1. Section 2 starts with the definition of the self-permeability K of a two-
fluid mixture and the corresponding cell problem, followed by an analysis of the cell
problem and the construction of the solution in the vicinity of the two limiting cases
of z = ∞ and z = 0. In § 3, the IRF of K is obtained by applying the theory of
matrix-valued Stieltjes functions. In this section, the spectral representation of K is
also derived. The relationships between the moments of the measure in the IRF and
the geometry of the pore space are derived by comparing these two representations.
Section 4 presents the numerical solutions of the cell problem of a special pore
structure, which validate the theoretical results given in § 3.

Einstein summation convention is applied unless stated otherwise.

1.1. Definition of permeability from homogenization

Following the convention of homogenization, the space coordinates for the
cell problem in the open unit cell Q = (0, 1)n for n = 2, 3, are denoted by y =
(y1, y2, y3). Let Ω be a smooth bounded open set and Q an open unit cube made
of two open sets Q1, Q2 and the interface Γ = cl(Q1) ∩ cl(Q2) with cl(A) being the
closure of a set A. Moreover, Q̃i denotes the Q-periodic extension of Qi, i = 1, 2.
Following [1], we assume that (1) Q1 and Q2 have strictly positive measures in
cl(Q). (2) The set Q̃i is open with C1 boundary and is locally located on one side
of its boundary, i = 1, 2, and Q̃1 is connected. (3) Q1 is connected with a Lipschitz
boundary. In addition, we consider the case of inclusion, i.e. Q2 ∩ ∂Q = ∅.

Consider ε > 0 much smaller than the size of Ω and εQ-periodically extend εQ1 in
the entire space. Ωε denotes the intersection of Ω and this εQ-periodically extended
structure. In [40], the permeability is derived from the Stokes equation in Ωε, which
reads: find uε ∈ H1

0 (Ωε)n and pε ∈ L2(Ωε)/R such that{
−μ�uε + ∇pε = f in Ωε.
div uε = 0 in Ωε

(1.1)

where f ∈ L2(Ω) is independent of ε and the viscosity μ is a constant (μ is set to 1
in [40, 41]). See figure 1 for an example of the unit cube. Note that the superscript
ε is used to signify that the solutions uε and pε depend on ε. To be able to prove the
convergence of (uε, pε) as ε → 0, it is necessary to extend these solutions from Ωε to
Ω so they are defined in the same spatial domain. In [40, 41], uε was extended by
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Figure 1. Sample illustration of a periodic cell.

zero and pε by a properly defined extension operator with their extensions denoted
by ûε and p̂ε, respectively. As ε → 0,

ûε

ε2
⇀ U weakly in L2(Ω)n, div U = 0,U · n = 0 on Γ, and p̂ε → p in L2(Ω)/R

and the limit functions satisfy the following Darcy’s law [40]

U =
K(D)

μ
(f −∇p) (1.2)

where the permeability tensor K(D) is defined as

K
(D)
ij =

∫
Q1

uj
D · ei dy, i, j = 1, . . . n (1.3)

with ei denoting the unit vector in the i-th direction and uj
D the unique solution

of the following boundary value problem⎧⎪⎪⎨⎪⎪⎩
μΔyu

j
D −∇ypj = −ej in Q1

divyu
j
D = 0 in Q1

uj
D = 0 on Γ

(1.4)

in the space H̊(Q1) := {v : v ∈ H1(Q1)n| divyv = 0,v|Γ = 0, Q-periodic}. Note
that the superscript j of u and p signifies the solutions corresponding to the force
term ej .

Since μ is set to 1 in [40, 41], the permeability K presented there is related to
K(D) by K(D) = K/μ. For future analysis, we will derive here the quadratic form
representation of the permeability. We start by observing that for incompressible
fluid, we have

�u = div(∇u + ∇T u)

Therefore, (1.3) can be expressed as

K
(D)
ij =

∫
Q1

uj
D ·

(
∇ypi − μΔyui

D

)
dy =

∫
Q1

μ∇yu
j
D :

(
∇yui

D + ∇T
yui

D

)
dy (1.5)

after applying the divergence theorem, the periodicity of u, p and the no-slip
conditions on Γ. Here we have used the Frobenius inner product of matrices

https://doi.org/10.1017/prm.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.25


Integral representation of hydraulic permeability 911

A : B =
∑

i,j=1 AijBij . In terms of the usual notion of the symmetric part and
the antisymmetric part of vector field ∇u

e(u) :=
1
2
(
∇u + ∇T u

)
, ẽ(u) :=

1
2
(
∇u −∇T u

)
, (1.6)

the right-hand side of equation (1.5) becomes
∫

Q1
2μ(e(uj

D) + ẽ(uj
D)) : e(ui

D) dy =∫
Q1

2μe(uj
D) : e(ui

D) dy because the Frobenius product of a symmetric matrix and
an antisymmetric matrix must be 0. Therefore we have the quadratic form of
permeability tensor K(D)

K
(D)
ij =

∫
Q1

2μe(uj
D) : e(ui

D) dy. (1.7)

2. Approximation of flow in porous medium by a two-phase Stokes flow

In this section, we consider the system for porous materials (1.4) as one of the
limiting cases of the two-fluid problem described below, which is the same as the
one studied in [29] with the exception that the fluid viscosity here can be complex-
valued. It is easy to check that the homogenization process in [29] stays valid after
making small modifications to accommodate the complex valued viscosity described
below.

Let Ω, Q and ε be the same as in § 1.1. Q2 is still the inclusion in the periodic
cell. Consider the εQ-periodic extension of εQ1 (εQ2) and denote by Ω1ε (Ω2ε) its
intersection with Ω. We note that Ω1ε (region of the hosting fluid) is the same as
Ωε in the previous section. Suppose Ω1ε is occupied by fluid with viscosity μ1 > 0
and Ω2 by fluid with viscosity zμ1 with z ∈ C. The interface Γ̃ = ∂Ω1ε ∩ ∂Ω2ε is
such that Ω1ε ∪ Γ̃ ∪ Ω2ε = Ω. For the ease of notation, we define the stress tensor
τ (u,μ) of a fluid with viscosity μ, velocity field u and pressure field p as

τ (u, p, μ) = 2μe(u) − pI, I is the identity matrix. (2.1)

Let χi be the characteristic function of Ωεi, i = 1, 2. Consider the viscosity function

ξε(x; z) = (χ2(x)zμ1 + χ1(x)μ1), z ∈ C. (2.2)

The two-fluid problem is given by the following Stokes system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
div (2ξε(x; z)e(uε)) −∇pε = −f in Ω\Γ̃
divuε = 0 in Ω
uε = 0 on ∂Ω
[[uε]] = 0, uε · n = 0 on Γ̃
[[π]] · n = ([[π · n]] · n)n ≡ [[π · n]] − n × n × [[π · n]] on Γ̃

(2.3)

where π = τ (uε, pε, ξε), f is a square integrable momentum source independent
of ε, [[·]] the jump across the interface Γ̃ and n is the outward unit normal of ∂Ω2ε.
The second jump condition in (2.3) means the traction can only jump in the normal
direction. Also note that the superscript ε is used to signify that the solutions uε

and pε depend on ε.
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It is shown in [29] that as ε → 0, uε and the properly normalized pε, which is
denoted by p̂ε, converge as follows

uε

ε2
→ u0 weakly in L2(Ω)n, p̂ε → P strongly in L2(Ω)/R

where u0 and P satisfy the homogenized system:{
u0 = −K(∇P − f) in Ω
div u0 = 0 in Ω (2.4)

where the components of K, which is referred to as the self-permeability in [29], is
defined as

Kij(z) :=
∫

Q

uj · ei dy, i, j = 1, . . . , n (2.5)

with ui being the unique solution to the cell problem posed in the function space
H(Q), which is defined in (2.7),{

divy

(
2μ(y; z)e(ui) − piI

)
+ ei = 0 in Q1 ∪ Q2

[[π]] · n = ([[π · n]] · n)n on Γ (2.6)

where μ(y; z) = μ1χ1(y) + zμ1χ2(y) with χm being the characteristic functions of
Qm, m = 1, 2, and π = τ (uk, pk,μ), cf. (2.1). Note that the superscript i is used
to signify that ui and pi are solutions to the cell problem (2.6) with the force term
−ei, i = 1, . . . , n.

