
Canad. J. Math. Vol. 69 (3), 2017 pp. 613–649
http://dx.doi.org/10.4153/CJM-2015-059-x
©Canadian Mathematical Society 2016

Mori’s Program for M0,7 with Symmetric
Divisors

Han-Bom Moon

Abstract. We complete Mori’s program with symmetric divisors for the moduli space of stable
seven-pointed rational curves. We describe all birational models in terms of explicit blow-ups and
blow-downs. We also give a moduli theoretic description of the ûrst �ip, which has not appeared in
the literature.

1 Introduction

_e aim of this paper is running Mori’s program for M0,7, the moduli space of stable
seven-pointed rational curves, with symmetric divisors. Mori’s program, a minimal
model program for a given moduli space M, consists of the following:
(1) Compute the cone of eòective divisors Eò(M) for M and the chamber structure

on it, the so called stable base locus decomposition.
(2) For an eòective divisor D with ûnitely generated section ring, we can compute a

projective model

M(D) ∶= Proj ⊕
m≥0

H0
(M ,O(mD))

with a rational contraction M ⇢ M(D).
Because any rational contraction is obtained in this way ([29]), by running Mori’s
program we are able to classify all birational models of M that are simpler than M.
Furthermore, sinceM is a moduli space, we can expect that some ofM(D) also have
certain good moduli theoretic interpretations.

Since Hassett and Hyeon initiated the study of birational geometry of moduli
spaces of stable curves from the viewpoint of Mori’s program in [24, 26, 27], there
has been much success and progress in this direction. Although the initial motiva-
tion, ûnding the (ûnal log) canonical models of moduli spaces of stable curves Mg
succeeded only for a few small genera [10, 12, 24, 30], people have constructed many
modular birationalmodels ofMg , and thesemodels have been studied in a theoretical
framework of Mori’s program. Also, the same framework has been applied to many
othermoduli spaces, for instance, Hilbert schemes of points [3] and themoduli spaces
of stable maps [7–9].

We are interested in running Mori’s program for M0,n , the moduli space of stable
n-pointed rational curves. Since dimN1(M0,n)Q grows exponentially, it is almost
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614 H.-B. Moon

impossible to determine all birational models even for very small n. But if we restrict
ourselves to the space N1(M0,n)

Sn
Q of Sn-invariant divisors (or symmetric divisors),

then the dimension grows linearly. _us, we can try to classify all birational models
appearing in Mori’s program at least for small n.

_e ûrst non-trivial case is n = 6, and it was investigated in [43]. In this case, there
are two divisorial contractions and no �ips. _ese two contractions are classically
well-known varieties, the Segre cubic and Igusa quartic. _e next case n = 7, which
we study in this paper, is interesting because there are two �ips of M0,7. It seems that
in the literature, there has been no description of these spaces.

1.1 The First Main Result: Mori’s Program

In the ûrst half of this paper, we classify all projective models appearing inMori’s pro-
gram. In this case dimN1(M0,7)

S7
Q = 2 and Eò(M0,7)

S7 is generated by two boundary
divisors B2 and B3. To describe the result in an eõcient way, we use the interval no-
tation for divisor classes. For two divisor classes D1 and D2, [D1 ,D2) is the set of all
divisor classes aD1 + bD2 where a ≥ 0 and b > 0. Similarly, we can deûne (D1 ,D2),
(D1 ,D2], and [D1 ,D2] as well. All divisor classes below are deûned in Section 2. We
describe the �ipping locus B3

2 and B2
2 later in this section.

_eorem 1.1 Let D be a symmetric eòective divisor ofM0,7.
(i) If D ∈ (ψ − KM0,7

,KM0,7
+ 1

3ψ), then M0,7(D) ≅ M0,7.
(ii) If D ∈ [KM0,7

+ 1
3ψ, B3),M0,7(D) ≅ M0,A, the moduli space of weighted pointed

stable curves with weight A = ( 1
3 , . . . ,

1
3) .

(iii) If D = ψ −KM0,7
, then M0,7(D) is isomorphic to the Veronese quotient V 3

A , where
A = ( 4

7 , . . . ,
4
7 ) .

(iv) If D ∈ (ψ − 3KM0,7
,ψ −KM0,7

), then M0,7(D) ≅ M3
0,7, which is a �ip ofM0,7 over

V 3
A . _e �ipping locus is B3

2.
(v) If D = ψ − 3KM0,7

, then M0,7(D) is a small contraction ofM3
0,7.

(vi) If D ∈ (ψ−5KM0,7
,ψ−3KM0,7

), thenM0,7(D) ≅ M2
0,7, which is a �ip ofM3

0,7 over
M0,7(ψ − 3KM0,7

). _e �ipping locus is the proper transform of B2
2.

(vii) If D ∈ (B2 ,ψ − 5KM0,7
], then M0,7(D) ≅ M1

0,7, which is a divisorial contraction

ofM2
0,7. _e contracted divisor is the proper transform of B2.

(viii) If D = B2 or B3, then M0,7(D) is a point.

Some of these results are already well known. _e birational models in (i)–(iii) are
models appearing in [16, 25], and they have certain moduli theoretic meaning. Also,
Mori’s program for M0,n for a subcone generated by KM0,n

and B = ∑B i has been
intensively studied in [1, 11, 33, 48] for arbitrary n. For n = 7, this subcone covers (i)
and (ii). _us, the new result is the opposite direction, (iii)–(vii).
Along this direction, the chain of birational maps M0,7 ⇢ M3

0,7 ⇢ M2
0,7 → M1

0,7
shows interesting toroidal birational modiûcations. On M0,7, B2 is a simple normal
crossing divisor and at most three irreducible components meet together. Let B i

2 be
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the union of nonempty intersections of i irreducible components of B2. For M0,7 ⇢

M3
0,7, B3

2 is the �ipping locus and on M3
0,7 no three irreducible components of B2

intersect. For M3
0,7 ⇢M2

0,7, the �ipping locus is the proper transform of B2
2 and on

M2
0,7, the irreducible components of B2 are disjoint. Finally, on M2

0,7 →M1
0,7, the

modiûed locus is the proper transform of B1
2 = B2, the disjoint union of irreducible

components, and it is a divisorial contraction.
Very recently, Castravet and Tevelev proved in [6] that M0,n is not a Mori dream

space if n ≥ 134. _is result was improved to n ≥ 13 by Gonzalez and Karu [18].
However, since the eòective cone of M0,n/Sn is simplicial and generated by boundary
divisors B i for 2 ≤ i ≤ ⌊ n

2 ⌋, it is believed that M0,n/Sn is a Mori dream space. Be-
cause Mori’s program of M0,n with symmetric divisors can be identiûed with that of
M0,n/Sn ([43, Lemma 6.1]), we obtain the following result.

Corollary 1.2 _e S7-quotient M0,7/S7 is a Mori dream space.

In general, we expect that the symmetric cone Eò(M0,n) ∩ N1(M0,n)
Sn
Q is in the

Mori dream region, so while running Mori’s program with symmetric divisors, there
is no fundamental technical obstruction. In particular, we expect that the answer for
the following question, due to Hu and Keel, is aõrmative.

Question 1.3 ([29, Implication 3.3]) For each 2 ≤ k ≤ ⌊ n
2 ⌋, is there a rational con-

traction M0,n ⇢M(k) that contracts all boundary divisors except Bk?

For n ≥ 7, the only previously known such model was M(2), which is (P1)n//SL2
([33]). _e space M1

0,7 provides M(3) when n = 7.

1.2 The Second Main Result: Modular Interpretation

So far, all modular birational models of Mg ,n have been constructed in two ways.
One way is taking GIT quotients of certain parameter spaces of pointed curves em-
bedded in a projective space by using Chow varieties or Hilbert schemes, and the
other way is taking an open proper substack of the stack of all pointed curves. _ose
two approaches are completely diòerent, but the outcome is essentially moduli spaces
of (pointed) curves with worse singularities. For instance, the moduli spaceM

ps
g of

pseudostable curves ([47]) can be obtained by allowing cuspidal singularities instead
of elliptic tails. By replacing a certain type of subcurves by a cetain type of Gorenstein
singularities, we can obtainmany other birational models. See [2] for a systematic ap-
proach for curves without marked points. Hassett’s moduli spaces of weighted stable
curves Mg ,A are also moduli spaces of semi log canonical pairs (see Section 4.1.), so
they are moduli spaces of pointed curves with certain types of singularities of pairs as
well.

Recently, in [49], Smyth gave a partial classiûcation of possible modular birational
models of Mg ,n , which are moduli spaces of curves with certain singularity types.
When g = 0, his result gives a complete classiûcation. One interesting fact is that
all of his birational models are contractions of M0,n , because there is no positive di-
mensional moduli of singularities of arithmetic genus zero. _erefore, if one wants to
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616 H.-B. Moon

impose a moduli theoretic interpretation of a �ip of M0,n , then it must not be a mod-
uli space of “pointed curves”, in the sense of pairs of an abstract curve and a collection
of dimension 0 subvarieties.

In the second half of this paper, we give a moduli theoretic meaning to the ûrst �ip
M3

0,7. _emain observation is that bothM0,7 andV 3
A are constructed asGIT quotients

(Remark 4.4), and there is a commutative diagram in Figure 1.

M0,7(P3 , 3)

((
//SL4

��

oo // ◻

ww
//SL4

��

I ⊂ M0,0(P3 , 3) × (P3)7

//SL4

��

M0,7

((

oo // M3
0,7

ww
V 3
A

Figure 1: SL4-quotients of incidence varieties

_e variety I is the incidence variety in M0,0(P3 , 3) × (P3)7, where M0,0(P3 , 3) is
the moduli space of stable maps ([39]). All vertical maps are SL4-GIT quotients with
certain linearizations (thus they are not regular maps.). So we can guess that there is
a parameter space X in the node ◻ such that
(a) there is a functorial morphism X →M0,0(P3 , 3) × (P3)7;
(b) there is an “incidence variety” J ⊂ X with SL4-action;
(c) with an appropriate linearization, J//SL4 ≅ M3

0,7.

Let U0,n(Pr , d) be the moduli stack of unramiûed stable maps introduced in [35],
and let U0,n(Pr , d) be the coarse moduli space. By analyzing the diòerence between
U0,0(P3 , 3) and M0,0(P3 , 3) carefully, we will show that U0,0(P3 , 3) × (P3)7 has the
role of X.

Unfortunately, there are just a few known geometric properties of U0,0(P3 , 3). For
instance, it is not irreducible, and the connectivity and projectivity of the coarsemod-
uli space are unknown. _erefore, the standard GIT approach is unavailable. Instead
of that, we introduce a “stable locus” J s of J and show that J s/SL4 is a projective variety
that is isomorphic to M3

0,7. We will denote J s/SL4 by a “formal GIT quotient” J//SL4,
because if we know the projectivity of U0,0(P3 , 3), then J s/SL4 is indeed isomorphic
to J//SL4 with a standard choice of linearization.

_eorem 1.4 (_eorem 6.8) _e formal GIT quotient J//SL4 is isomorphic to M3
0,7.
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By using this result, we are able to give a modular description of M3
0,7. As we men-

tioned before, it is not a space of pointed curves anymore. It is a parameter space of
data (C , (x1 , x2 , . . . , x7),C′), where (C , x1 , x2 , . . . , x7) is an element of V 3

A , which is
an arithmetic genus zero pointed curve with a certain stability condition ([16, _eo-
rem 5.1]), andC′ is a ghost curve, which is a curve on a non-rigid compactiûed tangent
space P(TxC ⊕C) for a non-Gorenstein singularity x ∈ C. For the precise deûnition,
see Sections 5 and 6. _e same type of �ip appears for Mori’s program for all n ≥ 7
(Remark 6.10). _us, we believe that to run Mori’s program for M0,n , it is essential to
understand the geometry of U0,n(Pd , d). We will study geometric properties of this
relatively new moduli space in forthcoming papers.

1.3 Structure of the Paper

In Section 2 we recall the deûnitions of several divisor classes and curve classes on
M0,n with their numerical properties. In Section 3, we compute the stable base lo-
cus for every symmetric eòective divisor on M0,7. In Section 4 we prove_eorem 1.1.
Section 5 reviews themoduli space of unramiûed stable maps and its geometric prop-
erties. Finally in Section 6, we prove _eorem 1.4. We will work over the complex
numbers C.

2 Divisors and Curves on M0,n

In this section, we review general facts about divisors and curves onM0,n . Allmaterial
in this section is well known, but we collect the statements we will use for the reader’s
convenience.

