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Abstract. In this paper we prove that an isometric stable minimal immersion of a complete oriented
surface into a hype#hler 4-manifold is holomorphic with respect to an orthogonal complex structure,

if it satisfies a Bernstein-type assumption on the Gauss-lift. This result generalizes a theorem of
Micallef for minimal surfaces in the euclidean 4-space. An example found by Atiyah and Hitchin
shows that the assumption on the Gauss-lift is necessary.
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1. Introduction

It is well known that any holomorphic map of a Riemann surface intcahal&r
manifold minimizes area in its homology class. The main question we study in this
paper is the following:

PROBLEM 1. Given an isometric stable minimal immersiéhM — N of a
completeoriented surfacé/ into a hyperkhler4-manifold NV, is F' holomorphic
with respect to some orthogonal complex structuré\th

In general the answer to the above problem is negative: Atiyah and Hitchin ([1])
have found an example of a minimal two-sphere in the hyaelee 4-manifold\19,
the universal cover of the centered 2-monopole&diwith finite action, which is
not holomorphic w.r.t. any compatible complex structure/et3, and which has
been proved to be stable by Micallef and Wolfson ([7]).

In this paper we find a sufficient condition on the immersion for the problem to
have positive answer.

We recall that for locally embedded submanifoldsin IV the property to be a
complex (or anti-complex) submanifold @V, J) can be expressed by saying that
the tangent spacg, M is J-invariant for eaclp € M. WhenN has real dimension
4 a way to measure thEinvariance ofl’ M is given by the Khler angle: it follows

* The author was partially supported by Consiglio Nazionale delle Ricerche, Italy.

https://doi.org/10.1023/A:1000358906964 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000358906964

34 CLAUDIO AREZZO

from Wirtinger’s inequality that itv is the restriction of the Ehler form of(V, J)
to T M, we can writew = cosay dVol M and thatM is a complex submanifold
w.r.t. J)ifand only ifay = 0onM.

It is possible to express the stability condition in terms of tléhlér angle.
Micallef and Wolfson ([7]) proved that if\/ is stable andr is a section with
compact support of the normal bundle then

/ {1902 - 2[|das | + 15 sir? a][o2}dVol > 0,
M

whereS is the scalar curvature df. Using this formula, they proved (Corollary
5.3 page 260) that ifV is hyperkahler (see section 2 for the definition)f is
compact and the normal bundle admits a holomorphic section, then the immersion
F'is holomorphic with respect to one of the complex structure§ of

We'll apply the previous formula in the cad€ is hyperkahler andM not
necessarily compact. The crucial problem is then to produce a holomorphic section
of the normal bundle with appropriate growth and to do this we’ll need some further
hypothesis.

To overcome this problem we assume that the composition of the Gauss lift
(see section 2 for the definition) with the projection over the spléremits an
open set. Eells and Salamon ([5]) proved that, under our assumptions, this map is
anti-holomorphic, extending the analogy with the Gauss map of minimal surfaces
in the euclidean space. This will allow us to prove the main result of this paper:

THEOREM 1.1.Let F: M — N be an isometric stable minimal immersion of a
complete oriented surfadd into a4-dimensional hypeghler manifoldNV. If the
Gauss liftF,: M — S, = N x 52 omits an open set &, thenF is holomorphic
with respect to some orthogonal complex structur&/of

About the assumption on the Gauss lift in the above theorem, we recall that
the image of the Gauss lift of the stable two sphere found by Atiyah and Hitchin
mentioned before, is the whol.

As we will see in the proof of the main theorem the condition on the Gauss lift
is equivalent to the requirement for thékler angle to omit an open set[6f ].

WhenM is compact, Wolfson ([10]) has proved that the conclusion of Theorem
1.1 holds even without the stability assumption and with a milder one on the Gauss
lift. His result is the following:

THEOREM 1.2.Let M be a compact oriented minimal surface in a hygrler
4-manifold V. If the Gauss lift omits two antipodal points of tBesphere(i.e. the
surface istotally real) then F' is holomorphic with respect to some orthogonal
complex structure ai.

Wolfson’s result leads naturally to conjecture that the stability assumption might
be unnecessary also in Theorem 1.1; we leave this intriguing problem for further
research.
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Theorem 1.1 is a generalization of a theorem of Micallef ([6]) in the case when
N is the euclidean 4-space which is the easiest example of hgiplerkmanifold.
In particular he proved the following:

THEOREM 1.3.Let F: M — R* be an isometric stable minimal immersion of a
complete oriented surfacd® into the euclideard-space. If one of the projections
of the Gauss map ont§? x S omits an open set, theR is holomorphic with
respect to some orthogonal complex structur&bf

In the second section we show how this theorem follows from our result. For
sake of completedness we recall that by a famous theorem due to Chern ([3])
and Osserman ([8]) we know that, in the case of the euclidean 4-space, if both
projections on the spheres of the Gauss map omit an open sethea plane.