2.1. Function spaces

Let R(Q2) denote the space of rigid body displacements in Q2, i.e. u = Ay + b
with constant skew-symmetric matrix A and constant vector b in Q2. We start with
the space of admissible functions for the velocity

H(Q) :=
{
v : v ∈ H1(Q1 ∪ Q2)n

∣∣∣∣ divyv = 0, v · n = 0 in H−(1/2)(Γ),

[[v]]Γ = 0, (v, η)H1(Q2) = 0,∀η ∈ R(Q2), v is Q-periodic
}

(2.7)

where n is the outward unit normal of ∂Q2. H(Q) is endowed with the inner product

(u,v)Q =
∫

Q

2μ1e(u) : e(v) dy. (2.8)

The induced norm is denoted by ‖u‖2
Q := (u,u)Q. Note that we have H(Q) ∩

R(Q) = {0} because A = 0 due to the Q-periodicity and u · n = 0 implies b = 0.
We observe that if u ∈ H(Q) then u ∈ H1(Q)n by the following argument. Obvi-
ously, u ∈ L2(Q)n. To prove ∂ui/∂yj ∈ L2(Q) for i, j = 1, 2, 3, let φ be any C∞ test
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function compactly supported in Q and h be the i-th component ui for any i. Then

∫
Q

h∇φ dy = −
(∫

Q1∩Supp(φ)

φ∇h dy +
∫

Q2∩Supp(φ)

φ∇h dy

)

here we used [[h]] = 0. Now we can define a candidate function g such that

g|Qi
:= ∇h|Qi

, i = 1, 2 (2.9)

then clearly g ∈ L2(Q)n and 〈h,∇φ〉 = −〈g, φ〉, where 〈·〉 denotes the usual L2

inner product. Therefore h ∈ H1(Q) and hence ui ∈ H1(Q), i = 1, . . . , n.
Next, we show that ‖ · ‖Q is equivalent to the usual H1 norm, i.e., there exist

constants B1 and B2 such that

B1 ‖u‖H1(Q) � ‖u‖Q � B2 ‖u‖H1(Q) (2.10)

Because H1(Q) ∩R(Q) = {0}, by theorem 2.5 in [34], there exists a Korn’s
constant C1 such that

C1 ‖u‖H1(Q) � 1√
2μ1

‖u‖Q (2.11)

where C1 depends only on Q. Therefore, we can take B1 =
√

2μ1C1. To emphasize
the dependence on Q, we will write it as B1(Q). On the other hand, according to
the orthogonal decomposition that ∇u = e(u) + ẽ(u), see (1.6),

‖u‖2
H1(Q) � ‖∇u‖2

L2(Q) = ‖e(u)‖2
L2(Q) + ‖ẽ(u)‖2 � ‖e(u)‖2

L2(Q) =
1

2μ1
‖u‖2

Q

therefore B2 =
√

2μ1. The reason for introducing the H(Q)-norm is that the self-
permeability in (2.5) can be represented in terms of the inner product. More
specifically, using (2.5), (2.6) and the fact that ei = ei, by a calculation similar
to (1.5) and taking into account the interface condition u · n = 0 and the jump
conditions in (2.6), (2.5) can be expressed in the following form

Kij(z) =
∫

Q

2μ(y; z)e(ui(z)) : e(uj(z)) dy (2.12)

and its conjugate transpose K∗ := KT is

(K∗)ij(z) =
∫

Q

2μ(y; z)e(uj(z)) : e(ui(z)) dy (2.13)
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2.2. Weak solution of the cell problem (2.6)

The weak formulation of the cell problem (2.6) is∫
Q1∪Q2

2μ(y; z)e(uk) : e(v) dy =
∫

Q1∪Q2

ek · v̄ dy, ∀v ∈ H(Q) (2.14)

From this, we see that the solutions satisfy the following symmetry

uk(y; z) = uk(y; z)

Define the sesquilinear form on H(Q)

a(u,v) =
∫

Q1∪Q2

2μ(y; z)e(uk) : e(v) dy (2.15)

It is clear that a(u,v) is bounded in H(Q). To check the coercivity, assume uk �= 0
and define the parameter

λ :=

∫
Q

2μ1χ2e(uk) : e(uk) dy∫
Q

2μ1e(uk) : e(uk) dy
(2.16)

then 0 � λ � 1. We note that

a(uk,uk)∫
Q

2μ1e(uk) : e(uk) dy
= λz + (1 − λ) · 1 (2.17)

and hence as long as 0 is not on the line segment joining z and 1, there exist
α(z) := min0�λ�1 |λz + 1 − λ| > 0 such that

∣∣a(uk,uk)
∣∣ � α(z)

∫
Q

2μ1e(uk) : e(uk) dy = α‖uk‖2
Q (2.18)

Therefore for z ∈ C\ {�z � 0}, by the Lax–Milgram lemma [13, chapter 2], there
exists a unique weak solution uk ∈ H(Q) to the cell problem (2.6) and with the
solution uk, we can construct pk ∈ L2(Q)/C.

Since α(z) is a continuous function in z, the coercivity of the sesquilinear form
can be applied to conclude that uk is analytic in z and its m-th derivative, m � 1,
satisfies the following recursive equation∫

Q1∪Q2

2μ(y; z)e
(

dmuk

dzm

)
: e(v) dy

= −
∫

Q2

2mμ1e

(
dm−1uk

dzm−1

)
: e(v) dy, ∀v ∈ H(Q) (2.19)

As a result, K(z) is also analytic for z ∈ C\ {�z � 0}. To relate the two-fluid
problem with K(D), we adapt the method used in [16] to study the behaviour
of K(z) near z = ∞ in the following section.
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2.3. Analyticity of the solution for large |z|
Let w := 1

z and consider Q-periodic solution in the series form near w = 0

u∞(y; e, w) :=
∞∑

k=0

uk(y; e)wk and p∞(y; e, w) :=
∞∑

k=0

pk(y; e)wk (2.20)

where the e is an arbitrary constant unit vector. To set up the notation, we denote
the restrictions of uk, pk in Q2 (inclusion) and Q1 as uin

k , pin
k and uout

k , pout
k

respectively and define

uin
∞(y; e, w) :=

∞∑
k=0

uin
k (y, e)wk, uout

∞ (y; e, w) :=
∞∑

k=0

uout
k (y, e)wk (2.21)

By substituting (2.20) into (2.6) with the viscosity defined in (2.2), taking into
account the additional two interface conditions u · n = 0 and [[u]] = 0, followed by
equating terms of the same order with respect to w, we arrive in the following
equations in Q1:

O(w0) : divy

(
2μ1e(uout

0 ) − pout
0 I

)
= −e (2.22)

O(wk) : divy

(
2μ1e(uout

k ) − pout
k I

)
= 0 for k � 1 (2.23)

and in Q2:

O(w−1) : divy

(
2μ1e(uin

0 )
)

= 0 (2.24)

O(w0) : divy

(
2μ1e(uin

1 ) − pin
0 I

)
= −e (2.25)

O(wk) : divy

(
2μ1e(uin

k+1) − pin
k I

)
= 0 for k � 1 (2.26)

and the following interface conditions on Γ

O(w−1) : 2μ1(e(uin
0 ) · n)|Γ = C(y)n for some function C(y) (2.27)