2.1 Divisors on M0,n

_e moduli space M0,n inherits a natural Sn action permuting the marked points.
A divisor D on M0,n is called symmetric if it is invariant under the Sn action. _e
Neron–Severi vector space N1(M0,n)Q has dimension 2n−1 − (

n
2) − 1, so the space of

divisors on M0,n is quite huge. But the Sn-invariant part

N1
(M0,n)

Sn
Q ≅ N1

(M0,n/Sn)Q

of N1(M0,n)Q is ⌊n/2⌋ − 1 dimensional ([32, _eorem 1.3]) so at least for small n,
computations on the space are feasible. _e following is a list of tautological divisors
on M0,n .

Deûnition 2.1 (i) For I ⊂ [n] = {1, 2, . . . , n} with 2 ≤ ∣I∣ ≤ n − 2, let BI be the
closure of the locus of pointed curves (C , x1 , . . . , xn) with two irreducible compo-
nents C1 and C2 such that C1 (resp. C2) contains x i for i ∈ I (resp. i ∈ Ic). _en BI is
called a boundary divisor. By deûnition, BI = BIc . For 2 ≤ i ≤ n − 2, let B i = ⋃∣I∣=i BI .
_en B i is a symmetric divisor and B i = Bn−i . Finally, let B = ∑

⌊n/2⌋
i=2 B i .

(ii) Fix 1 ≤ i ≤ n. LetLi be the line bundle onM0,n such that over (C , x1 , . . . , xn) ∈

M0,n , the ûber is ΩC ,x i , the cotangent space of C at x i . Let ψ i = c1(Li), the i-th psi
class. If we denote ψ = ∑

n
i=1 ψ i , then ψ is a symmetric divisor.
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618 H.-B. Moon

(iii) Let KM0,n
be the canonical divisor of M0,n . Obviously, it is symmetric.

_e symmetric eòective cone Eò(M0,n)
Sn ≅ Eò(M0,n/Sn), which is Eò(M0,n) ∩

N1(M0,n)
Sn
Q , is generated by symmetric boundary divisors ([32,_eorem 1.3]). _ere-

fore, we can write KM0,n
and ψ as nonnegative linear combinations of boundary divi-

sors.

Lemma 2.2 ([46, Proposition 2], [41, Lemma 2.9]) On N1(M0,n)Q, the following
relations hold:

KM0,n
=

⌊n/2⌋

∑
i=2

(
i(n − i)
n − 1

− 2)B i ,(i)

ψ = KM0,n
+ 2B.(ii)

2.2 Curves on M0,n

Let I1⊔I2⊔I3⊔I4 = [n] be a partition. Let FI1 ,I2 ,I3 ,I4 be the F-curve class corresponding
to the partition ([32, Section 4]).

Lemma 2.3 ([32]) Let F = FI1 ,I2 ,I3 ,I4 be an F-curve and let BJ be a boundary divisor.

F ⋅ BJ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, J = I i ∪ I j for some i /= j,
−1, J = I i for some i ,
0, otherwise.

(i)

F ⋅ ψ i =

⎧⎪⎪
⎨
⎪⎪⎩

1, I j = {i}for some j,
0, otherwise.

(ii)

If we consider symmetric divisors only, then the intersection numbers do not de-
pend on a speciûc partition but depend only on the size of the partition. A curve class
Fa1 ,a2 ,a3 ,a4 is one of any F-curve classes FI1 ,I2 ,I3 ,I4 with a i = ∣I i ∣.

To compute the stable base locus in Section 3, we need to use other curve classes
C j (see [32, Lemma 4.8]). Fix a j-pointed P1 and let x be an additional moving point
on P1. By gluing a ûxed (n − j + 1)-pointed P1 whose last marked point is y to the
( j + 1)-pointed P1 along x and y and stabilizing it, we obtain a one parameter family
of n-pointed stable curves over P1, i.e., a curve C j ≅ P1 on M0,n .

Lemma 2.4 ([32, Lemma 4.8])

C j ⋅ B i =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

j, i = j − 1,
−( j − 2), i = j,
0, otherwise.

Remark 2.5 We are able to generalize the idea of this construction. For example,
by 1) gluing two 3-pointed P1 to (n − 2)-pointed P1, 2) varying one of two attached
points, and 3) stabilizing it, we get a one parameter family of n-pointed stable curves
over P1. Let A ⊂ M0,7 be such a curve class.
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2.3 Numerical Results on M0,7

For the reader’s convenience, we state a special case of M0,7 below. All results are
combinations of the lemmas in previous sections.

Corollary 2.6 _e symmetric Neron-Severi space N1(M0,7)
S7
Q has dimension two.

_e symmetric eòective cone Eò(M0,7)
S7 is generated by B2 and B3. Moreover,

(i) KM0,7
= − 1

3B2,
(ii) ψ = 5

3B2 + 2B3,
(iii) B2 = −3KM0,7

,
(iv) B3 =

5
2KM0,7

+ 1
2ψ.

We can summarize Corollary 2.6 with Figure 2.

KM0,7

ψ

B3

B2

Figure 2: Neron–Severi space of M0,7

Corollary 2.7 On M0,7, the intersection of symmetric divisors and curve classes are
given by Table 1.

ψ KM0,7
B2 B3

F1,1,1,4 3 -1 3 -1
F1,1,2,3 2 0 0 1
F1,2,2,2 1 1 -3 3
C4 4 0 0 2
C5 5 1 -3 5
C6 10 -2 6 0
A 3 1 -3 4

Table 1: Intersection numbers on M0,7
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3 Stable Base Locus Decomposition

For an eòective divisor D, the stable base locus B(D) is deûned as

B(D) = ⋂
m≥0

Bs(mD),

where Bs(D) is the set-theoretical base locus of D. As a ûrst step toward Mori’s pro-
gram, we will compute stable base locus decompositions of M0,7, which is a ûrst ap-
proximation of the chamber decompositions for diòerent birational models.

Deûnition 3.1 Let B i
2 be the union of intersections of i distinct irreducible compo-

nents of B2.

Since B is a simple normal crossing divisor, B i
2 is a union of smooth varieties of

codimension i. Moreover, the singular locus of B i
2 is exactly B i+1

2 . On M0,7, B4
2 is an

emptyset, B3
2 is the union of all F-curves of type F1,2,2,2. Each irreducible component

of B2
2 is isomorphic to M0,5. Finally, B1

2 = B2.

Proposition 3.2 Let D be a symmetric eòective divisor on M0,7.
(i) If D ∈ [ψ − KM0,7

,KM0,7
+ 1

3ψ], then D is semi-ample.
(ii) If D ∈ (KM0,7

+ 1
3ψ, B3], then B(D) = B3.

(iii) If D ∈ [ψ − 3KM0,7
,ψ − KM0,7

), then B(D) = B3
2.

(iv) If D ∈ [ψ − 5KM0,7
,ψ − 3KM0,7

), then B(D) = B2
2.

(v) If D ∈ [B2 ,ψ − 5KM0,7
), then B(D) = B2.

Proof By [32, _eorem 1.2] and Corollary 2.7, the nef cone of M0,7 is generated by
ψ − KM0,7

and KM0,7
+ 1

3ψ. Moreover, KM0,7
+ 1

3ψ is the pull-back of an ample divi-
sor on M0,A where A = ( 1

3 ,
1
3 , . . . ,

1
3 ) (See the proof of [41, _eorem 3.1]. In par-

ticular, the right-hand side of [41, Equation (7)] is zero.). _e opposite extremal ray
ψ − KM0,7

is also semi-ample. Indeed, by comparing the intersection numbers, it is
straightforward that ψ − KM0,7

is proportional to the pull-back of the canonical po-
larization on the Veronese quotient V 3

A where A = ( 3
7 , . . . ,

3
7 ) ([17, _eorem 2.1]).

_erefore the two endpoints of this interval, and hence all divisors in the interval,
are semi-ample divisors. If D ∈ (KM0,7

+ 1
3ψ, B3], then B(D) ⊂ B3 since KM0,7

+ 1
3ψ

is semi-ample and D is an eòective linear combination of KM0,7
+ 1

3ψ and B3. By
Corollary 2.7, F1,1,1,4 ⋅ D < 0 so F1,1,1,4 ⊂ B(D). Since F1,1,1,4 covers an open dense
subset of B3, B(D) = B3. If D ∈ [B2 ,ψ − KM0,7

), then B(D) ⊂ B2 by a similar rea-
son. By Corollary 2.7, F1,2,2,2 ⋅ D < 0 if D ∈ [B2 ,ψ − KM0,7

), thus F1,2,2,2 ⊂ B(D).
If D ∈ [B2 ,ψ − 3KM0,7

), A ⋅ D < 0 and A covers a dense open subset of B2
2. _us

B2
2 ⊂ B(D). Finally, if D ∈ [B2 ,ψ−5KM0,7

), C5 ⋅D < 0. Since C5 covers an open dense
subset of B2, B2 ⊂ B(D). In particular, we obtain Item (5).

Now it suõces to show thatB(D) ⊂ B3
2 ifD ∈ [ψ−3KM0,7

,ψ−KM0,7
) andB(D) ⊂ B2

2
if [ψ − 5KM0,7

,ψ − 3KM0,7
). Let BI be an irreducible component of B2 and let BJ be an

irreducible component of B3 such that BI∩BJ /= ∅. For E = 5B2+3B3 =
3
2 (ψ−5KM0,7

),
by using Keel’s relations ([31, p. 550]) and a computer algebra system, we can ûnd a
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divisor E′ ∈ ∣E∣ such that E′ is a non-negative integral linear combination of boundary
divisors such that the coeõcients of BI and BJ are zero. For example, if I = {1, 2} and
J = {3, 4, 5}, then

E ≡ 12B{1,4} + 9(B{2,5} + B{2,6} + B{5,6})

+ 6(B{1,3} + B{1,7} + B{2,3} + B{2,7} + B{3,4} + B{3,7} + B{4,7})

+ 3(B{1,5} + B{1,6} + B{3,5} + B{3,6} + B{4,5} + B{4,6} + B{5,7} + B{6,7})

+ 15B{2,5,6} + 12(B{1,4,7} + B{1,3,4})

+ 6(B{1,3,7} + B{1,4,5} + B{1,4,6} + B{2,3,5} + B{2,3,6}

+ B{2,3,7} + B{2,5,7} + B{2,6,7} + B{3,4,7})

+ 3(B{1,5,6} + B{3,5,6} + B{4,5,6} + B{5,6,7}) .

Similarly, if I = {1, 2} and J = {1, 2, 3}, then

E ≡ 12B{1,4} + 9(B{2,6} + B{2,7} + B{6,7})

+ 6(B{1,3} + B{1,5} + B{2,3} + B{2,5} + B{3,4} + B{3,5} + B{4,5})

+ 3(B{1,6} + B{1,7} + B{3,6} + B{3,7} + B{4,6} + B{4,7} + B{5,6} + B{5,7})

+ 15B{2,6,7} + 12(B{1,3,4} + B{1,4,5})

+ 6(B{1,3,5} + B{1,4,6} + B{1,4,7} + B{2,3,5} + B{2,3,6}

+ B{2,3,7} + B{2,5,6} + B{2,5,7} + B{3,4,5})

+ 3(B{1,6,7} + B{3,6,7} + B{4,6,7} + B{5,6,7}) .

_ese two cases cover all possibilities where BI ∩ BJ /= ∅ up to the S7-action. _us,
the support of E′ does not contain a general point of BI and a general point of BI ∩BJ .
_ereforeB(E)must be contained in B2

2. Sinceψ−KM0,7
is semi-ample, for all divisors

D ∈ [ψ − 5KM0,7
,ψ − KM0,7

), B(D) ⊂ B2
2 and (iv) is proved.

Finally, let BI , BK be two irreducible components of B2 whose intersection is non-
empty. For F = 4B2 + 3B3 = 3

2 (ψ − 3KM0,7
), by using a similar idea, we can ûnd a

divisor F′ ∈ ∣F∣ such that F′ is a non-negative integral linear combination of boundary
divisors such that the coeõcients of BI and BK are zero. Indeed, if I = {1, 2} and
K = {3, 4}, then

F ≡ 12B{1,3} + 9(B{2,4} + B{2,6} + B{4,6})

+ 6(B{1,5} + B{1,7} + B{3,5} + B{3,7})

+ 3(B{2,5} + B{2,7} + B{4,5} + B{4,7} + B{5,6} + B{5,7} + B{6,7})

+ 18B{2,4,6} + 15(B{1,3,5} + B{1,3,7})+
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+ 6(B{1,5,7} + B{2,4,5} + B{2,4,7} + B{2,5,6} + B{2,6,7} + B{3,5,7}

+ B{4,5,6} + B{4,6,7})

+ 3(B{1,2,3} + B{1,3,4} + B{1,3,6}) .

