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EXTREME POINTS IN THE HARDY CLASS m OF A 
RIEMANN SURFACE 

WALTER PRANGER 

Introduction. The theorems presented here extend known results on the 
set of extreme points of the unit ball of the Hardy class H1 of a disk to the 
situation of an arbitrary Riemann surface. Several new results are obtained. 
The initial motivation for this work was provided by the theorem of de Leeuw 
and Rudin [2, p. 471] characterizing the extreme points in the case ol a disk. 
Careful scrutiny of the proof of that theorem yields one necessary and one 
sufficient condition for being an extreme point in H1 of an arbitrary surface 
(Theorems 1 and 4 below). The material presented here on compact bordered 
surfaces is closely related to the beautiful results of Gamelin and Voichick 
[4] and the results of Forelli [3], 

For a subharmonic function u, which has a harmonic majorant on the 
Riemann surface R, Mu will denote the least harmonic majorant of u. For a 
superharmonic function v, the corresponding greatest harmonic minorant will 
be denoted by mv. The notation is that of Heins [6, p. 6]. HP(R) is the class of 
functions/, holomorphic on R, for which | / \p has a harmonic majorant. Here, 
0 < p < co. H°°(R) is the Banach space of bounded holomorphic functions 
on R. For 1 ^ p, Hp is a Banach space with norm | | / | | „ = (M\f\p(t))1/P, 
where f 6 R (cf. [6, p. 11]). Any Riemann surface for which some Hp space 
has non-constant members has the disk U — {z\ \z\ < 1} as its canonical 
universal covering surface. This means that many results may be proved by 
lifting to the disk. It also allows one to prove that HP(R) is isometrically 
isomorphic to a closed subspace of HP(U), when 1 ^ p. Unfortunately, this 
technique of lifting to U is not available in other situations, e.g., when R is a 
domain in C*, n > 1. The techniques used in this paper are intrinsic to the 
surface and, since the Hardy classes may be defined by the use of majorants 
in other situations (cf. [5; 10, p. 52]), it is possible that these methods will 
extend also. The techniques in [3] and [4] do depend on the uniformization 
theorem; those of this paper do not. Some of the results of those papers may be 
proved using the method below. 

The first two theorems are proved using elementary means; the hypotheses 
of Theorem 2 are then weakened. The remaining theorems rely heavily on 
results of M. Heins [6, p. 17]. 

In what follows, extreme point always means extreme point of the unit ball 
olHK 
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Extreme points in H1. The results of this section apply to an arbitrary 
Riemann surface R. 

Because H1 is a Banach space, the function / of norm 1 is an extreme point 
of the unit ball if and only if g Ç H1 and || / ± g\\ = 1 imply that g is the zero 
function. If g £ H\ 2M\f\ S M\f + g\ + M\f - g\; equality holds in this 
last inequality if | | / d b g\\ = 1, since both harmonic functions which appear 
are positive and have the same value at f. So 

(1) M\f\ = (M\f + g\ + M\f-g\)/2. 

This equation may be complemented with the following one which holds 
without restriction. 

(2) (M\f+ g\ + M\f- g\)/2 = M((\f+ g\ + \f- g\)/2). 

More generally, suppose that u and v are non-negative subharmonic functions 
which have harmonic majorants. From the fact that M(u + v) — v is super-
harmonic and the fact that u ^ M(u + v) — v, we have Mu ^ M(u + v) — v. 
Then v S M(u + v) — Mu, so Mv ^ M(u + v) - Mu. Thus, Mu + Mv S 
M(u + v). The reverse inequality is clear. Hence, equality holds; i.e., 
Mu + Mv = Miu + v). 

For H1 of the circle, a function/of norm 1 is an extreme point if and only 
if each real-valued function h 6 L°°, which satisfies hf G H1, is constant 
[7, p. 139]. This condition has the following analogue. 

LEMMA 1. The necessary and sufficient condition for a function f Ç Hl of norm 
1 not to be an extreme point of the unit ball is that there be a non-constant 
meromorphic function \p such that \pf G H1 and 

(3) M | / | = ( M | / + # | + M | / - # | ) / 2 . 