2. Notations and Definitions

Let N be a riemannian manifold with metriz M a Riemann surface an# :
M — N amap. LetV denote the Levi-Civita connections @i/ andF 1T N.

Let now assume that difWN = 4 andN is oriented. In this case the Hodge-star
operator: A’(TN) — A%(TN), gives rise to a decomposition

A%(TN) = A%2(TN) @ A2 (TN),

where AZ(T'N) are the eigenspaces corresponding to the eigenvaideghe
elements of\7 are callecself-dualandantiself-duaforms respectively. Le§.. =
S(A%) be the two-sphere bundle of unit vectors. Thassmann bundI&'; is the
bundle whose fibre at € N is Go(T,N), the space of oriented two dimensional
subspaces df, N.

We can associate to an immersidnM — N another map, called th8auss
lift of F', F: M — G, defined by

F(p) = F*(TPM)a

which is an element af»(T, N) whereF (p) = z. In the case of immersions in the
euclidean space it is possible to avoid the difficulty of working with bundles in the
following way: givenF: M — R" defineyp: M — G»(R™) wherevyg(p) is the

two planeF, (T, M) translated to the originy is called theGauss mapwe recall
thatG,(R™) may be identified with a quadri@,,_» in CP"~1, and that a conformal
immersion is harmonic if and only r: M — @, _» is anti-holomorphic (see

Chern [3]). It is well known that), is diffeomorphic toS? x S? using Plicker
coordinates (e.g. see Chern—Spanier[4]). The same happens alsoin the general case:
indegdéz(TxN) is isomorphic to( Sy ), x (S-), and so we have two projections
p+:G2(TN) — Si and two new map$'.: M — Si, FL = p1 o F. Hence if
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N = R", F, is the projection ofyr onto the firstS2 and this gives the relation
between our theorem and Micallef's one.

It is possible to give an interpretation of the bundies in terms of almost
complex structures oveW. In fact if w € Sy on thez-fiber, then it is clearly
possible to choose an oriented orthonormal bésj$ of 7, N such thatw =
e1 A es + e3 A es. DefiningJey = ey, Jez = eq andJ? = —1, we get an almost
complex structure oveN oriented consistently witliv. If 6; is the dual basis of
e; thenw = 01 A 62 + 03 A 64 is the fundamental 2-form associated to the almost
complex structure/ given byg(JX,Y). In the case of5_ we get contrariwise
oriented almost complex structures ovér

By definition a riemannian manifold is callégperlahlerif it admits a family of
compatible complex structures parametrizedsBywith respect to each of which
the manifold is Kahler. In this cas&, = N x S? and every point of the sphere
represents a complex structure &n

Let (N,g,J) be an hermitian manifold, i.ey is a riemannian metric/ a
complex structure such that/ X, JY') = g(X,Y) for everyX,Y € TN, w the
fundamental 2-form and the fundamental 2-vector d¥. If ¢; is a unitary basis
of TAO N, such thay(e;, &) = 6;;, we can write

v =—1 Z ex N €.
k=1
Let us denote b)Tél’l)N the space of1, 1)-vectors orthogonal te. So we
have
AS(TN) = TCON ¢ TOIN & v & TSV N.
It is easy to prove that, if dilV = 4,
AS(@N) =T{MN  AS(TN) = TEON ¢ TOAN ¢ co. 1)

If y is a point in ther-fibre of 5, , thenT, S, =V, ®H, whereV), is the space
of vertical vectors, i.e. those tangent to the fibg€r ),. By (1) Vg is isomorphic,
via an isomorphisny, to T:gz’o)N D TI(O’2>N.

By the above observatianfixes an almost complex structuré, ), on7,; N.
For anyy in the z-fibre of S, Tl defines an isomorphism betwegf), and
T, N . We will denote this isomorphism wiflhn So we can define an almost complex
structure/y (warning this is called/; in [5]) on S by

Jl(vyahy) = (Iy“yv Jﬂ(y)hy)’

wherel is minus the standard complex structures3n This means that the vectors
of type (1, 0) with respect ta/y in T),S, are given by(Ta@l’o)N L) (ngo’z)N ).
Let us recall the following (see Eells—Salamon [5]):
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THEOREM 2.1.If F: M — N is a conformal and harmonic immersion, thém
is J1-holomorphic.

Then we are in the following situation: given an hypanler manifoldV and a
minimal isometric immersio#’: M — N we have

M5 S, =N xS 822, cufool,

wherer is the projection on the second factor and the stereographic projection.