_us, a general point of B2
2 is not contained in B(F). _e only remaining locus in B2

is B3
2. Hence, B(F) ⊂ B3

2 and the same holds for all D ∈ [ψ − 3KM0,7
,ψ − KM0,7

).

We summarize the above result as Figure 3.

KM0,7B2

ψ

B3

KM0,7
+ 1

3ψ

B3

B2

∅

B2
2

B3
2

ψ − KM0,7

ψ − 3KM0,7

ψ − 5KM0,7

Figure 3: Stable base locus decomposition of M0,7

4 Mori’s Program for M0,7

In this section, we present the ûrst main theorem (_eorem 1.1) of this paper. Before
proving it, we describe some moduli spaces appearing in the theorem.

4.1 Moduli of Weighted Pointed Stable Curves

_e moduli space M0,A of weighted pointed stable curves, in (ii), is constructed
in [25]. For a collection of positive rational numbers (so called weight data) A =

(a1 , a2 , . . . , an) with 0 < a i ≤ 1 and∑ a i > 2, there is a ûne moduli space of pointed
curves (C , x1 , . . . , xn) such that
● C is a reduced, connected projective curve with pa(C) = 0;
● (C ,∑ a ix i) is a semi-log canonical pair;
● ωC +∑ a ix i is ample.
In contrast to M0,n , for a subset I ⊂ [n], if ∑i∈I a i ≤ 1, then {x i}i∈I may collide at a
smooth point of C. But because of the last condition, each tail of C has suõciently
many marked points in the sense that their weight sum is greater than one. Also note
that M0,n = M0,(1,1, . . . ,1).

_e moduli space M0,A is smooth and birational to M0,n . Furthermore, there
is a reduction map ρA∶M0,n → M0,A for any weight data, which is a divisorial
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contraction. _e map ρA sends a pointed curve (C , x1 , x2 , . . . , xn) to a new curve
(C , x 1 , x2 , . . . , xn), which is obtained by contracting all tails with weight sums ≤ 1 to
the attaching point.

Example 4.1 For the case where n = 7 and A = ( 1
3 , . . . ,

1
3 ), ρA is the contraction

of B3. A general point (C1 ∪ C2 , x1 , x2 , . . . , x7) has a tail with three marked points.
_en the sum is precisely one, so the tail is contracted to a point. Note that it forgets
the cross ratio of three marked points and a nodal point. _us, the image of B3 is a
codimension two subvariety of M0,A. Figure 4 shows the contraction. _e number
on a marked point is the multiplicity.

⇒

3

Figure 4: _e reduction map ρA∶M0,7 →M0,A where A = ( 1
3 , . . . ,

1
3 )

4.2 Veronese Quotients

_eVeronese quotients, V d
A in (iii), and their geometric properties have been studied

in [15–17]. Originally, they were constructed as GIT quotients of an incidence variety
coming from the Chow varieties of curves and points in Pd .

Let Chow1,d(Pd) be the irreducible component of the Chow variety that para-
metrizes rational normal curves and their degenerations. Consider the incidence va-
riety

I ∶= {(C , x1 , . . . , xn) ∈ Chow1,d(Pd) × (Pd)n
∣ x i ∈ C} .

_ere is a natural SLd+1-action on I and Chow1,d(Pd)×(Pd)n . _ere is also a canon-
ical polarization OChow(1) on Chow1,d(Pd). For a sequence of nonnegative rational
numbers (γ, a1 , a2 , . . . , an), deûne aQ-polarization on I that is the pull-back of

LA ∶= OChow(γ) ⊗O(a1) ⊗ ⋅ ⋅ ⋅ ⊗O(an)

on Chow1,d(Pd) × (Pd)n . We will normalize the linearization by imposing a numer-
ical condition (d − 1)γ +∑ a i = d + 1. _us, γ is determined by A ∶= (a1 , a2 , . . . , an)

and d. If 0 < a i < 1 and 2 < ∑ a i ≤ d + 1 (hence 0 ≤ γ < 1), then the semistable
locus Iss is nonempty ([16, Proposition 2.10]), so we obtain a nonempty GIT quotient
V d
A ∶= I//LASLd+1.

Remark 4.2 A simple observation on the semistability is that every stable curve is
non-degenerate. A non-degenerate degree d curve in Pd has several nice geometric
properties: (1) Every connected subcurve of degree e spans Pe ⊂ Pd , and (2) all singu-
larities are analytically locally the union of coordinate axes in someCk ([16, Corollary
2.4]).
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For simplicity, consider general polarizations such that Iss = Is . _ese quotients
have modular interpretations, as moduli spaces of stable polarized pointed curves.
For a precise deûnition and proof, consult [16, Section 5.1].
For any weight data A and d > 0, there is a reduction map ϕ∶M0,n → V d

A ([16,
_eorem 1.1]), which preserves M0,n . For each (possibly reducible) connected tail C′
of (C , x1 , x2 , . . . , xn) ∈ M0,n , we may deûne a numerical value

σ(C′) ∶= min{max{⌈
∑x i∈C′ a i − 1

1 − γ
⌉ , 0} , d} .

Because the dual graph of C is a tree, we can deûne σ(C′) for every irreducible
component C′, by setting σ(C′) ∶= σ(C′′ ∪ C′) − σ(C′′) for any tail C′′ such that
C′′ ∪ C′ is connected. _e reduction map ϕ sends (C , x1 , x2 , . . . , xn) to a new curve
(C , x 1 , . . . , xn), which is obtained by contracting all irreducible components C′ with
σ(C′) = 0.

Example 4.3 _e n = 7, d = 3, and A = ( 4
7 , . . . ,

4
7 ) (hence γ = 0) case. _ere are

only two types of curves in M0,7 with contractions.
(i) A chain of curves C = C1 ∪ C2 ∪ C3 such that C1 has two marked points, C2 has

a marked point, and (possibly reducible) C3 has four marked points. _en C2 is
contracted to a point.

(ii) A comb of rational curves with three tails C1 ,C2 ,C3 with twomarked points re-
spectively, and a spine C4 with a marked point. C4 is contracted to a triplenodal
singularity with a marked point on it.

Note that for the ûrst case, the contracted component has only three special points.
_us, near the point, M0,7 and V 3

A are locally isomorphic. But in the second case, the
spine has four special points, so it has a one-dimensional moduli. _us, the map ϕ
contracts the loci of such curves, which are F-curves of type F1,2,2,2. So ϕ is a small
contraction.

Remark 4.4 An important observation for Example 4.3 is that we can replace the
Chow variety by the moduli space of stable maps M0,0(P3 , 3). _ere is a cycle map

f ∶M0,0(Pd , d) → Chow1,d(Pd).

When d ≤ 3, if we take the locus M0,0(Pd , d)nd parametrizing stable maps with non-
degenerate images and if Chow1,d(Pd)nd is the image of it, then the restricted cycle
map is an isomorphism, because there is no degree 0 component with positive dimen-
sional moduli. _erefore,

M0,0(P3 , 3)nd
× (P3

)
n
Ð→ Chow1,3(P3

)
nd
× (P3

)
n

is an isomorphism and Is is a subset of Chow1,3(P3)nd × (P3)n . _erefore, we can
replace the Chow variety by M0,0(P3 , 3).
Furthermore, M0,n ≅ M0,n(Pd , d)//SLd+1 for an appropriate linearization ([16,

Proposition 4.6]). And the morphism M0,7 → V 3
A is obtained by taking the quotient

of the map of
M0,7(P3 , 3) Ð→M0,0(P3 , 3) × (P3

)
7 .
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⇒

⇒

Figure 5: _e reduction map ϕ∶M0,7 → V 3
A where A = ( 4

7 , . . . ,
4
7 )

_e other birational models Mi
0,7 with i = 1, 2, 3 are new spaces that do not appear

in the literature. Wewill describe them concretely using explicit blow-ups and downs.

4.3 Outline of the Proof

_e proof of_eorem 1.1 involves explicit but long computations of several birational
modiûcations. So we outline the proof here and prove it in the following sections.

Outline of the Proof of_eorem 1.1 Since the symmetric nef cone is generated by
ψ − KM0,7

and KM0,7
+ 1

3ψ, D in item (i) is an ample divisor. _us, M0,7(D) ≅ M0,7.
Item (ii) is established in [41, _eorem 3.1]. If D = KM0,7

+ 1
3ψ, then M0,7(D) ≅

M0,A. Because for D in the range of item (ii) the stable base locus B(D) is B3, a�er
removing B3, we obtain item (ii) in general.
Consider the reduction map ϕ∶M0,7 → V 3

A in item (iii). By applying [17, _eo-
rem 3.1], we can compute the pull-back DA of the canonical polarization on V 3

A . With
the notation in [17], item (iii) is the case where γ = 0, A = ( 4

7 ,
4
7 , . . . ,

4
7 ). So it is

straightforward to check that F1,2,2,2 ⋅DA = 0. Since dimN1(M0,7)
S7
Q = 2, this implies

that DA is proportional to ψ − KM0,7
by Corollary 2.7. _erefore,

M0,7(ψ − KM0,7
) ≅ M0,7(DA) ≅ V 3

A .

Items (iv)–(vii) are obtained by careful computations of �ips and contractions. We
give a proof of item (iv) in Proposition 4.6. Items (v) and (vi) are proved in Lemma4.12
and Proposition 4.8, respectively. We prove item (vii) in Proposition 4.15.

Since B2 and B3 are rigid, item (viii) follows immediately.

Remark 4.5 _e direction toward the canonical divisor have been well under-
stood for all n and all (possibly non-symmetric) weight data. For every n and A =
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(a1 , a2 , . . . , an),

M0,n(KM0,n
+∑ a iψ i) ≅ M0,A.

For a proof, see [41]. Also, for a generalization to Mg ,n with g > 0, consult [42].

4.4 First Flip

In this section, we describe the ûrst �ipM0,7 ⇢M3
0,7 in terms of blow-ups and downs.

Proposition 4.6 Let M̃3
0,7 be the blow-up of M0,7 along B3

2. A connected compo-
nent of the exceptional locus is isomorphic to P1 × P2. Let M3

0,7 be the blow-down of
these exceptional loci to the opposite direction. _en M3

0,7 is smooth and is the D-�ip of
ϕ∶M0,7 → V 3

A for D ∈ (ψ − 3KM0,7
,ψ − KM0,7

) andM0,7(D) ≅ M3
0,7.

Proof On M0,7, B3
2 is the disjoint union of 105 F-curves of type F1,2,2,2. Take a com-

ponent F of B3
2, which is an F-curve BI ∩BJ ∩BK , where ∣I∣ = ∣J∣ = ∣K∣ = 2. _e normal

bundle N ∶= NF/M0,7
is isomorphic toO(BI)⊕O(BJ)⊕O(BK)∣F . By [32, Lemma 4.5],

N ≅ O(−ψp)⊕O(−ψq)⊕O(−ψr)where p, q, r are attaching points of three tails. Since
F ⋅ ψx = 1 for any attaching point x, N ≅ OP1(−1)3.

Let π3∶ M̃3
0,7 →M0,7 be the blow-up. _e blown-up space M̃3

0,7 is a smooth variety.
Also, a connected component E of the exceptional locus is P(N) ≅ P(OP1(−1)3) ≅

P1 × P2, and the normal bundle NE/M̃3
0,7

is isomorphic to OP1
×P2(−1,−1). _us, for a

point y ∈ P2, the restricted normal bundle to a ûber P1 × {y} is OP1(−1). _erefore,
there exists a smooth contraction M3

0,7, which contracts the P1-ûbration structure
of the exceptional divisor. Let π′3∶ M̃3

0,7 →M3
0,7 be the contraction. Since the positive

dimensional ûber of π′3 is contracted by ϕ○π3, there is a birationalmap ϕ′3∶M
3
0,7 → V 3

A
such that ϕ ○ π3 = ϕ′3 ○ π′3 by the rigidity lemma ([38, Proposition II.5.3]).

M̃3
0,7

π3

}}

π′3

!!
M0,7

ϕ
!!