Proof. The necessity of the condition has already been shown. For the 
sufficiency, suppose that a function \f/ exists. / will not be an extreme point if 
| | / d b #11 = 1. Since (3) holds, we may suppose that | | / + ifcf || > 1. We 
show how to modify \f/ to produce the desired result. Those meromorphic 
functions \f/ for which equation (3) holds and for which \f/f Ç Hl form a convex 
set. In fact, 

| / - ( ^ 1 + ( l - 0 * 2 ) / | + I / + 0 * 1 + ( 1 - 0 * 2 ) / | M / - W I 

+ ( l - * ) | / - l W l + ' | / + * l f | + ( l - 0 | / + * 2 / | . 
Therefore, the majorant of the function on the left side of the above inequality 
does not exceed 2M\f |, since this function dominates that on the right side. 
The function on the left side dominates 2 | / | , so its majorant dominates 
2M\ f |, whence (3) holds with t\f/i + (1 — 0*2 replacing \p. Since the functions 
^and —1 both belong to this set, the function g = gt = (t(— 1) + (1 — t)\p) f 
satisfies equation (1) for any t, 0 ^ t ^ 1. The map t—> | | / + gt\\ is con­
tinuous. Its value at 0 exceeds 1 while its value at 1 is 0; thus, there is a t for 
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which | | / + gt\\ — 1. Equation (1) implies that | | / — gt\\ = 1; gt is not the 
zero function, for \p is not constant. Hence, / is not an extreme point. 

In the case of the disk an outer function has the property that its modulus is 
maximal among the moduli of those functions in H1 which have the same 
least harmonic majorant. This property is characteristic of extreme points as 
shown by the following theorem. 

THEOREM 1. Suppose that f is an extreme point of H1. If F £ H1 satisfies 
\f\£\F\ and \\F\\ = 1, then \f\ = \F\. 

Proof. I / I S \F\ and \\F\\ = 1, taken together, imply that M\f\ = M\F\. 
The condition | / | ^ \F\ means that / = </>F, where </> 6 H°° and \<j>\ ^ 1. 
Suppose that \j/ — (0 + <jr1)/2\ the function \p is meromorphic and \j/f Ç H1. 
If v = | / + \pf | — M\f\ and s = M\f \ — \f — \f/f |, v is subharmonic and 5 
is superharmonic. Also, 2 | / ± tf\ = |1 =fc 4>|2|F|, 2(1 + |0|2) = |1 + </>|2 + 
|1 — <£|2, and M\F\ = Af|/ | together imply that v ^ s. Therefore, Mv ^ ms 
which is the same as M\f+\pf\ + M\f—\pf\^2M\f\, which implies 
equation ( 3 ) . / being an extreme point, Lemma 1 implies that \// is contant; so 
<t> is constant. Then M\f\ = \<j>\M\F\ and M\f\ = M\F\; so |0| = 1 and 
\f\ = \F\-

We follow the above necessary condition with one which is sufficient. 

THEOREM 2. If f G H1 and has norm 1 and satisfies the implication that for 
each subharmonic function q, M(expq) ^ M\f\ implies exp (q) ^ | / | , then 
f is an extreme point. 

Proof. Suppose that g G H1 and that | | /=b g\\ = 1; then (1) holds. Now, 
( I / + g\ + 1/ ~~ g|)/2 and its logarithm are subharmonic [8, p. 18]; so a 
suitable function q is log ( ( | / + g\ + | / — g\)/2). The hypotheses o n / imply 
that ( | / + g\ + | / — g|)/2 ^ | / 1 , whence equality holds in this last 
inequality. From | / | è \g\, we get g = <f>f where <f> Ç Hœ and |0| ^ 1. Then 
2 = | 1 + 0| + |1 — 0|. This equality implies that <j> is real-valued; thus, it is 
constant. This is enough to imply that g is the zero function. 