O(wk), k � 0 :
((

2μ1e(uout
k ) − pout

k I
)
−
(
2μ1e(uin

k+1) − pin
k I

))
n

=
{[((

2μ1e(uout
k ) − pout

k I
)
−
(
2μ1e(uin

k ) − pin
k I

))
n
]
· n
}
n, (2.28)

uin
k · n = uout

k · n = 0 and uin
k = uout

k (2.29)

We introduce the following spaces, i = 1, 2

H(Q1) =
{
v : v ∈ H1(Q1)n

∣∣ divyv = 0,v · n = 0 on Γ, Q-periodic
}

H(Q2) =
{
v : v ∈ H1(Q2)n

∣∣ divyv = 0,v · n = 0 on Γ, (v,R(Q2))H1(Q2) = 0, Q-periodic
}

H̊(Qi) =
{
v : v ∈ H1(Qi)

n
∣∣ divyv = 0,v|Γ = 0, Q-periodic

} ⊂ H(Qi),

L(Qi)/C =

{
p : p ∈ L2(Qi),

∫
Qi

p(y) dy = 0, Q-periodic,

}
Note that H(Q1) ∩R(Q1) = {0} because ∂Q ⊂ ∂Q1. For H(Q2), the boundary
condition u · n = 0 implies H(Q2) ∩R(Q2) = {0} because of the extra condition
(v,R(Q2))H1(Q2) = 0 [34]. Therefore, H(Qi) and H̊(Qi) are equipped with inner

https://doi.org/10.1017/prm.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.25


916 C. Bi et al.

product (u,v)Qi
=
∫

Qi
2μ1e(u) : e(v) dy and Korn’s inequalities are valid in H(Qi),

i = 1, 2.

Lemma 2.1. Let Q2 be a connected, open bounded set such that ∂Q2 ∩ ∂Q = ∅ and
∂Q2 is in Ck,σ, k, σ � 0, k + σ � 2. For any vector field uin ∈ H(Q2), there exists
a unique weak solution uout(y; fout) ∈ H(Q1) that satisfies the following system{

divy (2μ1e(uout) − poutI) = fout in Q1

uout = uin on Γ
(2.30)

where in our context, fout = 0 or fout = −e, a constant unit vector. Moreover,

∥∥uout
∥∥

Q1
� 1

B1(Q)

∥∥fout
∥∥

L2(Q1)
+ 2E1

∥∥uin
∥∥

Q2
. (2.31)

where the positive constants B1(Q1) is defined in (2.10) and E1 � 1 depends only
on Q1 and Q2.

Proof. To handle the inhomogeneous boundary condition, we proceed as follows.
By [24, corollary 3.2], there exists a bounded, divergence free extension T (uin) of
uin to a small neighbourhood O of Q2 and vanishes at ∂O ⊂ Q1 such that∥∥T (

uin
)∥∥

Q
� E1

∥∥uin
∥∥

Q2
(2.32)

where E1 � 1 depends only on Q1 and Q2. Furthermore, the extension T (uin)
on O can be extended periodically to R

n [18] since T (uin) vanishes on ∂O and
hence on ∂Q. We denote the restriction T (uin)|Q1 as ũout ∈ H(Q1) and ůout :=
uout − ũout ∈ H̊(Q1) and (2.30) becomes

divy

(
2μ1e(ůout) − poutI

)
= fout − μ1Δũout in Q1 (2.33)

Consider the variational formulation: find ůout ∈ H̊(Q1) such that ∀Φ ∈ H̊(Q1),∫
Q1

2μ1e(ůout) : e(Φ) dy = −
∫

Q1

fout · Φ dy −
∫

Q1

2μ1e(ũout) : e(Φ) dy, (2.34)

The right-hand side of (2.34) can be bounded as follows∣∣∣∣∫
Q1

fout · Φ dy +
∫

Q1

2μ1e(ũout) : e(Φ) dy
∣∣∣∣ �

(
‖fout‖L2(Q1)

B1(Q1)
+
∥∥ũout

∥∥
Q1

)
‖Φ‖Q1

The sesquilinear form
∫

Q1
2μ1e(ůout) : e(Φ) dy is clearly bounded and coercive

with constant 1. Hence by the Lax–Milgram lemma there exists a unique weak
solution ůout ∈ H̊(Q1) to (2.33) such that ‖ůout‖Q1

� ((1/B1(Q1)) ‖fout‖L2(Q1)
+

‖ũout‖Q1
). In terms of ůout, uout can be expressed as uout = ũout + ůout and
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satisfies the estimate

∥∥uout
∥∥

Q1
�
∥∥ůout

∥∥
Q1

+
∥∥ũout

∥∥
Q1

� 1
B1(Q1)

∥∥fout
∥∥

L2(Q1)
+ 2E1

∥∥uin
∥∥

Q2
(2.35)

To show the solution uout is unique, suppose uout
1 and uout

2 both solve (2.30) then
the difference wdiff = uout

1 − uout
2 ∈ H̊(Q1) must satisfy∫

Q1

2μ1e(wdiff) : e(Φ) dy = 0, ∀Φ ∈ H̊(Q1)

Hence wdiff = 0 in Q1 because w ∈ H̊(Q1). We note the two special cases:∥∥uout
∥∥

Q1
� 2E1

∥∥uin
∥∥

Q2
for fout = 0 (2.36)∥∥uout

∥∥
Q1

� 1
B1(Q1)

√
|Q1| + 2E1

∥∥uin
∥∥

Q2
for fout = −ej , j = 1, . . . , n, (2.37)

where |Q1| is the volume of Q1. �

Lemma 2.2. Let Q2 satisfy the same assumptions as those in lemma 2.1. For
any pair of (uout, pout) ∈ H(Q1) × L2(Q1)/C that satisfies (2.30), there exists a
unique vector uin(y; f in) ∈ H(Q2) that satisfies the Stokes equation with continuity
of tangential traction on Γ{

divy

(
2μ1e(uin) − pinI

)
= f in in Q2,

n × n ×
[(

(2μ1e(uout) − poutI) −
(
2μ1e(uin) − pinI

))
· n
]

= 0 on Γ,
(2.38)

where in our context, f in = 0 or f in = −e. Moreover,

∥∥uin
∥∥

Q2
� 1

B1(Q2)

∥∥f in
∥∥

L2(Q2)
+

E1(Q1)
B1(Q1)

∥∥fout
∥∥

L2(Q1)
+ E1(Q1)

∥∥uout
∥∥

Q1

and E1(Q1), B1(Q1) and B1(Q2) depend only on Q and Γ.

Proof. Take Φ ∈ H(Q2), the variation formulation for the PDE is∫
Q2

(
divy

(
2μ1e(uin) − pinI

))
· Φ̄ dy =

∫
Q2

f in · Φ̄ dy.