M3
0,7

ϕ′3}}
V 3
A

We claim that ϕ′3∶M
3
0,7 → V 3

A is a D-�ip for D ∈ (ψ − 3KM0,7
,ψ − KM0,7

). _e
exceptional set of ϕ is exactly B3

2 = ∪F1,2,2,2. From Corollary 2.7, −D ⋅ F1,2,2,2 > 0.
_us, −D is ϕ-ample. Note that a connected component of the positive dimensional
exceptional locus of ϕ′3 is isomorphic to P2. Let L̃ be a line class of type (0, 1) in
the exceptional divisor E ≅ P1 × P2 on M̃3

0,7, and let L ∶= π′3(L̃) which is a line on
the exceptional locus of ϕ′3. Note that on ϕ′3-exceptional P2, BI ∣P2 , BJ ∣P2 , BK ∣P2 are
line classes. So B2 ⋅ L = 3. On the other hand, B3 intersects E three times, and each
irreducible component of the intersection is isomorphic to {∗} × P2 ⊂ P1 × P2 ≅ E;
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the divisor B3 on M3
0,7 vanishes along P2 with multiplicity three. Hence, B3 ⋅ L = −3.

Now from ψ −KM0,7
= 2B2 + 2B3, for D ∈ (B2 ,ψ −KM0,7

), D ⋅ L > 0, so D is ϕ′3-ample.
Furthermore, we can see that forD ∈ (ψ−3KM0,7

,ψ − KM0,7
),D is ample onM3

0,7. If
a curve classC is in the image of exceptionalP2, then we already proved thatC ⋅D ≥ 0.
If C is not contained in the exceptional locus, from Proposition 3.2, mD is movable
for m ≫ 0 on the outside of B3

2, thus C ⋅D ≥ 0 ifD ∈ [ψ−3KM0,7
,ψ−KM0,7

]. _erefore,
the nef cone ofM3

0,7/S7 is generated byψ−KM0,7
andψ−3KM0,7

. Since the ample cone
is the interior of the nef cone, the desired result follows.

Remark 4.7 A�er the ûrst �ip, the proper transform of B2
2 becomes a disjoint union

of its irreducible components. Each irreducible component is isomorphic to P1 × P1.

4.5 Second Flip

_e description of the second �ip is more complicated. It is a composition of two
smooth blow-ups, a smooth blow-down, and a singular blow-down. In this section,
we will describe the second �ip. Since the �ipping locus is the disjoint union of ir-
reducible components of the proper transform of B2

2, it is enough to focus on the
modiûcation on an irreducible component. We will give an outline of the descrip-
tion ûrst, and a�er that we give justiûcations of statements as a collection of lemmas.
Figure 6 shows the decomposition of the �ip. By abusing notation, we say B2

2 for the
proper transform of B2

2 on M3
0,7.

On M3
0,7, let X0 be an irreducible component of B2

2. _en X0 is isomorphic to
P1 × P1, and its normal bundle NX0/M

3
0,7

is isomorphic to O(−2,−1) ⊕ O(−1,−2)
(Lemma 4.9). Note that on M3

0,7, since we have blown-up B3
2, X0 is the intersection

of exactly two irreducible components of B2, and no other irreducible component of
B2 intersects X0. From the computation of the normal bundle, the direct summands
O(−2,−1) and O(−1,−2) correspond to the normal bundle to two irreducible com-
ponents of B2 containing X0.

Take the blow-up M1 of M0 ∶= M3
0,7 along X0. _en the exceptional divisor X1 is

isomorphic to P(O(−2,−1) ⊕ O(−1,−2)). It has two sections Y11 and Y12, which are
intersections with the proper transform of irreducible components of B2. _e normal
bundle NY11/M1 is isomorphic to O(−2,−1) ⊕ O(1,−1) and NY12/M1 ≅ O(−1,−2) ⊕
O(−1, 1) (Lemma 4.10).

Let M2 be the blow-up ofM1 along Y11 ⊔Y12. Let Y21 (resp. Y22) be the exceptional
divisor over Y11 (resp. Y12). Finally, let X2 be the proper transform of X1. Since X2 is
a blow-up of two Cartier divisors, Y11 ,Y12 ⊂ X1, X2 is isomorphic to X1. On the other
hand, Y21 ≅ P(O(−2,−1) ⊕O(1,−1)) and Y22 ≅ P(O(−1,−2) ⊕O(−1, 1)).

If we ûx the ûrst coordinate onY11, then the restriction ofNY11/M1 isO(−1)⊕O(−1).
So its projectivization isP1×P1. _is implies thatY21 has anotherP1 ûbration structure
that does not come from Y21 → Y11. Moreover, if we restrict OY21(Y21) to a ûber, it is
isomorphic toOP1(−1). _erefore, we can blow-down this P1 ûbration, and the result
is smooth. _en Y22 can be contracted in the same way. (But note that the direction of
ûbrations are diòerent.) Let M3 be the blow-downofY21 andY22, and letY31 (resp.Y32,
X3) be the image of Y21 (resp. Y22, X2). _en Y31, Y32 are isomorphic to F3 and X3 is
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X0

P1

P1

M0 = M3
0,7

X1

M1

P1

Y12

Y11

M2

X2

Y22

Y21

Y21 ∩ B2

Y22 ∩ B2

F3

F3

X3 = P3

Y31 = F3

Y32 = F3

M3 Y31 ∩ B2

Y32 ∩ B2

X4

M4 = M2
0,7

Y41

Y42

Y41 ∩ B2

Y42 ∩ B2

Figure 6: Decomposition of the second �ip M3
0,7 ⇢M2

0,7

isomorphic to P3 and NX3/M3 ≅ O(−3) (Lemma 4.11). Finally, X3 can be contracted
to a point X4 in the category of algebraic spaces ([4, Corollary 6.10]). Let M4 be the
contraction. X4 is a singular point of M4. _e image Y41 (resp. Y42) of Y31 ≅ F3
(resp. Y32) is the contraction of a (−3) section, hence it is covered by a single family
of rational curves passing through the singular point. Let M2

0,7 ∶= M4. We claim
that M2

0,7 is the second �ip. _e argument is standard. _ere is a small contraction
ϕ2∶M

3
0,7 →M0,7(ψ − 3KM0,7

) (Lemma 4.12). For two modiûcations

π2∶M2 Ð→M3
0,7 and π′2∶M

3
0,7 Ð→M2

0,7 ,

by rigidity lemma, there is a morphism ϕ′2∶M
2
0,7 → M0,7(ψ − 3KM0,7

) such that ϕ2 ○

π2 = ϕ′2 ○ π′2. We prove that for D ∈ (ψ − 5KM0,7
,ψ − 3KM0,7

), D is ample on M2
0,7

(Lemma 4.13). Note that this implies the projectivity of M2
0,7. In summary, we obtain

the following result.
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Proposition 4.8 _e modiûcation M2
0,7 is the D-�ip ofM3

0,7 for

D ∈ (ψ − 5KM0,7
,ψ − KM0,7

).

We now state and prove the lemmas mentioned in the outline.

Lemma 4.9 (i) On M3
0,7, X0 ≅ P1 × P1.

(ii) _e normal bundle NX0/M
3
0,7

is isomorphic to O(−2,−1) ⊕O(−1,−2).

Proof Take an irreducible component of B2
2 on M0,7, which is isomorphic to M0,5.

Let p, q be two attaching points. One can also regard M0,5 as a universal family over
M0,4 ≅ P1 that is also isomorphic to the blow-up ofP1×P1 along three diagonal points.
Its four sections correspond to 4 marked points for M0,5. _en there are four sections
(say i , j, k, and p) such that three of them are proper transforms of trivial sections,
and one of them is the proper transform of the diagonal section. We can assume that
p is the diagonal section. _e normal bundle NM0,5/M0,7

≅ O(−ψp) ⊕ O(−ψq). By
intersection number computation, one can show that

NM0,5/M0,7
≅ π∗(O(−2,−1) ⊕O(−1,−2)) ⊗O(E i + E j + Ek),

where π∶M0,5 → P1×P1 is the blow-up along three intersection points of the diagonal
section and E i , E j , Ek are three exceptional divisors. OnM0,7, these three exceptional
curves are three components of B3

2. On M3
0,7, X0 is the blow-up of M0,5 along three

divisors and contraction along the diòerent direction. _us, X0 is the contraction of
three exceptional lines E i , E j , and Ek and is isomorphic to P1 × P1. _is proves (i).

We denote the proper transform of X0 in M̃3
0,7 by X̃. Let π1∶ X̃ →M0,5, π2∶ X̃ → X0

be two contractions. (Since B3
2 ⊂ X0 is a divisor, π1 is an isomorphism.) _en by the

blow-up formula of normal bundles [13, App. B.6.10.],

NX̃/M̃3
0,7
≅ π∗1 NM0,5/M0,7

⊗O(−E i − E j − Ek) ≅ π∗1 π
∗(O(−2,−1) ⊕O(−1,−2))

= π∗2 (O(−2,−1) ⊕O(−1,−2)) .

Since the opposite blow-up center is transversal to X,

NX/M3
0,7
≅ O(−2,−1) ⊕O(−1,−2).

Lemma 4.10 _enormal bundle NY11/M1 is isomorphic toO(−2,−1)⊕O(1,−1). Sim-
ilarly, NY12/M1 ≅ O(−1,−2) ⊕O(−1, 1).

Proof For a section Y11 = P(O(−2,−1)) ⊂ P(O(−2,−1) ⊕ O(−1,−2)) = X1, the
normal bundle is NX1/M1 ∣Y11 ≅ O(−2,−1) and NY11/X1 ≅ O(−1,−2) ⊗ O(−2,−1)∗ ≅

O(1,−1). From the normal bundle sequence

0Ð→ NY11/X1 Ð→ NY11/M1 Ð→ NX1/M1 ∣Y11 Ð→ 0,

NY11/M1 is an extension of NX1/M1 ∣Y11 by NY11/X1 . But Ext1(O(−2,−1),O(1,−1)) ≅

H1(O(3, 0)) = 0. _erefore, NY11/M1 ≅ O(−2,−1) ⊕ O(1,−1). _e computation of
NY12/M1 is similar.
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Lemma 4.11 (i) Y31 ≅ Y32 ≅ F3.
(ii) X3 ≅ P3.
(iii) NX3/M3 ≅ O(−3).

Proof Since the restriction of NY21/M2 to P1 × {∗} ⊂ Y11 is isomorphic to O(−2) ⊕
O(1), the restriction ofY21 onto the inverse image ofP1×{∗} isP(O(−2)⊕O(1)) ≅ F3.
Hence, Y31 is also isomorphic to the Hirzebruch surface F3. _is proves (i).

_e divisor X2 is isomorphic to P(O(−2,−1) ⊕ O(−1,−2)). Note that two con-
tracted loci Y21 ∩ X2 and Y22 ∩ X2 have normal bundles O(−1,−2) ⊗ O(−2,−1)∗ ≅

O(1,−1) and O(−1, 1)), respectively. _is is isomorphic to the blow-up of P3 along
two lines L1 and L2 in general position. Indeed, if we consider the universal (or total)
space of all lines intersecting L1 and L2, then naturally it is identiûed with BlL1∪L2P3.
_us, this blown-up space has a P1-ûbration structure over (both) exceptional divi-
sors isomorphic to P1 ×P1. _e normal bundles to these two exceptional divisors are
O(1,−1) and O(−1, 1), respectively. _us, X2 ≅ BlL1∪L2P3, and we have X3 ≅ P3.
For a diagonal embedding P1 ↪ P1 × P1 = X0, if we restrict to P(O(−2,−1) ⊕

O(−1,−2)) → X0, we obtain a trivial bundle P(O(−3) ⊕ O(−3)) → P1. Take a gen-
eral constant section s ↪ P(O(−3) ⊕ O(−3)). _en the restricted normal bundle
NX1/M1 ∣s is isomorphic to OP1(−3). We can choose s that does not intersect Yi j dur-
ing modiûcations. _us, NX1/M1 ∣s = NX3/M3 ∣s and s is a line in X3 ≅ P3. Hence,
NX3/M3 ≅ O(−3).

Lemma 4.12 For D = ψ − 3KM0,7
, there is a small contraction ϕ2∶M

3
0,7 → M0,7(D)

that contracts a connected component of B2
2 to a point.

Proof Since X0 is isomorphic to P1 × P1, it is covered by two rational curve classes
ℓ1 = P1×{x} and ℓ2 = {y}×P1. For a general x, ℓ1 does not intersect the �ipping locus
of M0,7 ⇢M3

0,7. Moreover, this is a curve class A in Remark 2.5. So by Corollary 2.7,
ℓ1 ⋅D = 0. For the same reason, ℓ2 ⋅D = 0. Since ℓ1 , ℓ2 generates the cone of curves of
P1×P1, D is numerically trivial on B2

2. Because the only numerically trivial divisor on
B2

2 is a trivial divisor, D does not have any base points on B2
2. By Proposition 3.2, on

the outside of B2
2, there is no base point ofmD for m ≫ 0, too. _usD is a semi-ample

divisor on M3
0,7. So there is a regular morphism ϕ2∶M

3
0,7 →M3

0,7(D) ≅ M0,7(D) that
contracts B2

2, a codimension two subvariety, to a point.