The above theorem implies that every constant function of modulus one 
is an extreme point. An inner function 0 is a member of Hœ such that \<f>\ ^ 1 
and M\<j>\ = 1. Theorem 1 implies an inner function which is an extreme point 
of H1 must be constant. Inner functions are extreme points in Hp for every 
p, 1 < P ^ °o, for an arbitrary surface. This is so for 1 < p < oo, since Hp 

is uniformly convex. When p = co, this is a consequence of the following 
sufficient condition for being an extreme point of Hœ: if || / ||œ = 1, then / is 
an extreme point of the unit ball of H00 if the superharmonic function 
log (1 — l / l ) does not have a greatest harmonic minorant. This condition 
is the analogue of the sufficient condition for the situation on the disk 
(cf. [7, p. 138]). 
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In Theorem 2, the hypotheses could be amended thus: for each non-negative 
subharmonic h, Mh ^ M\f | implies that h ^ | / |. Theorem 2 and the proof 
of Theorem 1 were given as above to avoid making an appeal to deeper results 
which follow. Theorem 2 can be improved by making an appeal. To proceed 
further, the analogue of the factorization of Hp functions for a disk and the 
analogue of strong subharmonicity for subharmonic functions are needed. We 
state here the results of Heins [6, p. 17] (in abbreviated form) which accom­
plish these things and which will be used repeatedly. 

THEOREM 3. If u is a subharmonic function, u ?£ — oo , and M(exp u) < oo , 
the following hold: 

(a) u has a unique representation of the form 

(4) u = Q- s-p, 

where Q is the difference of quasi-bounded harmonic functions, s is a singular 
harmonic function, and p is a potential. 

(b) M (exp Q) < oo, and M(exp Q) = ikf(exp Mu) = AI (exp u). 
(c) If <£M = {v\v is subharmonic and M(expv) = M(exp u)}, the upper 

envelope h of $u belongs to <£M. 
(d) h is the difference of quasi-bounded harmonic functions and <ï>M = [v\v is 

subharmonic and v = h — s± — pi as in (a)}. 

Here, potential refers to a Green potential; i.e., a non-negative superharmonic 
function whose greatest harmonic minorant is zero. 

THEOREM 4. If f is a member of Hl of norm 1 which satisfies the implication 
that for each g £ H1, M\g\ ^ M\f \ implies that \g\ S \f\, then f is an extreme 
point. 

Proof. Suppose that g Ç H1 and that | | / ± g\\ = 1. Equation (1) holds and 
implies that |g| ^ M\f |. Then |g| ^ \f |, whence g = \f/f, where \p Ç Hœ and 
M â 1. Now, 

M(expQ) = M I / I = M ( ( | / + ^ / | + | / - ^ | ) / 2 ) , 

where log | / | = Q — s — p as in (4); so Theorem 3(d) implies that 

l o g ( ( | / + * / | + | / - * / | ) / 2 ) =Q~s1-p1. 

This means that 

w = log((|l + *| + |1 + * |) /2) ^S-SX + P-PL 

But ^ Ç Hœ and w is subharmonic; therefore, M (exp w) < oo and w must have 
the form of (4). The relation s — s\-\- p — pi ^ 0 implies s — s± ^ 0 and, 
consequently, 5 — Si is a singular harmonic function (cf. [6, p. 8]). If the 
representation of w from (4) is Q' — s2 — p2, then 

Pi + Qf = s2 + s - Sl + p + p2. 
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The uniqueness of this representation means that s2 + s — Si = 0, Qf — 0 
and that pi = p + p2. But s2 and s — Si both singular imply that s2 = 0 = s — Si. 
Therefore, p - pi ^ 0 and p - pi ^ 0. So p = £i. Hence,| 1 + $\ + |1 - ^| = 2 
which implies that \p is real, so it is constant. | | / ± g\\ = 1 imply that \[/ is 
identically zero; therefore, / is an extreme point. 

A corollary to the above theorem is that every " ou ter" function of norm 1 
is an extreme point. 

COROLLARY 1. If fis a member of H1 of norm 1 such that log | / | is the difference 
of quasi-bounded harmonic functions, then f is an extreme point. 

Proof. This result relies on an easy corollary to Theorem 3, viz., if log| / | has 
the form Q - s - p of (4), then m (log M\f\) = Q. Suppose that / € H1, f 
has norm 1, and log| / | = Q. Then M\g\ ^ M\ f | implies log M\g\ S log M\ f \ ; 
therefore, m (log M\g\) S m (log M\f\) = log\f \. From log|g| ^ log M\g\, we 
havelog|^| ^ m(log M\g\), whence log\g\ ^ l o g | / | ; then Theorem 4 implies 
that / is an extreme point. 

In terms of the covering of R by Uy the functions of Corollary 3 are those 
which are projections of the outer functions on the disk. Looking at this 
another way: since Hl(R) is isometrically isomorphic to a closed subspace of 
Hl(U), the functions which are in Hl(R) and are extreme points of Hl(U) 
are extreme points of Hl(R). 