On S? we are considering the usual complex structure so #hatF', is anti-
holomorphic. Ifthe Gauss liff’, omits an open set &f?we have, after composition

with a stereographic projection with pole in this open setand conjugation, a bounded
holomorphic map from\/ to C. This will be a crucial point in the proof of our
theorem.

3. Proof of Theorem 1.1

Micallef and Wolfson ([7]) proved that the stability condition implies that, for every
compactly supported sectianof the complexified normal bundie::

/M{|5a|2 — 2[|daf? + 1S sir?a]|o[2} dVol > O,

whereS is the scalar curvature @¥. If N is hyperkahler thenS = 0. So we have

| Vol2z2 [ Jdaf?laP. 2)

Suppose there exists a global holomorphic sectiad v in L2. Then, taking
a cut-off functionfr such thatfr = 1 on Br(p), fr = 0 outsideB,r(p) and
|d(fr)| < § everywhere, applying 2 tfo we get

2 [ 1doPfRlof <2 [ ld(fR)Plof.
M M

Letting R — oo we have that, since € L?, do = 0 and sax is constant on\/.
Now, as in [10], choose a poipte M and a complex structure Gh/NV such that
T, M is a complex subspace©f.,) N. The Kahler angle of this complex structure
vanishes ap, but it is still constant ord/. Then the immersion is holomorphic with
respect to this complex structure .

So the following lemma concludes the proof of the theorem:

LEMMA 3.1. If the hypothesis of the theorem hold then there exists a global
holomorphic sectiowr of the complexified normal bundle such thais square
integrable.
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Proof. Let W be an open set 2 s.t. W c S2\ F, (M), and.J a complex
structure onV corresponding, via the discussion in section 2, to a poift'inNe
thenhave - cosay < 1—e¢, e > 0, everywhere oid/. SinceF' is conformal there

exist{e1, e} local real vector fields it (T M) suchthaﬂ(a%) = /5 (e1—iea),
where) is the conformal factor of the immersion; then we completg e} to a
local orthonormal basis &f N, {e1, . .., es}. Defining

fi=e, fo=Jer

3
fa=es, fa=—Jea, ®)

we have directly that
(Fy(p), f1 A f2+ fa A fa) = cosa,(p). (4)

This means, by the discussion in Section 2, that the angle betwess a
point of the sphere and, (p) is precisely the Khler angle ap and therefore the

stereographic projection df, , from the point corresponding tbin S? has norm
sinay
1-cosay*

We will indicate the hermitian product of andY by ¢(X,Y) andX - Y =
g(X,Y), so that the product iscomplex bilinearDefines = [JF*(C%)H , Where
J is a complex structure oN and_L is the projection onto the normal bundie.

s is a local holomorphic section of, in fact:

o= (o () -l (B)])
= (g (2 (D)) (e (e (D))

whereD is the covariant derivative in the normal bundle &ids the covariant
derivative onN. The first term vanishes becaugeés parallel andF' is harmonic;
the second term vanishes also. To prove this first observe that

br (@) =302 @)= @) e 3
(e ()= () - ()]

JF, (%) . F, <%> =0 (7)

(6)

but
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and then

(VF*% {JF* <%>}T>L
(o (2)- R (2)) (epr )] ]

and then again harmonicity (iEF*%F*a% = 0) proves our claim.

Thenﬁ is a local meromorphic section of; in fact we haveD,s = fs, where
f is acomplex valued function such th@é&i_) = fs-sandthereforg = ’9'%;5'2.
So we have

>: (1) = 3 (1) *ﬁD 0= (z <|81|2>+si|2f>
- Lf?(ﬁ) pros ()] =

Since the Gauss lift omits the open $Etof 52 and it is holomorphic, taking
p € W, the functionk defined by the conjugate gfo 7 o F'y, wherep is the
stereographic projection from the poipt is bounded and holomorphic. Sd
admits (see Ahlfors—Sario [2] and Springer [9]) a square integrable holomorphic
differential 5. In a local chart(U, z), 8 = (dz. Henceo = ﬁh( is a global
meromorphic section of¢: in fact, if (V,w) is another local chart such that
UNV # 0 we haves = ('dw, where¢’ = 22¢ and;2 = 922 onUU NV and
soo(w) =o(z)onUNV.

To prove thats is square integrable we look at the zerossofhich are the
points where

(o (77 (52) Vs —ien)) oo (77 (52) fhles + i) )

= (\/XsinaJ,O) = (0,0).

Hence they are the anti-complex pointsfofwvith respect toJ (because there are
no complex points w.r.f by assumption).
We have then

(9)

R e lﬂ

which is a locally bounded function. Hence

S 2 2
W’ZC < O\
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and then is inL?, sinceg is in LZ. O
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