Lemma 4.13 For D ∈ (ψ − 5KM0,7
,ψ − 3KM0,7

), D is ample on M2
0,7.

Proof Because it is a contraction of M3, which is a projective variety, M2
0,7 satisûes

the assumption of [11, Lemma 4.12]. _us, we can apply Kleiman’s criterion, and we
will show that for D ∈ [ψ − 5KM0,7

,ψ − 3KM0,7
], D is nef.

Since mD for m ≫ 0 is base-point-free for all M0,7 − B2
2 ≅ M2

0,7 − Y41 ∪ Y42, it
is enough to check that for all curve classes on Y41 ∪ Y42, the intersection with D is
nonnegative. _e curve cone of Y41 is generated by a single rational curve ℓ, which is
the image of a ûber f in F3. So it suõces to compute D ⋅ ℓ. _e computation of the
intersection number of the curve class in Y42 is identical.
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It is easy to see that B2 ⋅ℓ = 1 from the description ofM4. To compute B3 ⋅ℓ, we need
to keep track of the proper transform of B3. Note that there are seven irreducible com-
ponents (say B31 , . . . , B37) of B3 intersecting X0. If we write Pic(X0) = ⟨h1 , h2⟩where
h1 (resp. h2) is the curve class of P1×{∗} (resp. {∗}×P1), three of them (B31 , B32 , B33)
are h1, another three of them (B34 , B35 , B36) are h2, and the last one (B37) is h1 + h2
class, which is the diagonal set-theoretically. By keeping track of the proper trans-
forms, one can check that on M3, Y31 ⊂ B3i for i = 1, 2, 3, 7, Y31 ∩ B3 j = P1 = f for
j = 4, 5, 6. Also, X3 ∩ Y3k is a plane for k = 1, 2, . . . , 6, but X3 ∩ Y37 is a quadric
containing two skew lines Y31 ∩ X3 ,Y32 ∩ X3.
Analytic locally near X4, M4 is isomorphic to a cone over a degree 3 Veronese

embedding ofP3 inP19, Y41 is a cone over a twisted cubic curve, andM3 is the blow-up
of the conical point. If we take the pull-back of a hyperplane class H ⊂ P20 containing
X4 for π∶M3 → M4, then π∗H = H̃ + X3, where H̃ is the proper transform of H.
Note that H̃ ∩ X3 ⊂ X3 ≅ P3 is a cubic surface. _erefore, π∗π∗B3i = B3i +

1
3X3 for

i = 1, . . . , 6, π∗π∗B37 = B37 +
2
3X3. Now

B3 ⋅ ℓ = π∗B3 ⋅ f =
7

∑
i=1
B3i ⋅ f + 6 ⋅

1
3
X3 ⋅ f +

2
3
X3 ⋅ f

= (B31 + B32 + B33 + B37) ⋅ f +
8
3
.

For a 1-dimensional ûber f ′ of Y21 → Y11, f ′ maps to f by Y21 → Y31. By the projection
formula for ρ∶M2 → M3,

B3i ⋅ f = ρ∗B3i ⋅ f ′ = B̃3i ⋅ f ′ + Y21 ⋅ f ′ = Y21 ⋅ f ′ = −1

if we denote the proper transform of B3i by B̃3i . _erefore

B3 ⋅ ℓ = −4 +
8
3
= −

4
3
.

For D = ψ − aKM0,7
, D ≡ 5+a

3 B2 + 2B3 by Corollary 2.6. So D ⋅ ℓ = a−3
3 , and it is

nonnegative if a ≥ 3.

4.6 Divisorial Contraction

_e last birational model M1
0,7 is a divisorial contraction.

Lemma 4.14 Let D = ψ − 5KM0,7
. _en D is a semi-ample divisor on M2

0,7.

Proof By Proposition 3.2, the stable base locus is contained in the union of the
proper transform of B2 and ∪Y4i . By the proof of Lemma 4.13, D is ample on ∪Y4i .
So it suõces to show that D is semi-ample on the proper transform of B2.

Since D is in the closure of the ample cone of M2
0,7, D is nef. In particular, if BI is

an irreducible (equivalently on M2
0,7, connected) component of B2, D∣BI is nef. But

on M0,7, BI ≅ M0,6 so it is a Mori dream space ([29, Corollary 2.16], or [5, _eorem
1.4]). Since the proper transform of BI on M2

0,7 is a �ip of BI , it is a Mori dream space
as well. _us, for m ≫ 0, mD∣BI is base-point-free. _us, B(D) = ∅ on M2

0,7, and it
is semi-ample.
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Let M1
0,7 = M0,7(ψ − 5KM0,7

) = M2
0,7(ψ − 5KM0,7

). Since B2 is covered by a curve

class C5 such that C5 ⋅ D = 0, M1
0,7 is a divisorial contraction of M2

0,7.

Proposition 4.15 For D ∈ (B2 ,ψ − 5KM0,7
],M0,7(D) ≅ M1

0,7.

Proof Note that for D ∈ (B2 ,ψ − 5KM0,7
], D ≡ (ψ − 5KM0,7

) + cB2 for some c ≥ 0.
Because B2 is an exceptional divisor for ϕ1∶M

2
0,7 →M1

0,7,

M0,7(D) ≅ M2
0,7(D) ≅ M2

0,7(ψ − 5KM0,7
) ≅ M1

0,7 .

5 KKO Compactification

In this section, we review of KKO compactiûcation ofmoduli of curves of genus g in a
smooth projective variety X, which will be used to describe a modular interpretation
of M3

0,7 in the next section. For the details of its construction, consult the original
paper of Kim, Kresch, and Oh [35].

5.1 FM Degeneration Spaces

Fix a nonsingular projective variety X. Let X[n] be the Fulton–MacPherson space
of n distinct ordered points in X. It is a compactiûcation of the moduli space of n
ordered distinct points on X, which is obviously Xn ∖∆. See [14] for the construction
and its geometric properties. _en X[n] has a universal family π∶X[n]+ → X[n] and
n disjoint universal sections σi ∶X[n] → X[n]+ for 1 ≤ i ≤ n.
For a point p ∈ X[n], the ûber π−1(p) is a possibly reducible variety, whose irre-

ducible components are smooth and equidimensional. As an abstract variety, π−1(p)
can be constructed in the following manner. Set X0 ∶= X. Take a point x0 ∈ X and
blow-up X0 along x0. Let X̃0 ∶= Blx0X0 and let E1 be the exceptional divisor, which
is naturally isomorphic to P(Tx0X0). Now consider the compactiûed tangent space
PT ∶= P(Tx0X0 ⊕C), which has a subvariety P(Tx0X0) ≅ PT − Tx0X0. Glue X̃0 and
PT along P(Tx0X0) and let X1 be the result.

We are able to continue this construction by taking a nonsingular point x1 ∈ X1
and constructing X2 in a same way. If we repeat this procedure several times, we
inductively obtain Xk , which is a reducible variety. _us, π−1(p) is isomorphic to
Xk for some k ≥ 0 and some x0, x1, ⋅ ⋅ ⋅, xk−1. Note that there is a natural projection
Xk → X. It can be extended to a canonical morphism πX ∶X[n]+ → X.

Remark 5.1 (i) _e singular locus of Xk is isomorphic to a union of disjoint
Pr−1’s.

(ii) Naturally the dual graph of Xk is a tree with a root. _e proper transform of X0
corresponds to the root. A non-root component is called a screen. _e level of
an irreducible component of Xk is deûned by the number of edges from the root
to the vertex representing the component.

(iii) If an irreducible component Y of Xk does not contain any x i , then Y ≅ Pr . _en
Y is called an end component.
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(iv) If an irreducible component Z of Xk is not the root component and it contains
only two singular loci, then Z ≅ BlpPr , which is a ruled variety, and Z is called
a ruled component.

Deûnition 5.2 ([35, Deûnition 2.1.1]) A pair (πW/B ∶W → B, πW/X ∶W → X) is
called a Fulton–MacPherson degeneration space of X over a scheme B (or an FM
degeneration space of X over B) if:
● W is an algebraic space;
● Étale locally it is a pull-back of the universal family π∶X[n]+ → X[n]. _at is, there

is an étale surjective morphism B′ → B from a scheme B′, n > 0 and a Cartesian
diagram

W ∣B′ //

��

X[n]+

��
B′ // X[n],

where the pull-back of πW/X to W ∣B′ is equal to W ∣B′ → X[n]+ → X.

X0 ≅ Bl2X

Bl1Pr

Pr Bl2Pr

PrPr

Figure 7: An example of an FM degeneration space

Let W be an FM space over C. An automorphism of W/X is an automorphism
φ∶W →W ûxing the root component, or equivalently, πW/X ○ φ = πW/X . IfW ≇ X,
Aut(W/X) is always positive dimensional. More precisely, for an end component Y
ofW , the automorphism ûxing all W except Y is isomorphic to Cr ⋊ C∗, the group
of homotheties. Also, for a ruled component Z of W , the automorphism ûxing W
except Z is isomorphic toC∗. _e other irreducible components do not contribute to
a non-trivial automorphism ofW/X.

We state a useful lemma to show several geometric properties of KKO compacti-
ûcations.
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Lemma 5.3 For m > n, there is a commutative diagram

X[m]+ //

��

X[n]+

��
X[m] // X[n].

_e two vertical maps are universal families, and the horizontal maps are obtained by
forgetting m − n marked points and stabilizing.

Proof By induction, it suõces to show for m = n + 1 case. Note that X[n + 1] is
obtained by taking a blow-up of X[n]+ along the image of n sections ([14, p. 195]).
On the other hand, X[n]+ is constructed by taking iterated blow-ups of X[n] × X.
Hence, we have a commutative diagram

X[n + 1]+ //

��

X[n]+

��
X[n + 1] × X

��

X[n] × X

��
X[n + 1]

@@

// X[n].

5.2 Stable Unramified Maps

Deûnition 5.4 ([35, Deûnition 3.1.1]) A collection of data

((C , x1 , x2 , . . . , xn), πW/X ∶W → X , f ∶C →W)

is called an n-pointed stable unramiûed map of type (g , β) to an FM degeneration
spaceW of X if the following hold:
(i) (C , x1 , x2 , . . . , xn) is an n-pointed prestable curve with arithmetic genus g;
(ii) πW/X ∶W → X is an FM degeneration space of X over C;
(iii) (πW/X ○ f )∗[C] = β ∈ A1(X);
(iv) f −1(W sm) = Csm , where Y sm is the smooth locus of Y ;
(v) f ∣C sm is unramiûed everywhere;
(vi) f (x i) for 1 ≤ i ≤ n are distinct;
(vii) at each nodal point p ∈ C, there are coordinates

Ôp ≅ C[[x , y]]/(x , y) and Ô f (p) ≅ C[[z1 , . . . , zr+1]]/(z1z2)

such that f̂ ∗∶C[[z1 , . . . , zr+1]]/(z1z2) → C[[x , y]]/(xy) maps z1 to xm and z2 to
ym for some m ∈ N;

(viii) there are ûnitely many automorphisms σ ∶C → C such that σ(x i) = x i for 1 ≤
i ≤ n and f ○ σ = φ ○ f for some φ ∈ Aut(W/X).

We can deûne the level of an irreducible component C′ of C by the level of the
component ofW containing f (C′). A component C′ with a positive level is called a
ghost component.
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Remark 5.5 _e last condition about the ûniteness of automorphisms can be de-
scribed by conditions on end components and ruled components in the followingway.
A map f ∶C →W has a ûnite automorphism group if and only if:
(i) for each end component Y ofW , the number of marked points on Y is at least

two or there is an irreducible component D of C such that f (D) ⊂ Y and
deg f (D) ≥ 2;

(ii) for each ruled component Z of W , there is at least one marked point on Z or
there is an irreducible component D ⊂ C such that f (D) is not contained in a
ruling.