There is additional information to be obtained from the situation of Lemma 
1. Suppose t h a t / Ç H1, \\f\\ = 1; suppose further that \[/ is meromorphic and 
not zero, SF/£ H1, and equation (3) holds. We have, from (4), l o g | / | = 
Q — s — p and log\\f/f \ = Qf •— s' — p', whence 

log|*| = <2' - Q + s - sf + p - p'. 

Now, | ^ / | ^ M\f\ follows from (3), so Q' - Q ^ 0, and it follows that 
Q' — Q = —q, where q is quasi-bounded. Then 

(5) logM = -q + s - s' + p - p'. 

Moreover, (2) implies (Theorem 3) that 

(6) log((|l + ^| + |1 - ^ |) /2) =s-s" + p - p", 

where s" is a singular harmonic function and p" is a Green potential. The 
relation 0 S s — s" + p — p" implies the relation 0 ^ s — s". The inequality 
0 ^ s — s" implies that s — s" is a singular harmonie function in (6). 

The next theorem shows that if/ is not an extreme point and if the " inner 
part" of/ dominates the " inner part" of Fy then F is not an extreme point. 

THEOREM 5. Suppose that f and F are members of H1 of norm 1; then 
l °g | / I = Q — s — P and log\F\ = Q' — t — I are the representations off and 
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F given by (4). If t ^ 5 and I ^ p,f is not extreme point implies that F is not an 
extreme point. 

Proof. Suppose t h a t / is not an extreme point. Lemma 1 implies the existence 
of a meromorphic \f/, with \f/f £ H1 and (3) holds. By (5) 

log|*F| = Qf - a + s - s' - t + p - p' - I. 

But — s + s' + t is a singular harmonic function since t ^ s; because I and p 
are sums of Green functions and I ^ p, p' + I — p is a Green potential. 
Therefore, i//F 6 H1 by Theorem 3(d), since Q' - g ^ Q'. From (6) 

log((|F + *F | + |F - *F|) /2) = Qf - (5- - 5 + t) - (£" - £ + /) , 

and, similarly, Theorem 3(d) and Theorem 3(c) imply that (3) holds with F 
in place of / . Thus, F is not an extreme point. 

COROLLARY 2. If f and F are members of H1 of norm 1 with the representations 
log| / | = Q — s — p and log 1̂ 1 = Qf — s — p, then fis an extreme point if and 
only if F is an extreme point. 

Thus, an extreme point is determined by its "inner part" (cf. [4, p. 292]). 
It is, of course, of interest to know that there are extreme points in H1. The 

constant functions of modulus one are always extreme points. If H1^) has 
non-constant members, does the unit ball have non-constant extreme points? 
The answer is yes and can be inferred from the Krein-Milman theorem. 

^(R) is isometrically isomorphic to a closed subspace of Hl(U) which is in 
turn isometrically isomorphic to a closed subspace of the space M of bounded 
Borel measures on the circle. The weak-star topology of M induces a topology 
on ^(R) called the weak-star topology of ^(R). With this topology the unit 
ball is compact [2, pp. 469-470]. A sequence of members of the unit ball 
converges to a function in ^(R) in the weak-star topology if and only if it 
converges to this function pointwise. These facts imply that the convex hull 
of the constant functions of modulus one is a closed, hence compact, subset of 
the ball. If the constant functions of modulus one happen to be the only 
extreme points, then the Krein-Milman theorem implies that the convex hull 
of this set is the ball. Hence, when non-constant functions exist in H1(R)} 

non-constant extreme points also exist. 

H1 of a compact bordered surface. Throughout this section, the Riemann 
surface R will be restricted to be the interior of a compact bordered surface. R 
can be realized as a domain in a compact Riemann surface S, the Schottky 
double of R. As a subsurface of 5, R has a boundary which consists of a finite 
number of disjoint analytic Jordan curves. 

The following theorem is proved in both [3] and [4]. We give here a proof 
using the ideas of the last section. The argument follows closely that of 
Gamelin and Voichick [4, p. 292]. If / is a meromorphic function on R, df is the 
divisor of/; the degree of an arbitrary divisor 8 is denoted by d[8]. 
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THEOREM 6. Letf G H1 have norm 1. A necessary condition thatf be an extreme 
point is that d[df] ^ r /2, where r is the first Betti number of R. 