For the ease of notation, let πin := τ (uin, μ1, p
in) and πout := τ (uout, μ1, p

out)
where the stress function τ is defined in (2.1). Applying integration by parts on the
left-hand side, followed by an application of the divergence theorem leads to

−
∫

Γ

(πin · Φ̄) · ndS −
∫

Q2

2μ1e(uin) : e(Φ) dy =
∫

Q2

f in · Φ̄ dy (2.39)
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Let t denote the unit vector in the tangent plane such that t · n = 0. The conditions
on Γ in (2.38) imply⎧⎪⎨⎪⎩

Φ · n = 0 ⇒ Φ = d(y)t for some function d(y),
n × n ×

[(
πout − πin

)
· n
]

= 0 ⇒
(
πout − πin

)
· n

= C(y)n for some function C(y)

With these observations and the fact that πin is symmetric, the first term in (2.39)
can be expressed as

−
∫

Γ

Φ̄ · πin · ndS =
∫

Γ

d(y)t ·
[(

πout − πin
)
· n
]
−
∫

Γ

d(y)t · (πout · n) dS

= −
∫

Γ

Φ̄ · πout · ndS

and hence the variational form (2.39) becomes for all Φ ∈ H(Q2)

−
∫

Q2

2μ1e(uin) : e(Φ) dy =
∫

Q2

f in · Φ̄ dy +
∫

Γ

Φ̄ · πout · ndS (2.40)

To bound the right-hand side of (2.40), we first extend Φ ∈ H(Q2) by the operator
T described in (2.32)

‖T (Φ)‖Q � E1 ‖Φ‖Q2
(2.41)

T (Φ) rapidly decays to zero in a small neighbourhood of Q2 and stays 0 for the rest
of Q1. The restriction of T (Φ) in Q1, denoted by Φout, has the following estimate∥∥Φout

∥∥
Q1

� ‖T (Φ)‖Q � E1 ‖Φ‖Q2
(2.42)

Hence∣∣∣∣∫
Γ

Φ̄ · πout · ndS

∣∣∣∣ =
∣∣∣∣∫

Γ

Φ̄out · πout · ndS

∣∣∣∣
=
∣∣∣∣∫

Q1

[
divy

(
2μ1e(uout) − poutI

)]
· Φout dy

+
∫

Q1

2μ1e(uout) : e(Φout) dy
∣∣∣∣

�
∣∣∣∣∫

Q1

fout · Φout dy
∣∣∣∣+ ∣∣∣∣∫

Q1

2μ1e(uout) : e(Φout) dy
∣∣∣∣

� E1

B1(Q1)

∥∥fout
∥∥

L2(Q1)
‖Φ‖Q2

+ E1

∥∥uout
∥∥

Q1
‖Φ‖Q2

Therefore the right-hand side of (2.40) is bounded by

‖Φ‖Q2

(
E1

∥∥f in
∥∥

L2(Q2)

B1(Q2)
+

E1 ‖fout‖L2(Q1)

B1(Q1)
+ E1

∥∥uout
∥∥

Q1

)
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Finally, by the Lax–Milgram lemma a unique solution uin exists such that

∥∥uin
∥∥

Q2
� E1

B1(Q2)

∥∥f in
∥∥

L2(Q2)
+

E1

B1(Q1)

∥∥fout
∥∥

L2(Q1)
+ E1

∥∥uout
∥∥

Q1
(2.43)

�

The construction of the solution for z with large magnitude will be carried out
using the following steps.

(i) O(w−1): Consider the system of (2.24) and (2.27) for uin
0 (y; e) ∈ H(Q2).{

divy

(
2μ1e(uin

0 )
)

= 0 in Q2

2μ1e(uin
0 ) · n = C(y)n on Γ

(2.44)

The variational formulation is

−
∫

Γ

v̄ · 2μ1e(uin
0 ) · n −

∫
Q2

2μ1e(uin
0 ) : e(v) = 0 ∀v ∈ H(Q2) (2.45)

The first term vanishes because of the boundary conditions. Hence

uin
0 (y; e) = 0 in Q2 because H(Q2) ⊥ R(Q2).

(ii) O(w0) in Q1: Solve the system of (2.29) and (2.22) for uout
0 (y; e) ∈ H(Q1).{

divy (2μ1e(uout
0 ) − pout

0 I) = −e in Q1

uout
0 = uin

0 = 0 on Γ
(2.46)

An application of lemma 2.1 and (2.37) leads to the following result

∥∥uout
0

∥∥
Q1

�
√

|Q1|
B1(Q1)

+ 2E1

∥∥uin
0

∥∥
Q2

=

√
|Q1|

B1(Q1)
(2.47)

(iii) O(w0) in Q2: Consider the system of (2.25) and (2.28) for uin
1 ∈ H(Q2):{

divy

(
2μ1e(uin

1 ) − pin
0 I

)
= −e in Q2

n × n ×
[(

(2μ1e(uout
0 ) − pout

0 I) −
(
2μ1e(uin

1 ) − pin
0 I

))
· n
]

= 0 on Γ

By applying lemma 2.2 and (2.43) with fout = −e and f in = −e, we obtain

∥∥uin
1

∥∥
Q2

� C1E1, C1 :=

√
|Q2|

B1(Q2)
+ 2

√
|Q1|

B1(Q1)
(2.48)

(iv) Induction step, k � 1: Given uin
k ∈ H(Q2) and uout

k−1 ∈ H(Q1), find
uin

k+1(y;0) ∈ H(Q2) and uout
k (y;0) ∈ H(Q1).
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(a) Applying lemma 2.1 with f = 0, we conclude that for a given uin
k ∈

H(Q2), k � 1, there exists a unique uout
k ∈ H(Q1) that solves the system

of (2.23) and (2.29) and assumes the estimate

{
divy (2μ1e(uout

k ) − pout
k I) = 0 in Q1

uout
k = uin

k on Γ,
(2.49)

∥∥uout
k

∥∥
Q1

� 2E1

∥∥uin
k

∥∥
Q2

(2.50)

(b) By applying lemma 2.2 with f in = 0 = fout, we see that for any given
uout

k ∈ H(Q1), k � 1 that satisfies (2.49), there exists a unique solution
uin

k+1 ∈ H(Q2) to the system of equations (2.26) and (2.28)

{
divy

(
2μ1e(uin

k+1) − pin
k I

)
= 0 in Q2

n × n ×
[(

(2μ1e(uout
k ) − pout

k I) −
(
2μ1e(uin

k+1) − pin
k I

))
n
]

= 0 on Γ
(2.51)

Moreover, ∥∥uin
k+1

∥∥
Q2

� E1

∥∥uout
k

∥∥
Q1

(2.52)

Now we have found the coefficients uin
n (y; e) and uout

n (y; e) in (2.21) iteratively. We
prove the convergence of the series in the following theorem by taking into account
the fact that uin

0 = 0.

Theorem 2.3. Define the partial sums

Sin
q (y; e, w) :=

q∑
k=0

uin
k+1(y, e)wk+1, Sout

q (y; e, w) :=
q∑

k=0

uout
k (y; e)wk.

Let R ∈ (0, 1), in the disc |w| � R/2E2
1 , the series Sin

q (y; e, w) and Sout
q (y; e, w)

converge uniformly to uin
∞(y; e, w) ∈ H(Q2) and uout

∞ (y; e, w) ∈ H(Q1), respec-
tively. Therefore, u∞(y; e, w) := uin

∞(y; e, w)χ2 + uout
∞ (y; e, w)χ1 ∈ H(Q) solves

the cell problem (2.6) and is analytic for |w| < 1/2E2
1 .

Proof. For each q ∈ N, Sin
q (y; e, w) is a polynomial function of w and maps from C

to the Hilbert space H(Q2). Similarly, Sout
q (y; e, w) maps from C to H(Q1). To show

uniform convergence, we note that (2.50) and (2.52) imply there exists a positive
constant E1 that depends only on Q1 and Q2 such that

∥∥uin
k+1

∥∥
Q2

� E1 ‖uout
k ‖Q1

�
2E2

1

∥∥uin
k

∥∥
Q2

. Therefore,

∥∥uin
k

∥∥
Q2

�
(
2E2

1

)k−1 ∥∥uin
1

∥∥
Q2

, k � 1 (2.53)
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Let m > q > N , and define r := 2E2
1 |w|. Then by (2.48) implies∥∥Sin

m (w) − Sin
q (w)

∥∥
Q2

�
∥∥uin

1

∥∥
Q2

(
(2E2

1)q|w|q+1 + · · · + (2E2
1)m−1 |w|m

)
� rq+1 − rm+1

1 − r

∥∥uin
1

∥∥
Q2

2E2
1

� rq+1 − rm+1

1 − r

(
C1

2E2
1

)
, C1 is defined in (2.48).