Deûnition 5.6 ([35, Deûnition 3.2.1]) A collection of data

((π∶C→ B, σ1 , . . . , σn), (πW/B ∶W → B, πW/X ∶W → X), f ∶C→W)

is called a B-family of n-pointed stable unramiûed maps of type (g , β) to FM degener-
ation spaces of X, if:
(i) (π∶C→ B, σ1 , σ2 , . . . , σn) is a family of n-pointed genus g prestable curves over

B;
(ii) (πW/B ∶W → B, πW/X ∶W → X) is an FM degeneration space of X over B;
(iii) over each geometric point of B, the data restricted to the ûber is a stable unram-

iûed map of type (g , β) to an FM degeneration space of X;
(iv) for every geometric point b ∈ B, if p ∈ Cb is a nodal point, then there are two

identiûcations
● Ô f (p) ≅ ÔπW/B(p)[[z1 , z2 , . . . , zr+1]]/(z1z2 − t) for some t ∈ ÔπW/B(p),
● Ôp ≅ Ôπ(p)[[x , y]]/(xy − t′) for some t′ ∈ Ôπ(p) such that f̂ ∗(z1) = α1xm ,
f̂ ∗(z2) = α2 ym for some m ∈ N, α1 , α2 ∈ Ô

∗

p , and α1α2 ∈ Ôπ(p).

LetUg ,n(X , β) be the ûbered category of n-pointed unramiûed stable maps to FM
degeneration spaces of X of type (g , β).

_eorem 5.7 ([35, Corollary 3.3.3]) _e ûbered category Ug ,n(X , β) is a proper
Deligne–Mumford stack of ûnite type.

As in the title of this section, we will call Ug ,n(X , β) the KKO compactiûcation
of moduli space of embedded curves. By the Keel–Mori theorem, we have a coarse
moduli space U g ,n(X , β) in the category of algebraic spaces.

5.3 Some Geometric Properties

In this section, we explain several geometric/functorial properties of Ug ,n(X , β).
As in the case of moduli space of ordinary stable maps, there are several functorial

maps. Let Mg ,n(X , β) be the moduli stack of stable maps ([39]).

Proposition 5.8 _ere is a functorial morphism

S∶Ug ,n(X , β) Ð→Mg ,n(X , β).
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Proof Let

((π∶C→ B, σ1 , . . . , σn), (πW/B ∶W Ð→ B, πW/X ∶W Ð→ X), f ∶CÐ→W)

be a B-family of n-pointed stable unramiûed maps of type (g , β) to FM degeneration
spaces of X. _en we have ((π∶C → B, σ1 , . . . , σn), πW/X ○ f ∶C → X), which is a �at
family of maps from n-pointed curves to X. By running relative MMP with respect
to ωC/B +∑ σi , we can stabilize πW/X ○ f and obtain

((π∶CÐ→ B, σ 1 , . . . , σ n), f ∶CÐ→ X) .

_ese two steps are both functorial, we can obtain the desired morphism S.

Proposition 5.9 _ere are functorial morphisms

ev i ∶Ug ,n(X , β) Ð→ X

for 1 ≤ i ≤ n.

Proof Indeed ev i = e i ○ S∶Ug ,n(X , β) → Mg ,n(X , β) → X where e i is the i-th
evaluation map for the ordinary moduli space of stable maps.

Proposition 5.10 For any T ⊂ [n], there is a functorial morphism

F∶Ug ,n(X , β) Ð→ Ug ,T(X , β)

obtained by forgetting all marked points with indices in [n] − T and stabilizing.

Proof It suõces to show the existence of F∶Ug ,n(X , β) → Ug ,n−1(X , β) which for-
gets the last marked point. For a family

((π∶CÐ→ B, σ1 , . . . , σn), (πW/B ∶W Ð→ B, πW/X ∶W Ð→ X), f ∶CÐ→W)

of n-pointed stable unramiûed maps over B, if we forget the last section σn , then the
remaining collection of data

(5.1) ((π∶CÐ→ B, σ1 , . . . , σn−1), (πW/B ∶W Ð→ B, πW/X ∶W Ð→ X), f ∶CÐ→W)

is also a family of (n − 1)-pointed unramiûed stable maps unless
(a) For a ûber of b ∈ B, there is an end component Y ofWb such that for every com-

ponentD i ofCb mapping to Y , D i is a rational curvemapping to a line injectively,
and there are exactly two marked points σn(b) and σk(b) lying on ∪D i , or

(b) for a ûber of b ∈ B, there is a ruled component Z ofWb such that for every com-
ponent D j of Cb mapping to Z, the image of D j is a ruling and only σn(b) lies on
∪D j . Note that D j is a rational curve, because it is a ramiûed cover of P1 which
has exactly two branch points.

Note that only one of these two cases can happen on a ûber.
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We can stabilize the family (5.1) in the following way. Suppose that étale locally,
the target space πW/B ∶W → B comes from the Cartesian diagram

W ∣B′ //

��

X[m]+

��
B′ // X[m]

for some m > 0 and an étale map B′ → B. We will modify the family locally, so for
simplicity, we can assume that there is a unique connected closed subset U ⊂ T such
that for b ∈ U , the ûber has an end component Y ofWb with property (a). Also, we
can assume that there is a unique connected closed subset V ⊂ T such that for b ∈ V ,
there is a rule component Z ofWb with property (b). OverU (resp.V ), the non-stable
end components (resp. ruled components) form a family of irreducible components of
W ∣U (resp. W ∣V ). Let τ1 , τ2 , . . . , τm ∶B′ →W ∣B be the pull-back of universal sections
σ1 , σ2 , . . . , σm ∶X[m] → X[m]+. Let I ⊂ [m] be the index set of sections such that
i ∈ I if and only if τ i is on the non-stable end component. Pick any j ∈ I and let
J ∶= I −{ j}. Now we have a forgetting map X[m] → X[m− ∣J∣] forgetting all sections
in J. _ere is also a contraction map X[m]+ → X[m − ∣J∣]+ on the universal family
by Lemma 5.3. Take the pull-back of the universal family X[m − ∣J∣]+ → X[m − ∣J∣]
by B′ → X[m] → X[m − ∣J∣]. _en we have a familyW ′∣B′ → B′ of FM degeneration
spaces and there is a morphism W ∣B′ →W ′∣B′ .

C∣B′
f //

))

��

W ∣B′

��

//

##

X[m]+

&&

��

W ′∣B′

��

// X[m − ∣J∣]+

��

B′ // X[m]

&&
B′ // X[m − ∣J∣]

Now there are several irreducible components of Cb for b ∈ V , which are all tails,
such that f ∶C∣B′ → W ∣B′ → W ′∣B′ is not ûnite. By using the standard stabilizing of
the domain curve (running the relative MMP over W ∣B′ for (C∣B′ ,ωC/B′ +∑ σi)), we
can contract these irreducible components.
A�er performing this procedure ûnitely many times, we can remove all non-stable

end components and get a new family of mapsC∣B′ →W ′∣B′ . Note that this procedure
does not depend on the choice ofm, B′ → X[m] and J ⊂ [m]. We can replace C∣B′ by
C∣B′ andW ∣B′ byW ′∣B′ for a notational convenience.

_e contraction of a non-stable ruled component in (b) is similar. Take K ⊂ [m]

such that i ∈ K if and only if τ i is on the non-stable ruled component. Take the
forgetting map X[m] → X[m − ∣K∣]. By taking the pull-back of the universal family
X[m − ∣K∣]+ → X[m − ∣K∣], we have a family W ′′∣B′ → B′, and a B′-morphism
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W ∣B′ → W ′′∣B′ . By contracting all non-ûnite components using standard relative
MMP technique, we obtain a family of ûnite maps C∣B′ →W ′′∣B′ over B′.

We claim that the result is a family of unramiûed stable maps. Except Deûnition
5.4(vii), all other conditions are simple observations of contracting procedures. If
we contract a non-stable end component Y of the target, because we contract all irre-
ducible components on the domainwhose image lie onY , there is no relevant singular
points on the domain anymore. Furthermore, if we contract a non-stable ruled com-
ponent Z of the target, then an irreducible component C i of the domain maps to Z
has only two ramiûcation points at two singular points of the domain on C i . More-
over, since C i ≅ P1, the ramiûcation indices at two singular points are equal. _us,
a�er the contraction of the component, the stabilized map has the property (vii).

Proposition 5.11 Let X be a smooth projective variety. _en there is a morphism

T ∶Ug ,n(X , β) → ⊔
β′∈A1(P(TX),Z)

Mg ,n(P(TX), β′) ,

where P(TX) be the projectivized tangent bundle of X.

Proof _is is a direct consequence of [35, Lemma 3.2.4]. For a family

((π∶CÐ→ B, σ1 , . . . , σn), (πW/B ∶W Ð→ B, πW/X ∶W Ð→ X), f ∶CÐ→W) ,

we have a family of maps f̃ ∶C → P(TX), which is a unique extension of the projec-
tivized tangent map P(T f )∶Csm → P(TX). By stabilizing the domain as usual, we
obtain a family of stable maps f ∶C→ P(TX).

Remark 5.12 For a ghost component C′ of the domain C, the map P(T f )∶C′ →
P(TX) can be described in the following way. Each screen (a�er blowing down all
higher level screens) is identiûed with P(TxX ⊕ C) for some x ∈ X. For a smooth
point p ∈ C′, P(T f )(p) = TpC′ ∩ P(TxX), where P(TxX) ⊂ P(TxX ⊕ C) is the
“hyperplane at inûnity”. _erefore, it is a projection of the tangent variety of C′. If C′
is a rational normal curve of degree d in Pr with r ≥ d, then degP(T f )(C′) = 2d − 2
([22, p. 245]).

Example 5.13 If X = Pd , then the Chow ring of P(TPd) is

A∗(P(TPr
),Z) ≅ Z[H, ζ]/⟨Hd+1 ,

d

∑
i=0

(
d + 1

i
)H i ζd−i

⟩ ,

where H is the pull-back of hyperplane class h in Pd and ζ = c1(OP(TPd)(1)).
We claim that for the connected component ofU0,n(Pd , d) containing smooth ra-

tional normal curves inPd , β′ in Proposition 5.11 is dHd−1ζd−1+(d+2)(d−1)Hd ζd−2

if d ≥ 2. First of all, degHd ζd−1 = 1. From the combination of these two relations, we
can deduce Hd−1ζd + (d + 1)Hd ζd−1 = 0, so degHd−1ζd = −(d + 1). Since Hd−1ζd−1

and Hd ζd−2 form a basis of A1(P(TPd),Z), β′ is a linear combination of them. For
a stable unramiûed map f ∶C → Pd where f (C) is a smooth rational curve of degree
d in Pd , T( f )(C) = P(TC) ⊂ P(TPd), thus the restriction of the tautological sub-
bundle to T( f )(C) is TC ≅ OP1(2). Hence, T( f )(C) ⋅ ζ = −2. On the other hand,
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from the projection formula, T( f )(C) ⋅ H = f (C) ⋅ h = d. _erefore, from a simple
calculation, we obtain β′ = dHd−1ζd−1 + (d + 2)(d − 1)Hd ζd−2.

In the sequel, we denote aHd−1ζd−1 + bHd ζd−2 by (a, b)-class.

5.4 Deformation Theory

_edimensions of the deformation and obstruction spaces ofUg ,n(X , β) can by com-
puted indirectly by using Olsson’s deformation theory of log schemes [45]. For a fam-
ily

((π∶CÐ→ B, σ1 , . . . , σn), (πW/B ∶W Ð→ B, πW/X ∶W Ð→ X), f ∶C→W)

of n-pointed stable unramiûed maps over B, we can introduce natural log structures
MC/B onC,MW/B onW , andNC/B andNW/B onB such that (C,MC/B) → (B,NC/B)

and (W ,MW/B) → (B,NW/B) are log smoothmorphisms. We obtain a canonical log
structure N on B by taking monoid push-out NC/B ⊕N ′ NW/B , where N ′ is the sub-
monoid of NC/B ⊕NW/B generated by (m ⋅ log t′ , log t) for each nodal point of C (for
the deûnition ofm, t, t′, see Deûnition 5.6.). We have a stackB of n-pointed prestable
curves, FM degeneration spaces with n distinct smooth points, ûne log schemes, and
pairs of morphisms of log structures

((CÐ→ B, (σ1 , . . . , σn)), (W Ð→ B, (τ1 , . . . , τn)),

(B,N),NC/B
Ð→ N ,NW/B

→ N) .