In their proof, Gamelin and Voichick use a version of the Riemann-Roch 
theorem for compact bordered surfaces as given by Royden [9, p. 49]. Let 8 be 
a divisor on R. <Jt (— 8) is the vector space over the real numbers of all functions 
meromorphic on the closure of R and real on its boundary whose divisors 
dominate —8. 2> (8) is the analogous space of differentials which are real along 
the boundary of R and whose divisors dominate 8. The essential fact is 
embodied in the following equality: 

(7) d im^( -<5 ) = dim 9{8) + 2d[8] - r + 1. 

Here, r is the first Betti number of R. This fact is an easy consequence of the 
Riemann-Roch theorem for the doubled surface of R. It can be obtained using 
the decompositions in Ahlfors [1, p. 108]. 

Proof of Theorem 6. Suppose that r ^ 2 and that / is an extreme point for 
which d[df] > r/2. By (7), dim ^f(— df) > 1, so there is a non-constant 
function \f/, meromorphic on the closure of R and real on its boundary, such 
that d^ ^ — df. By multiplying f by a constant, we may assume that 
— 1 ^ ^ ^ 1 on the boundary of R. Let p be the sum of Green functions which 
correspond to the poles of \f/, and let p' be the sum of Green functions which 
correspond to the zeros of \f/. On R, log|^| — p + p' is harmonic. At each point 
of the boundary, it is non-positive. So \og\\j/\ — p + p' S 0 on R; hence, 

log M = - q - s + p -p', 

where q is a quasi-bounded harmonic function and s is a singular harmonic 
function (every positive harmonic function is the unique sum of a quasi-
bounded and a singular harmonic function). Moreover, if w represents the 
left side of (6), then w — p is subharmonic on R, continuous on its closure, 
and identically zero on its boundary. This results in 

(8) 0 S log((|l + *| + | l - ^ | /2) ^ p. 

Now, log | / | = Q — s — / and the divisor condition means p ^ /. So 

log |# \=Q-q~ (s + s')~ (l-p + P'), 

whence \pf G H1, by Theorem 3. Adding log| / | to the inequality in (8), we have 

Q - s - p = \og\j\ g l o g ( ( | / + # | + | / - # | ) / 2 ) £Q-s. 

Therefore, 

M(exp(Q - s - P)) S M((\f+ W\ + \f-W |)/2) g M(exp(Q - s)). 

Using Theorem 3(b), 

M\f\ = M(expQ) ^ M ( ( | / + * / | + | / - # | ) / 2 ) £M(expQ). 

Therefore, (3) holds; so Lemma 1 implies t h a t / is not an extreme point. 
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On a compact bordered surface R the periods of the conjugate of a function 
which is harmonic on R and continuous on its closure may be specified 
arbitrarily (see [1, p. 110; 4, p. 920]). This fact used in conjunction with 
Theorem 5 yields the following corollary of that theorem. 

COROLLARY 3. Suppose that 8 is the divisor of an extreme point. If a is a 
non-negative divisor and 8 ^ a, then a is the divisor of an extreme point. 

Proof. Suppose t h a t / G H1 is an extreme point with divisor <5, and suppose 
that a is a non-negative divisor, 8 ^ a. Let / have the representation 
log| / | = Q — s — p. \i p' is the sum of Green functions which correspond to 
a (this is a finite sum), then there is a harmonic function Q' so that Qf — p' is 
the logarithm of the modulus of a holomorphic function; i.e., log|F| = Qr — p'', 
for some F holomorphic on R, and Qf is continuous on the closure of R (to get 
F, a homology basis may be chosen which avoids the poles of p'; Q' is then 
chosen so the periods of its conjugate are the same as the periods of the 
conjugate of pf). Because Qf is bounded on R, F £ H1. We may assume that 
M (exp Qf) is 1 at f, since this entails only the addition of a constant to Qf 

which will not affect the period relations. Since p ^ p'', Theorem 5 implies that 
F is an extreme point. 

Theorem 6 and Corollary 3 serve merely to illustrate the techniques 
developed herein. Some of the other known facts concerning the set of extreme 
points of the ball may also be proved in the same manner. 
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