Therefore, for r � R < 1, i.e. |w| � R/2E2
1 , where R is any fixed number in (0, 1),

∥∥Sin
m (w) − Sin

q (w)
∥∥

Q2
�
(

C1

2E2
1

)(
RN+1

1 − R

)
, ∀m > q > N. (2.54)

For Sout
q (y; e, w) we have ‖uout

k ‖Q1
� (2E2

1)k−1 ‖uout
1 ‖Q1

. By a similar procedure,
for m > q > N and |w| � R/2E2

1 the following estimate is valid

∥∥Sout
m (w) − Sout

q (w)
∥∥

Q1
� C1

(
RN+1

1 − R

)
Therefore, for every fixed w satisfying |w| � R/2E2

1 for any 0 < R < 1, Sin
q (y;w)

and Sout
q (y;w) converge uniformly to uin

∞(y;w) ∈ H(Q2) and uout
∞ (y;w) ∈ H(Q1),

respectively. Since for each q, Sin
q (y;w) and Sout

q (y;w) are polynomials of w, hence
analytic, the uniform convergence implies that the limit functions uin

∞(y;w) and
uout
∞ (y;w) are also analytic in |w| < 1/2E2

1 with values in H(Q1) and H(Q2),
respectively, by applying Morera’s theorem for Banach space valued analytic
functions [27] to the uniformly converging sequences. By construction, the func-
tion u∞(y; e, w) defined in (2.20) solves the cell problem (2.6) for all w in
the disc

{
w : |w| < 1/2E2

1

}
:= B0

(
1/2E2

1

)
. Moreover, the uniqueness of the solu-

tion implies that u∞(y; ek, w) = uk
(
y; 1

w

)
in H(Q) for w ∈ B0

(
1/2E2

1

)
∩ {w ∈

C \ (−∞, 0]}. �

The following theorem shows the relation between the two-fluid self-permeability
K in (2.5) and the Darcy permeability K(D) in (1.5)

Theorem 2.4. In the case of large viscosity |z| > 2E2
1

(
or |w| < 1/2E2

1

)
, we have

(i) uin
∞(y; ei, 0) = 0 in Q2

(ii) As w → 0, the solution uout
∞ (y; ei, w) converges uniformly in H̊(Q1) to the

solution ui
D(y) of the classical cell problem (1.4).

(iii) For w ∈ B0

(
1/2E2

1

)
, the difference between the self-permeability K(y; ei, w)

and the classical permeability tensor K(D)(y; ei) satisfies |Kij − (K(D))ij | =
O(|w|), hence K → K(D) uniformly as |w| → 0.

Proof. The uniform convergence allows passing the limit w → 0 inside the summa-
tion of (2.21) to obtain uin

∞(y; ei, 0) = 0. Similarly, the uniform convergence allows

https://doi.org/10.1017/prm.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.25


922 C. Bi et al.

passing the limit w → 0 inside the summation of (2.21) to obtain

uout
∞ (y; ei, 0) = uout

0 (y; ei)

Furthermore, uout
0 (y; ei) ∈ H(Q1) satisfies (2.46) and in fact uout

0 (y; ei) ∈ H̊(Q1)
since uout

0 (y; ei)|Γ = 0, which is identical to the equation for uD (1.4). The unique-
ness of the solution then ensures that uout

0 (y; ei) = ui
D(y). Therefore the series

uout
∞ (y; ei, w) → ui

D(y) uniformly as |w| → 0 in H̊(Q1). For (iii), we note that∣∣∣Kij(w) − K
(D)
ij

∣∣∣ =
∣∣∣∣∫

Q

(
ui − χ1ui

D

)
· ej dy

∣∣∣∣ �
∥∥ui − χ1ui

D

∥∥
L2(Q)

� 1
B1(Q)

∥∥∥∥∥
∞∑

k=1

(
uin

k (y; ei)χ2 + uout
k (y; ei)χ1

)
wk

∥∥∥∥∥
Q

From (2.50), (2.53) and (2.48), we have for |w| < 1/2E2
1 , or equivalently |z| > 2E2

1 ,∣∣∣Kij(w) − K
(D)
ij

∣∣∣ � C1

(
E1 + 1

2E1B1(Q)

)
2E2

1 |w|
1 − 2E2

1 |w| (2.55)

�

In the following section, we study the behaviour of K(z) near z = 0, i.e. the
inclusion is an air bubble.

2.4. Analyticity of the solution for small |z|
Let e be a constant unit vector in R

n. We seek solutions of the following form

uin
null(y; e, z) =

∞∑
k=0

uin
k (y; e)zk, pin(y; e, z) =

∞∑
k=0

pin
k (y; e)zk in Q2, (2.56)

uout
null(y; e, z) =

∞∑
k=0

uout
k (y; e)zk, pout(y; e, z) =

∞∑
k=0

pout
k (y; e)zk in Q1 (2.57)

By a procedure similar to that in § 2.3, the following equations are obtained via
collecting terms with respect to the order of z. The PDEs for Q1 are as follows:

O(1) : divy

(
2μ1e(uout

0 ) − pout
0 I

)
= −e (2.58)

O(zk), k � 1 : divy

(
2μ1e(uout

k ) − pout
k I

)
= 0 (2.59)

Similarly, the PDEs for Q2 are

O(1) : −∇pin
0 = −e (2.60)

O(zk), k � 1 : divy

(
2μ1e(uin

k−1) − pin
k I

)
= 0 (2.61)

The interface condition (2.29) remains the same for the small |z| case while (2.27)
and (2.28) now read

n × n ×
[((

2μ1e(uout
0 ) − pout

0 I
)
· n − (−pin

0 I
)
· n
]

= 0 (2.62)

n × n ×
[((

2μ1e(uout
k ) − pout

k I
)
−
(
2μ1e(uin

k−1) − pin
k I

))
· n
]

= 0, k � 1 (2.63)
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The first equation to be solved is (2.60), whose solution is simply

pin
0 (y) = e · y + c −

∫
Q2

(e · y + c) dy in Q2 (2.64)

where c is a constant. The next problem is the system of (2.58) and (2.62). Similar
to the calculation in lemma 2.2, the weak formulation of this system is: find uout

0 ∈
H(Q1) such that for all Φ ∈ H(Q1) and πout

0 := 2μ1e(uout
0 ) − pout

0 I

−
∫

Γ

(Φ̄ · (πout
0 + pin

0 I) − pin
0 I) · ndS −

∫
Q1

2μ1e(uout
0 ) : e(Φ) dy =

∫
Q1

−e · Φ̄ dy

Since Φ · n = 0 and pin
0 I · n is parallel to n, (2.62) implies the integral on Γ vanishes.

Hence by the Lax–Milgram lemma, we have

‖uout
0 ‖Q1 �

√
|Q1|

B1(Q1)
(2.65)

The system for uin
k−1, k � 1 (inner problem) is to find uin

k−1 ∈ H(Q2) with given
uout

0 ∈ H(Q1) such that{
div

(
2μ1e(uin

k−1) − pin
k I

)
= 0 in Q2

uin
k−1|Γ = uout

k−1|Γ
(2.66)

With an argument similar to the derivation of lemma 2.1, the following estimate
can be derived for system (2.66)

Lemma 2.5. Let Q2 satisfy the same assumption in lemma 2.1. For any given vector
field uout ∈ H(Q1), there exists a unique weak solution uin(y) ∈ H(Q2) s.t.{

divy

(
2μ1e(uin) − pinI

)
= f in in Q2

uin = uout on Γ
(2.67)

∥∥uin
∥∥

Q2
� 1

B1(Q2)

∥∥f in
∥∥

L2(Q2)
+ 2E2

∥∥uout
∥∥

Q1
. (2.68)

where E2 > 1 is the constant associated with the extension operator T , ‖T (Φ)‖Q �
E2‖Φ‖Q1 for all Φ ∈ H(Q1) and T (Φ) decays rapidly to 0 inside Q2. Note that the
periodic condition of space H(Q1) implies

∫
Γ
uout · ndS = 0.