_e relative tangent/obstruction spaces for Ug ,n(X , β) → B are described by coho-
mology groups. Suppose that B = Spec R for a Noetherian C-algebra R and R̃ is a
square-zero extension of R by I. Let B̃ = Spec R̃. Also suppose that C̃ (resp. W̃) is an
extension of C (resp. W) over B̃. Let Ñ be the extension of N over B̃ with two exten-
sions N C̃/B̃ → Ñ and N W̃/B̃ → Ñ . _en the obstruction for a compatible extension of
a stable unramiûedmap is an element ofH1(C, f ∗T†

W(−∑ σi)⊗I), and if the obstruc-
tion vanishes, the compatible extensions are identiûedwithH0(C, f ∗T†

W(−∑ σi)⊗I)
[35, Proposition 5.1.1]. Here T†

W means the log tangent sheaf.
On the other hand, there is a log version of moduli space of stable log maps

U
log
g ,n(X , β) constructed in [34]. _ere is a commutative diagram

U
log
g ,n(X , β)

ϕ
�� ""

Ug ,n(X , β) // B

where ϕ is a virtual normalization map [40]. ϕ is ûnite and degree one.
Let B† be the log scheme (B,N). Let C† be the minimal log curve induced by

NC/B → N [34, 3.5] and letW† be the semi-stable log scheme induced by NW/B → N
[34, 4.3]. Let AutI(C† ×B† W†) be the set of automorphisms of the trivial exten-
sions of C† ×B† W† over Spec (R̃, Ñ), whose restriction to B† is the identity. And
let Def I(C† ×B† W†) be the set of isomorphism classes of I-extensions of log schemes
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over B†. _ere is an R-module exact sequence

0→ AutI(C† ×B† W†
) → RelDef( f ) =

H0
(C, f ∗TW†

/B†(−∑ σi) ⊗OB I) → Def( f )

→ Def I(C† ×B† W†
) → RelOb( f ) =

H1
(C, f ∗TW†

/B†(−∑ σi) ⊗OB I) → Obs( f ) → 0

[34, Section 7.1].
Now consider the B = Spec C case. If H1(C , f ∗T†

W(−∑ σi)) = 0, then ϕ is a local
isomorphism, thus RelOb( f ) = 0 as well. Also, Obs( f ) = 0 hence both U

log
g ,n(X , β)

and Ug ,n(X , β) are smooth. _us, we have the following lemma.

Lemma 5.14 Let ((C , x1 , x2 , . . . , xn), πW/X ∶W → X , f ∶C →W) be a stable unram-
iûed map over Spec C. If H1(C , f ∗T†W(−∑ σi)) = 0, thenUg ,n(X , β) is smooth at this
point.

6 M3
0,7 as a Parameter Space

In this section, we discuss a moduli theoretic interpretation of M3
0,7, the ûrst �ip of

M0,7.
In a recent result Smyth [49], described a systematic classiûcation ofmodular com-

pactiûcations Mg ,n(Z) ofMg ,n , which can be described in term of certain combina-
torial data Z. _ey are moduli spaces of pointed curves with (possibly) worse singu-
larities. In the case where g = 0, he obtained a complete classiûcation of such com-
pactiûcations [49,_eorem 1.21]. When g = 0, all such compactiûcations are obtained
by contracting some irreducible components of parameterized curves and obtaining
new arithmetic genus 0 singularities there. Because a singularity of arithmetic genus
0 does not have a positive dimensional moduli, all such compactiûcations are (usu-
ally small) contractions of M0,n . _erefore, if we want to describe a moduli theoretic
meaning of a �ip of M0,n , then it must not be a moduli of pointed curves with a cer-
tain singularity type. In other words, it is not a substack of the stack of all pointed
curves ([49, Appendix B]).
From the description ofM3

0,7, we have several clues on its possiblemoduli theoretic
meaning.

(a) _e reductionmap ϕ∶M0,7 → V 3
A contracts F-curves of type F1,2,2,2. _e image

of a contracted F-curve corresponds to a pointed rational curve (C , x1 , x2 , . . . , x7),
which has three irreducible components that meet at a triple nodal singularity. _en
ϕ forgets the cross-ratio of four special points on the spine of F1,2,2,2.

(b) A connected component of the exceptional ûber of the contraction ϕ′3∶M
3
0,7 →

V 3
A is isomorphic to P2.
Note that the image of F1,2,2,2 is exactly the locus of non-nodal (and non-Goren-

stein) curves on V 3
A (See Example 4.3.). From (b), we can guess that M3

0,7 is a moduli
space of pointed curves parameterized byV 3

A , with some additional structure on non-
Gorenstein singularities.
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Question 6.1 What kind of inûnitesimal structure can we give on non-Gorenstein
singularities?

Note that V 3
A is deûned as a GIT quotient of an incidence variety in the product

M0,0(P3 , 3)× (P3)7. At least as parameter spaces in a weak sense, we are able to con-
struct many new birational models of M0,7 by using incidence varieties. For example,
if we introduce additional factors such as Gr(1, 3)7 which has the information about
a tangent direction at each point, and take the GIT quotient (with an appropriate lin-
earization) of the incidence variety in

M0,0(P3 , 3) × (P3
)
7
×Gr(1, 3)7 ,

thenwemay have a resolution ofV 3
A . Also, we can replace a factor by anothermodular

variety. For instance it would be interesting if we consider the Fulton–MacPherson
space P3[7] instead of (P3)7. But in our situation, we need to ûnd a parameter space
that ûts into the picture of Mori’s program for M0,7. _us, a reûned question is the
following.

Question 6.2 Which parameter space ûts into the diagram ϕ′3∶M
3
0,7 → V 3

A?

To answer this question, we will use KKO compactiûcation, which we discussed in
Section 5.

Let U0,n(Pd , d) be the KKO compactiûcation of the space of n-pointed rational
normal curves in Pd and let U0,n(Pd , d) be its coarse moduli space. Similarly, let
M0,n(Pd , d) be the moduli stack of ordinary stable maps and let M0,n(Pd , d) be its
coarse moduli space. We have the following commutative diagram:

U0,7(P3 , 3) F′ //

S
��

U0,0(P3 , 3) × (P3)7

S′

��
M0,7(P3 , 3) F // M0,0(P3 , 3) × (P3)7 .

_e vertical map S is the stabilization map S in Proposition 5.8, and S′ = S × id. _en
F is the product of a forgetful map and evaluationmaps for the moduli space of stable
maps, and F′ = F × ∏ ev i is that of KKO compactiûcations (Propositions 5.10 and
5.9).

Let
I ⊂ M0,0(P3 , 3) × (P3

)
7

be the incidence variety parameterizing ( f ∶C → P3 , x1 , . . . , x7) such that x i ∈ im f
for all i. It is straightforward to check that I = imϕ. From the description of V 3

A in
Section 4.2, V 3

A ≅ I//LSL4 with a suitable linearization L, which is a restriction of a
linearized ample line bundle on M0,0(P3 , 3) × (P3)7. Note that with respect to L, the
stability coincides with the semi-stability. Let Is be the stable locus.

Suppose that we have an incidence variety J ⊂ U0,0(P3 , 3) × (P3)7. We would like
to show that J//SL4 ≅ M3

0,7 for an appropriate choice of a linearization. _e choice
of the linearization is standard. For any G-equivariant projective morphism between
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two quasi-projective varieties f ∶X → Y and a linearization L on Y such that Y ss(L) =
Y s(L), there is a linearization L′ on X such that

X ss
(L′) = X s

(L′) = f −1(Y s
(L))

([36, Section 3], [28,_eorem 3.11]). With respect to this linearization, there is a quo-
tient map S∶ J//L′SL4 → I//LSL4 ≅ V 3

A . _us, if we carefully analyze the ûber of S, then
we can prove that J//L′SL4 ≅ M3

0,7.
But there are a few technical diõculties with this approach. Because the geometry

of U0,n(Pr , d) is very complicated, there are few results on its geometric properties.
For instance,U0,n(Pr , d) is not irreducible in general, the connectedness is unknown,
andwe do not know about the projectivity of its coarsemoduli spaceU0,n(Pr , d) even
for n = 0 and r = d = 3. Furthermore, we do not have a nice modular description nor
the deformation theory for the “main component” of U0,n(Pr , d). So we are unable
to apply the above standard approach. _us, we will use an ad-hoc approach.

Let M0,0(P3 , 3)nd ⊂ M0,0(P3 , 3) be the substack of stable maps with non-degen-
erate image and let M0,0(P3 , 3)nd ⊂ M0,0(P3 , 3) be its coarse moduli space. Since
( f ∶C → P3) ∈ M0,0(P3 , 3)nd has no nontrivial automorphisms, M0,0(P3 , 3)nd =

M0,0(P3 , 3)nd is a smooth open subvariety of M0,0(P3 , 3). Let

U0,0(P3 , 3)nd
∶= S−1(M0,0(P3 , 3)nd)

for the stabilization map in Proposition 5.8 and let U0,0(P3 , 3)nd be its coarse moduli
space.

Lemma 6.3 _eopen subsetU0,0(P3 , 3)nd ⊂ U0,0(P3 , 3) is a smooth algebraic space.

Proof First of all, we will show that U0,0(P3 , 3)nd is a smooth stack. Because every
object ( f ∶C → W) ∈ U0,0(P3 , 3)nd is injective, it has no nontrivial automorphism.
_us, U0,0(P3 , 3)nd = U0,0(P3 , 3)nd, and the latter one is also smooth as an algebraic
space.

SinceM0,0(P3 , 3) is a smoothDeligne–Mumford stack, it suõces to check that the
smoothness at a map ( f ∶C →W) ∈ U0,0(P3 , 3)nd lying on the locus that

S∶U0,0(P3 , 3)nd
Ð→M0,0(P3 , 3)

is not an isomorphism. If the target spaceW is P3, then there is no ghost component,
and hence ( f ∶C → W = P3) is already an object in M0,0(P3 , 3)nd. Since the image
(π ○ f )(C) is degenerate in P3, for any screen (a�er blowing-down all higher level
screens) Y ≅ P(TxP3 ⊕C), f (C) ∩ P(TxP3) is a union of reduced points. If there is
an end component Y ≅ P(TxP3 ⊕C) ⊂ W of level one such that P(TxP3) ∩ f (C) is
a set of two reduced points, then all ghost conics on Y are equivalent to each other
and hence there is no non-trivial moduli of them. Hence, U0,0(P3 , 3)nd is not locally
isomorphic to M0,0(P3 , 3)nd along the locus that parametrizes a map ( f ∶C → W)

where the domain has three tails C1, C2, C3, and there is a ghost spine C4. _ere are
three possibilities. See Figure 8.
(a) _e spine C4 is a level one smooth cubic ghost component.
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(b) C4 = C4,1 ∪C4,2 ∪C4,3 is a chain of rational curves. C4,1 has level one and degree
two; C4,3 has level one and degree one. Finally, C4,2 has level two and degree two.

(c) C4 = C4,1∪⋅ ⋅ ⋅∪C4,5 is a chain of rational curves;C4,1 ,C4,3 ,C4,5 are level one linear
ghost components and C4,2 ,C4,4 are level two degree two ghost components on
two diòerent end components.

C4,1

C4,3
C4,2

P3

C4,3

C4,1

C4,4

C4,2

C4,5

P3

Figure 8: Ghost spines of type (2) and (3)

In each case, we are able to show the smoothness by computing the vanishing of
the relative obstruction space (see Section 5.4 and [34, Section 8]). Recall that the
relative obstruction is lying on

H1
(C , f ∗T†

W),

where T†
W is the logarithmic tangent space of W ([35, Proposition 5.1.1]). If we de-

compose C into the union of irreducible components ∪C j and if we denote f ∣C j by f j ,
then from the short exact sequence

0Ð→ f ∗T†
W Ð→⊕

j
f ∗j T

†
W Ð→ ⊕

{ j/=k}
f ∗T†

W ∣C j∩Ck Ð→ 0

and the derived long exact sequence

⊕
j
H0

(C j , f ∗j T
†
W) Ð→ ⊕

{ j/=k}
f ∗T†

W ∣C j∩Ck Ð→ H1
(C , f ∗T†

W) Ð→ ⊕
j
H1

(C j , f ∗j T
†
W),

it suõces to show 1)H1(C j , f ∗j T
†
W) = 0 and 2) the surjectivity of⊕ j H0(C j , f ∗j T

†
W) →

⊕{ j/=k} f ∗T†
W ∣C j∩Ck .

Each irreducible component C j is lying on an irreducible component V ofW . If
V is an end component (which is isomorphic to P3), then we have an Euler sequence

0Ð→ OV Ð→ OV(1)3
⊕OV Ð→ T†

W ∣V Ð→ 0,

and its pull-back

(6.1) 0Ð→ OC j Ð→ OC j(d)
3
⊕OC j Ð→ f ∗j T

†
W Ð→ 0,
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where d = degC j . SinceH1(P1 ,OV(k)) = 0 for all k ≥ −1, we haveH1(C j , f ∗j T
†
W) = 0.