The system for uout
k and pout

k with given uin
k−1 ∈ H(Q2) and pin

k , k � 1 is{
div (2μ1e(uout

k ) − pout
k I) = 0

n × n ×
[(

(2μ1e(uout
k ) − pout

k I) −
(
2μ1e(uin

k−1) − pin
k I

))
· n
]

= 0
(2.69)

By an argument similar to the one for lemma 2.2, the system above can be shown
to satisfy the following estimate.
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Lemma 2.6. Let Q2 satisfy the same assumption in lemma 2.1. For any given pair
of (uin, pin) ∈ H(Q2) × L2(Q1)/C that satisfies (2.67), there exists a unique vector
uout(y; fout) ∈ H(Q1) solving the following system{

div (2μ1e(uout) − poutI) = fout in Q1

n × n ×
[((

2μ1e(uin) − pinI
)
− (2μ1e(uout) − poutI)

)
· n
]

= 0 on Γ
(2.70)

∥∥uout
∥∥

Q1
� E2

B1(Q1)

∥∥fout
∥∥

L2(Q1)
+

E2

B1(Q2)

∥∥f in
∥∥

L2(Q2)
+ E2

∥∥uin
∥∥

Q2
(2.71)

where E2, B1 depend only on Q and Γ.

Equation (2.69), lemma 2.5, equation (2.66) and lemma 2.6 imply that for all
k � 0, we have ‖uin

k ‖Q2 � 2E2‖uout
k ‖Q1 and ‖uout

k+1‖Q1 � E2‖uin
k ‖Q2 . Therefore,

‖uin
k ‖Q2 � (2E2

2)k+1

E2
‖uout

0 ‖Q1 � (2E2
2)k+1

(
|Q1|

E2B1(Q1)

)
(2.72)

‖uout
k ‖Q1 � (2E2

2)k‖uout
0 ‖Q1 � (2E2

2)k

(
|Q1|

B1(Q1)

)
(2.73)

Therefore, the series in (2.56) and (2.57) converge uniformly in the disk |z| <
1/2(E2)2 to an analytic function in Q2 and Q1, respectively. The limit functions
uin

null(y, e, z), uout
null(y, e, z) and the corresponding permeability Kij(z) in (2.12) are

analytic at z = 0. Define the permeability (‘B’ for ‘bubbles’)

K
(B)
ij :=

∫
Q

[χ1uout
0 (y; ei) + χ2uin

0 (y; ei)] · ej dy (2.74)

then the following estimate, valid for |z| < 1/2E2
2 , holds

|Kij(z) − KB
ij | � |Q1|(1 + 2E2)

B1(Q)B1(Q1)

(
2E2

2 |z|
1 − 2E2

2 |z|

)
= O(|z|). (2.75)

In conclusion, K(z) in (2.5) is analytic for z ∈ C \ [−2E2
1 ,−(1/2E2

2)], E1, E2 � 1.
In the next section, and IRF for K(z) will be derived in two different ways.

3. Integral representation of the permeability K(z)

We first observe two properties of K implied by (2.12).

Proposition 3.1.

K(z) − K∗(z)
z − z̄

� 0 if Im(z) �= 0 (3.1)

K(x) � 0 for x > 0 (3.2)
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Proof. Note that Kij(z) − (K∗)ij(z) = 2μ1(z − z)
∫

Q2
e(uj(z)) : e(ui(z)) dy. Hence

Kij(z) − K∗
ij(z)

z − z
= −2μ1

∫
Q2

e(uj(z)) : e(ui(z)) dy = −(uj ,ui)Q2 =: −Aij

The matrix AAA is obviously Hermitian and for any ξξξ ∈ C
n, we have

ξiAijξj = (ξjuj , ξiui)Q2 � 0. This proves (3.1). Recall that Kij(x) = ((uj ,ui)Q1 +
x(uj ,ui)Q2). With a similar argument, (3.2) follows. �

With these two properties and the fact that K is holomorphic in C \ (−∞, 0], the
characterization theorem for matrix-valued functions belonging to the Stieltjes class
[20] implies that there exists a monotonically increasing matrix-valued function σσσ(t)
such that the following IRF holds for z ∈ C \ (−∞, 0]

K(z) = AAA +
CCC

z
+
∫ ∞

+0

1
z + t

dσσσ(t)

where AAA � 0, CCC � 0,
∫∞
+0

1
1+t dσσσ(t):= limε↓0

∫∞
ε

1
1+t dσσσ(t) < ∞ and AAA + CCC +∫∞

+0
1

1+t dσσσ(t) > 0. Since K(0) = K(B), we must have CCC = 000. Also, KKK(∞) = KKK(D)

implies AAA = KKK(D)

K(z) = KKK(D) +
∫ 2E2

1

1/2E2
2

1
z + t

dσσσ(t),

where the limits of the integral reflect the fact that K(z) in (2.5) is analytic for
z ∈ C \

[
−2E2

1 ,−(1/2E2
2)
]
, E1, E2 � 1.

Therefore, for real valued z, K(z) is decreasing as z increases, i.e. K(x1) − K(x2)
is negative semidefinite if x1 > x2. To study how the measure dσσσ is related to
the microstructure, we derive the spectral representation of K(z) by using the
underlying system (2.6).

3.1. Spectral representation of K(z)

Adding
∫

Q2
2μ1e(uk) : e(v) dy to both sides of (2.14), we have∫

Q

2μ1e(uk) : e(v) dy = −1
s

∫
Q

2μ1χ2e(uk) : e(v) dy +
∫

Q

ek · v̄ dy (3.3)

where the new variable s is defined as

s :=
1

z − 1

Let Δ−1
# be the operator that solves for w(y; f) ∈ H(Q) in the following variational

formulation ∫
Q

2μ1e(w) : e(v) dy =
∫

Q

f · v̄ dy (3.4)
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where f ∈ L2(Q) and Q-periodic. In other words, solution w(y) = Δ−1
# f ∈ H(Q) is

a weak solution to the cell problem

{
−μ1Δw = f in Q1 ∪ Q2

[[π]]n = ([[πn]] · n)n on Γ
(3.5)

In order to get the spectral representation, we apply Δ−1
# on both sides of (3.3) and

symbolically represent the resulted equations as

w1 = −1
s
w2 + w3

Then clearly, we have w1 = uk and w3 = Δ−1
# ek. Observe that w2 solves

∫
Q

2μ1e(w2) : e(v) dy =
∫

Q

2μ1χ2e(uk) : e(v) dy for all v ∈ H(Q) (3.6)

Define the operator Γχ such that w2 = Γχuk and (3.6) can be expressed as

(Γχuk,v)Q =
∫

Q

2μ1χ2e(uk) : e(v) dy for all v ∈ H(Q). (3.7)

The subscript χ is used to signify the dependence of Γχ on χ2, the characteristic
function of Q2. Clearly, Γχ is self-adjoint with respect to the inner product (·, ·)Q

because

(Γχu,v)Q =
∫

Q

2μ1χ2e(v) : e(u) dy = (Γχv,u)Q = (u,Γχv)Q.

Formally, we have Γχu = �−1
# (∇ · χ2e(u)). Now (3.3) becomes

uk = −1
s
Γχuk + Δ−1

# ek ⇔
(

I +
Γχ

s

)
uk = Δ−1

# ek (3.8)

Proposition 3.2. The self-adjoint operator Γχ defined in (3.7) is positive and
bounded with ‖Γχ‖ � 1.

Proof. It can be proved by choosing v = u in (3.7) and observe that 0 �∫
Q2

2μ1e(u) : e(u) dy �
∫

Q
2μ1e(u) : e(u) dy = (u,u)Q. �
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Theorem 3.3. For |s| > 1, the solution uk ∈ H(Q) admits a series representation

uk(y; s) =
∞∑

m=0

(
−1

s

)m

(Γχ)m Δ−1
# ek (3.9)

and the components of K can be represented by the following IRF

Kkl(s) = s

∫ 1

0

∫
Q

(M̃(dλ)Δ−1
# ek)l

s + λ
dy, k, l = 1, . . . , n, (3.10)

for some projection-valued measures M̃(dλ) and a series representation

Kkl(s) =
∫

Q

(
Δ−1

# ek

)
l
dy +

∞∑
m=1

λ̃m
kl

(−s)m
with λ̃m

kl :=
∫

Q

(
(Γχ)m Δ−1

# ek

)
l
dy.

Proof. From (3.8), since Γχ is self-adjoint with norm bounded by 1, for |s| > 1, the
spectral theory for self-adjoint operator implies the existence of a projection-valued
measure M̃ such that

uk(y; s) =
(

I +
Γχ

s

)−1

Δ−1
# ek = s

∫ 1

0

M̃(dλ)(Δ−1
# ek)

s + λ
(3.11)

Hence the kl-the element of permeability K has the following IRF

Kkl(s) =
∫

Q

(uk)l dy = s

∫ 1

0

∫
Q

(M̃(dλ)Δ−1
# ek)l

s + λ
dy (3.12)

On the other hand, for |s| > 1, the geometric expansion of the middle term near
s = ∞ in (3.11) results in the following expression

Kkl(s) =
∫

Q

[ ∞∑
m=0

(
−1

s

)m

(Γχ)m Δ−1
# ek

]
· el dy =

∞∑
m=0

λ̃m
kl

(−s)m
(3.13)

where λ̃m
kl is defined as λ̃m

kl :=
∫

Q
((Γχ)mΔ−1

# ek)l dy. �

For the three-dimensional space n = 3, the expansion (3.12) can be cast in the
matrix form

K(s) =
∞∑

m=0

Λ̃m

(−s)m
(3.14)

with the matrix-valued moments defined as

Λ̃m :=
(∫

Q
(Γχ)m Δ−1

# e1 dy
∫

Q
(Γχ)m Δ−1

# e2 dy
∫

Q
(Γχ)m Δ−1

# e3 dy
)

(3.15)
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3.2. Relationships between two representations and characterization of
the microstructural information on permeability

The calculations in the previous section reveal that the variable s := 1/(z − 1)
is the natural one to use. Because of this, we will consider K as a function of s.
Note that s maps (−∞, 0] on the z-plane to [−1, 0] on the s-plane. The following
properties of K(s) can be easily deduced from the results in proposition 3.1.

(i) K(s) is holomorphic in C \
[
− 2E2

2
1+2E2

2
,− 1

1+2E2
1

]
.

(ii) K(s)−(K(s))∗

s−s � 0 for all Im(s) �= 0

(iii) K(s) � 0 for R � s > 0 because s > 0 iff R � z > 1.

Then by the representation theorem in [20, theorem 3.1], there exists a monoton-
ically increasing matrix-valued function σσσ(t), matrices AAA � 0 and CCC � 0 such that∫∞
+0

dσσσ
1+t < ∞, AAA + CCC +

∫∞
+0

dσσσ
1+t > 0 and

K(s) = AAA + CCCs +
∫ ∞

+0

s

s + t
dσσσ(t), (3.16)

As s → ∞, z → 1 and hence K → K(z = 1). Therefore, we must have CCC = 000.
Moreover, AAA = K(s = 0) = K(D). Also, since K(s) is holomorphic in C \[
− 2E2

2
1+2E2

2
,− 1

1+2E2
1

]
, we have

K(s) = KKK(D) +
∫ 2E2

2/(1+2E2
2)

1/(1+2E2
1)

s

s + t
dσσσ(t), (3.17)

which is valid for all s ∈ C \
[
− 2E2

2
1+2E2

2
,− 1

1+2E2
1

]
⊂ (−1, 0). To compare with (3.14),

which is valid only for |s| > 1, we expand (3.17) near s = ∞ to obtain the following
series expansion

K(s) = K(D) +
∞∑

m=0

(−1)m

(
1
s

)m+1

μσ
m (3.18)

where μσ
m is the m-th moment of the measure dσσσ. Equating the coefficients term by

term with (3.14) leads to the following relation between μσ
m and the ‘geometrical

information’ coefficients in (3.15)

K(D) + μσ
0 = Λ̃0 = K(s = ∞), i.e. μσ

0 = K(z = 1) − K(D) (3.19)

μσ
m = Λ̃m, m � 1 (3.20)

Recall that K can be regarded as a function of s as well as a function of z, s :=
1/(z − 1). In particular, the first moment μσ

1 can be calculated explicitly as follows

λ̃1
kl = (Γχuk(y; 1),ul(y; 1))Q = 2μ1

∫
Q

χ2e(uk(y; 1)) : e(ul(y; 1)) dy (3.21)
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Figure 2. Computational domain.

4. Numerical verification

The computational domain with Q = (0, 1)2, Q2 = [1/4, 3/4]2 and Q1 = Q \ Q2 is
illustrated in figure 2 and is chosen in the first two numerical examples, (4.1) and
(4.2).

We consider three cases: (1) Q2 is a solid obstacle, (2) Q2 is a bubble and (3) Q2

is another fluid.
For case (1), we find (u1, p1) ∈ V1 × P1, such that{

(e(u1), e(v)) − (p1,div v) = (e1,v) ∀v ∈ V1,

(q,div u1) = 0 ∀q ∈ P1,
(4.1)

where

V1 = {v ∈ H1(Q1)2 | v|∂Q2 = 0
¯
, vis Q-periodic},

P1 = {q ∈ L2
0(Q1) | q = divv for some v ∈ V1}.

For case (2), we find (u2, p2) ∈ V2 × P2, such that{
(e(u2), e(v)) − (p2,divv) = (e1,v) ∀v ∈ V2,

(q,divu2) = 0 ∀q ∈ P2,
(4.2)

where

V2 = {v ∈ H1(Q1)2 | v · n|∂Q2 = 0,v is Q-periodic},

P2 = {q ∈ L2
0(Q1) | q = divv for some v ∈ V2}.

For case (3), we set μ1 = 1 and μ2 = μ. We find (u3, p3) ∈ V3 × P3, such that{
(μe(u3), e(v)) − (p2,divv) = (e1,v) ∀v ∈ V3,

(q,div u2) = 0 ∀q ∈ P3,
(4.3)

where

V3 = {v ∈ H1(Q)2|v · n|∂Q2 = 0, vis Q-periodic},

P3 = {q ∈ L2
0(Q)|q = div v for some v ∈ V3}.

The computation is done on square grids. The first level grid consists of 12
squares, for the first two cases. Each square is subdivided into 4 sub-squares to
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Figure 3. Velocity field u1 for a solid obstacle Q2 (4.1), and for a slippery bubble
Q2 (4.2).

get the next level grid, Th = {T}. We use the Q1,0
5,4 × Q0,1

4,5 velocity finite-element
space with the Q0,0

4,4 pressure finite-element space. Here Q1,0
5,4 means the space of

polynomials of degree at most 5 in y1 and of degree at most 4 in y2 which is C1 in
y1-direction and C0 in y2-direction. That is,

Q1,0
5,4 =

⎧⎨⎩u1|T =
5∑

i=0

4∑
j=0

cijy
i
1y

j
2

∣∣∣ u1 and ∂y1u1 ∈ C0(Q1), and Q-periodic

⎫⎬⎭ ,

Q0,0
4,4 =

⎧⎨⎩p|T =
4∑

i=0

4∑
j=0

cijy
i
1y

j
2

∣∣∣ p ∈ C0
0 (Q), and Q-periodic

⎫⎬⎭ .