If V is a root component, then we have

(6.2) 0Ð→ OV(−E) Ð→ π∗OP3(1)(−E)4
Ð→ T†

W ∣V Ð→ 0,

where E is the exceptional divisor on the root component. Note that for all f above,
E is irreducible. Since f (C j) is a line that intersects E, H1(C j , f ∗j (π

∗OP3(1)(−E))) =
H1(C j ,O) = 0. Finally, if V is a screen which is not an end component, we have

0Ð→ OV(−E)
ι
Ð→ π∗OP3(1)(−E)3

⊕OV(−E) Ð→ T†
W ∣V Ð→ 0

where E is the union of exceptional divisors on V . In the above cases, the component
f (C j) on V is a conic intersecting an exceptional divisor or a line intersecting one or
two exceptional divisors. In any case, H1(C j , f ∗j (π

∗OP3(1)(−E))) = 0, thus

H1
(C j , f ∗j (π

∗OP3(1)(−E)3
⊕ π∗OV(−E))) ≅ H1(C j , f ∗j (OV(−E))) .

_us, H1(ι) is surjective and H1(C j , f ∗j (T
†
W ∣V)) = 0.

For the surjectivity of

⊕
j
H0

(C j , f ∗j T
†
W) Ð→ ⊕

{ j/=k}
f ∗T†

W ∣C j∩Ck ,

we will show a slightly stronger statement: for any level ℓ component C j with ℓ = 0, 2,

H0
(C j , f ∗j T

†
W) Ð→ ⊕

{ℓ(Ck)=1}
T†
W ∣C j∩Ck

is surjective. If we denote the intersection point C j ∩ Ck with ℓ(Ck) = 1 by xk , then
it suõces to show H1(C j , f ∗j (T

†
W(−∑ xk))) = 0. For a level zero component, which

has a unique xk , from (6.2) we have

0Ð→ OC j(−2) Ð→ OC j(−1)
4
Ð→ f ∗j T

†
W ∣C j(−xk) Ð→ 0.

So H1(C j , f ∗j T
†
W ∣C j(−xk)) = 0. For a level two component, which has two xk ’s, from

(6.1), we have

0Ð→ OC j(−2) Ð→ O3
C j
⊕OC j(−2) Ð→ f ∗j T

†
W(−∑ xk) Ð→ 0.

We get the vanishing of H1(C j , f ∗j T
†
W(−∑ xk)) in a similar manner.

Let J s ∶= S′−1
(Is) and J be the closure of J s in U0,0(P3 , 3) × (P3)7. _en J is the

main component of the “incidence subspace” in U0,0(P3 , 3) × (P3)7. _en J and J s

are both SL4-invariant subspaces.

Lemma 6.4 (i) _e algebraic space J s is a quasi-projective scheme.
(ii) _ere is a linearization L′ on J s such that for every closed point x ∈ J s , there is a

section s ∈ H0(J s , Lm) such that s(x) /= 0. In other words, (J s)ss(L′) = J s .

Proof By local computation, we can check that the tangent map in Proposition 5.11

T ∶U0,0(P3 , 3)nd
Ð→M0,0(P(TP3

), (3, 10))

is quasi-ûnite. Indeed, it might not be injective when f ∶C → W has a ghost compo-
nent of degree 3. Take a rational normal curve N in a non-rigid P3 = {[x ∶ y ∶z ∶w]}
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passing through three coordinate points on the inûnite plane {x = 0}. By using an au-
tomorphism ofP3, we can assume that N passes through p = [1 ∶0 ∶0 ∶0]. Furthermore,
if we ûx the image of the tangent map at p, or equivalently, the tangent direction at
p, we have a 2-dimensional family of rational normal curves. We can take an explicit
2-dimensional versal family, for instance,

fa ,b(s ∶ t) = [(t − 3s)(t − s)(t − 2s)s ∶ t(at − s)(t − 2s)s ∶

t(t − s)(4t − s)(t − 2s)∶ t(bt − 2)(2t − s)s] .

By using a computer algebra system, it is straightforward to check that

P(T fa ,b)([1 ∶0]) = [1 ∶ − 1 ∶1]

is independent of a and b, but for two (a, b) /= (a′ , b′), the tangent vectors to
P(T fa ,b)(P1) and P(T fa′ ,b′)(P1) at [1 ∶ − 1 ∶1] are diòerent. _us, T is analytic lo-
cally injective if f has an irreducible ghost component. _e remaining cases are easy
to check.

Since the target of T is a scheme, U0,0(P3 , 3)nd is a scheme by [37, Corol-
lary II.6.16]. Furthermore, U0,0(P3 , 3) is proper and M0,0(P(TP3), (3, 10)) is sep-
arated. _us, T is a proper morphism ([23, Corollary II.4.8]). Hence, T (restricted
to U0,0(P3 , 3)nd) is ûnite ([21, _eorem 8.11.1]). _us, T is projective ([19, Corol-
lary 6.1.11]), hence U0,0(P3 , 3)nd is quasi-projective.

Note that J s ⊂ U0,0(P3 , 3)nd × (P3)7. Since J s is a locally closed subspace of a
quasi-projective scheme, it is also quasi-projective. _is proves (i).

Note that we have a commutative diagram

J s //

��

M0,0(P(TP3), (3, 10)) × (P3)7

F
��

Is // M0,0(P3 , 3) × (P3)7 .

Since F is a projective morphism, by [28, _eorem 3.11], there is a linearization L′ on
X ∶= M0,0(P(TP3), (3, 10))×(P3)7 such that X ss(L′) = X s(L′) = F−1((M0,0(P3 , 3)×
(P3)7)s(L)). Since Is is in the stable locus ofM0,0(P3 , 3)×(P3)7, J s maps to the stable
locus of X. _erefore, the pull-back of L′ to J s is the linearization we want to ûnd.

_erefore, by gluing the categorical quotients of aõne SL4-invariant subschemes,
we obtain a well-deûned quotient scheme J s/SL4.

Deûnition 6.5 _e formal GIT quotient J//SL4 is J s/SL4.

Remark 6.6 Note that if U0,0(P3 , 3) is a projective scheme, then for a standard
choice of linearization L′ on U0,0(P3 , 3)× (P3)7, J//L′SL4 ≅ J s/SL4. So far, we do not
know the projectivity of U0,n(Pr , d). We will investigate geometric properties of this
moduli space in forthcoming papers.

Lemma 6.7 _e locus J s is normal.
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Proof Set J(0) = U0,0(P3 , 3)nd and for n ∈ N, let

J(n) = {(( f ∶C Ð→W), x1 , x2 , . . . , xn) ∣ x i ∈ π ○ f (C)} ⊂ U0,0(P3 , 3)nd
× (P3

)
n

for π∶W → P3 . We claim that J(n) is normal. Note that J(0) is normal by Lemma 6.3.
Let pn ∶ J(n) → J(n − 1) be the projection map forgetting the last point. _en

for any point (( f ∶C → W), x1 , x2 , . . . , xn−1) ∈ J(n − 1), the ûber is isomorphic to
π ○ f (C) ⊂ P3. Since the Hilbert polynomial Pπ○ f (C)(m) = 3m + 1 is constant, pn is
�at by [23, _eorem III.9.9].

Note that a general ûber of pn is smooth because a general element of J(n − 1)
parametrizes a smooth rational curve. So J(n) is regular in codimension one if
J(n − 1) is. Also since all ûbers are curves, it automatically satisûes Serre’s condition
S2. _erefore, J(n) satisûes S2 by [20, Corollary 6.4.2]. By Serre’s criterion, J(n) is
normal if J(n − 1) is.

Since J s is an open subset of J(7), we have the desired result.

Now we prove the second main result of this paper.

_eorem 6.8 _e formal GIT quotient J//SL4 is isomorphic to M3
0,7.

Proof Let

M0,7(P3 , 3)s
= F−1

(Is) ⊂ M0,7(P3 , 3),

U0,7(P3 , 3)s
= S−1

(M0,7(P3 , 3)s
) ⊂ U0,7(P3 , 3).

We have the following diagram:

U0,7(P3 , 3)s

S
��

g
%% ))

M0,7(P3 , 3)s

F

��

/SL4

// M0,7

ϕ

��

M̃3
0,7π3

oo

π′3
��

Is
/SL4 // V 3

A M3
0,7

ϕ′3oo

We ûrst show that there is a morphism g̃∶U0,7(P3 , 3)s → M̃3
0,7. Because π3 is the

blow-up along F-curves of type F1,2,2,2, from the universal property of blow-up, it is
enough to show that g−1(F1,2,2,2) is a Cartier divisor in U0,7(P3 , 3)s .

Let Z0 ⊂ U0,0(P3 , 3)nd be the locally closed subvariety parametrizing f ∶C → W
such that the domain C has three tails C1, C2, C3 of degree one and an irreducible
spine C0 which is a ghost component of level one. Let Z be the closure of Z0. To ob-
tain f ∈ Z0, we need to choose three linesC1, C2, andC3 onP3 meeting at a point, and
a cubic rational normal curve C0 in a non-rigid P3 which passes through three points
at rigidP2 ⊂ P3. _us the dimension of Z0 is 3+3 ⋅2+(12−3 ⋅2)−4 = 11. Hence Z0 and
Z have codimension one in U0,0(P3 , 3)nd. Because U0,0(P3 , 3)nd is smooth (Lemma
6.3), Z is a Cartier divisor. On the other hand, for F∶U0,7(P3 , 3) → U0,0(P3 , 3),
F(U0,7(P3 , 3)s) ⊂ U0,0(P3 , 3)nd since π ○ f (C) is non-degenerated for all f ∶C →W
in U0,7(P3 , 3)s . Finally, for the forgetful map F∶U0,7(P3 , 3)s → U0,0(P3 , 3)nd, it
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is straightforward to check that g−1(F1,2,2,2) = F−1(Z). _erefore g−1(F1,2,2,2) is
a Cartier divisor as well. _us we have a morphism g̃∶U0,7(P3 , 3)s → M̃3

0,7. Let
g = π′3 ○ g̃∶U0,7(P3 , 3)s →M3

0,7.
_e forgetful map F′∶U0,7(P3 , 3)s → U0,0(P3 , 3) × (P3)7 factors through J s , be-

cause S′ ○ F′(U0,7(P3 , 3)s) = F ○ S(U0,7(P3 , 3)s) = Is and J s = S′−1
(Is). We have

an algebraic ûber space U0,7(P3 , 3)s → J s because J s is normal ([23, Proof of Corol-
lary III.11.4]). _e only possible exceptional curve E for U0,7(P3 , 3)s → J s is obtained
by varying a unique marked point on a ghost component, hence varying the cross-
ratio of them. E is contracted by g∶U0,7(P3 , 3)s → M3

0,7 because g = π′3 ○ g̃ and
π′3∶ M̃3

0,7 → M3
0,7 forgets the cross-ratio. _erefore there is a morphism Q∶ J s → M3

0,7
([38, Proposition II.5.3]). Finally, because it is SL4-equivariant, there is a quotient
map Q∶ J//SL4 = J s/SL4 →M3

0,7 and a commutative diagram

J//SL4
Q //

��

M3
0,7

ϕ′3
��

I//LSL4
≅ // V 3

A .

On a point x of the exceptional locus of ϕ′3∶M
3
0,7 → V 3

A , by dimension counting, it
is straightforward to check that the inverse image Q

−1
(x) does not have a positive

dimensional moduli. Also, on the outside of the exceptional locus, they are isomor-
phic. _us, Q is a quasi-ûnite birational morphism to a smooth variety. So it is an
isomorphism by [44, Proposition III.9.1].

Remark 6.9 We can describe an object in J//SL4 in an intrinsic way. For ( f ∶C →
W) ∈ U0,0(P3 , 3)nd, suppose that the image of π ○ f ∶C → W → P3 has a non-
Gorenstein singularity at x ∈ imπ ○ f (C). _ree irreducible components meet at x.
_e level one component Y = P(TxP3 ⊕C) ofW at x can be regarded as a compacti-
ûed non-rigid tangent space P(TxC ⊕C), because the three irreducible components
generate P3. Hence the inûnitesimal structure we can give on the non-Gorenstein
singularity x ∈ C, as an answer for Questions 6.1 and 6.2, is a ghost rational cubic
curve (and its degeneration) on a compactiûed non-rigid tangent space of C at x.

Remark 6.10 (i) It would be very interesting if one could deûne J//SL4 as a
moduli stack directly, instead of describing it as a quotient stack of a certain mod-
uli stack.

(ii) _e similar modular �ip appears for every n ≥ 7. For example, if we consider
a D-�ip for the total boundary divisor B on M0,n , then the �ipping locus contains the
locus covered by F1, i , j,k where i , j, k ≥ 2. _erefore it is inevitable to study such �ips
in general, if we would like to study the full symmetric Mori’s program for M0,n .
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