We note that div(Q1,0
5,4 × Q0,1

4,5) = Q0,0
4,4. Therefore, the finite element velocity is

also pointwise divergence-free. We plot the velocity field of these two problems
in figure 3. We can see the magnitude of the latter is much bigger, as the resistance
from a slippery bubble is much less.

In figures 4 and 5, we plot the two velocity fields of two-fluid flow (4.3) for two
viscosity coefficients μ2. When μ2 is big, the sticky inner fluid flows less and drags
the outer fluid near the interface. When μ2 approaches infinity, the inner fluid stops
and it posts a zero Dirichlet boundary condition for on tangential velocity of the
outer fluid at the inner boundary Γ̃ = ∂Q2. The model of a solid obstacle (4.1) is a
limit case of the model of two-fluid (4.3) when μ2 → ∞. We can compare the left
chart of figure 3 and the left chart of figure 4.

When μ2 approaches zero, the inner fluid flow freely which produces little drag
on the outer fluid. In theory, the force inside fluid Q2 may even push outer fluid
somewhat. But due to the zero outflow boundary condition on the velocity at ∂Q2,
such a force would be balanced by its left portion and right portion of an edge of
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Figure 4. Velocity field u3 for two-fluid flow (4.3) with µ2 = 102 on Q (left), on Q2

(right, scaled by 200).

Figure 5. Velocity field u3 for two-fluid flow (4.3) with µ2 = 10−2 on Q (left), on Q2

(right, scaled by 2).

∂Q2. It is equivalent to zero tangential stress boundary on the outer flow. That is,
model of a slippery bubble (4.2) is a limit model of two-fluid (4.3) with μ2 → 0. We
may compare the right chart of figure 3 and the left chart of figure 5.
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Table 1. Computed permeability k11 by (4.4)–(4.6)

(4.3)

Level (4.1) µ2 = 104 µ2 = 1 µ2 = 10−4 (4.2)

1 0.0105 0.0105 0.0122 0.0140 0.0140
2 0.0119 0.0119 0.0144 0.0181 0.0181
3 0.0125 0.0125 0.0154 0.0209 0.0209
4 0.0128 0.0128 0.0159 0.0228 0.0228
5 0.0129 0.0129 0.0161 0.0240 0.0240

Figure 6. First component of velocity u3, from (4.3), for µ = 102 and µ2 = 10−2.

The homogenized permeability tensor K =
(

k11 k12

k21 k22

)
is computed by

k11 =
1
|Q|

∫
Q\Q2

u1 · e¯1 dy for (4.1), (4.4)

k11 =
1
|Q|

∫
Q\Q2

u2 · e¯1 dy for (4.2), (4.5)

k11 =
1
|Q|

∫
Q

u3 · e¯1 dy for (4.3). (4.6)

Due to the symmetry, in all our examples we have k11 = k22 and k12 = k21 = 0.
To verify the convergence results stated in (2.55) and (2.75), we solve the two-

fluid problem (4.3) with μ1 = 1 and μ2 = 10−4, 1, 104. In table I, this model is
between the two ‘limiting’ models (4.1) and (4.2).

To see how viscosity μ2 influences the flow, we plot (u3)1 in figure 6 for two
different μ2 with μ1 = 1.

Though the magnitude of (u3)1 is way larger than that of (u3)2, their corre-
sponding stress are about the same size. In figure 7, we plot them for a comparison.
We plot the stress intensity |∇u1| in figure 8.

Finally we compute the energy of the two-fluid flow,

E(Q2) =
∫

Q2

μ(y)e(u3) : e(u3) dy, (4.7)

E(Q) =
∫

Q

μ(y)e(u3) : e(u3) dy. (4.8)
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Figure 7. Stress ∇(u3)1, and ∇(u3)2 for (4.3) with µ2 = 102.

Figure 8. Stress intensity |e((u3)1)| in (4.3) with µ2 = 102, µ2 = 1, µ2 = 10−2.

The homogenized permeability can also be computed by the energy,

kij =
1
|Q|

∫
Q

μ(y)e(u3) : e(u3) dy. (4.9)

In table II, we demonstrate the equivalence of these two definitions for k11.

5. Conclusion and future work

In this paper, we show that the permeability of a porous material [40] and that of
a bubbly fluid [29] are limiting cases of the complexified version of the two-fluid
models posed in [29]. We assume the viscosity of the inclusion fluid is zμ1 and the
viscosity of the hosting fluid is μ1, z ∈ C. The proof is carried out by construction
of solutions for large |z| and small |z| by an iteration process similar with the one
used in [16, 21] and analytic continuation. Moreover, we also show that for a fixed
microstructure, the permeabilities of these three cases share the same IRF (3.17)
with different values of s, as long as the ‘contrast parameter’ s := 1/(z − 1) is not in
the interval

[
− 2E2

2
1+2E2

2
,− 1

1+2E2
1

]
, where the constants E1 and E2 are the extension

constants that depend on the geometry of Q1, Q2 and Q. For the mixture with
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Table 2. Computed permeability k11 both ways and energy

Level k11 (4.6) k11 (4.9) E(Q2) (4.7) E(Q2)/E(Q) (4.8)

For u3 in (4.3) with µ2 = 102

1 0.107×10−1 0.107×10−1 0.952×10−4 0.888×10−2

2 0.121×10−1 0.121×10−1 0.811×10−4 0.670×10−2

3 0.127×10−1 0.126×10−1 0.676×10−4 0.534×10−2

4 0.129×10−1 0.129×10−1 0.604×10−4 0.468×10−2

5 0.130×10−1 0.130×10−1 0.570×10−4 0.438×10−2

For u3 in (4.3) with µ2 = 1

1 0.122×10−1 0.122×10−1 0.752×10−3 0.615×10−1

2 0.144×10−1 0.144×10−1 0.135×10−2 0.936×10−1

3 0.154×10−1 0.154×10−1 0.175×10−2 0.113×100

4 0.159×10−1 0.159×10−1 0.200×10−2 0.125×100

5 0.162×10−1 0.162×10−1 0.215×10−2 0.132×100

For u3 in (4.3) with µ2 = 10−4

1 0.140×10−1 0.140×10−1 0.432×10−6 0.308×10−4

2 0.181×10−1 0.181×10−1 0.109×10−5 0.602×10−4

3 0.209×10−1 0.209×10−1 0.183×10−5 0.875×10−4

4 0.228×10−1 0.228×10−1 0.254×10−5 0.111×10−3

5 0.240×10−1 0.240×10−1 0.316×10−5 0.131×10−3

bubbles, s = −1 and thus

K(B) = K(D) +
∫ 2E2

2/(1+2E2
2)

1/(1+2E2
1)

1
1 − t

dσσσ(t) (5.1)

Also, we note that the matrix-valued measure in (3.10) has a Dirac measure sit-
ting at λ = 0 with strength equal to K(D). The permeability K(D) is related
to the measure in the sense that the zero-th moment of the measure is equal to
K(z = 1) − K(D).

Clearly, the positive matrix-valued measure dσσσ is independent of s and it char-
acterizes how the geometry influences the permeability. We have shown that this
measure is related to the projection measure of the self-adjoint operator Γχ and its
moments can be computed by equation (3.20).

Because the IRF is valid for most of s on the complex plane, the IRF will be useful
in the study of two-fluid mixture with complex viscosities such as dehomogenization
for these fluid. Also, the integration limits in the IRF should imply bounds on the
permeability tensors. We will explore the results of this paper in these direction in
the future.
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