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1. Introduction

In this paper we study the local geometry of surfaces in R
4 associated to contact with

hyperplanes. We investigate the transitions that occur on some robust curves associated
to this contact when the surface changes in generic one-parameter families.

The contact of a surface with hyperplanes is described by the family of height functions.
The geometry of this family of functions is dealt with in [21]. Two robust sets are of
interest: the parabolic set and the set of A3 singularities of the height functions. These
generally form smooth curves away from inflection points. We describe in § 3 all the
possible transitions of the parabolic and A3 sets that can occur in generic one-parameter
families of surfaces. We follow the approach used in [9] and [11], first introduced in [1],
for dealing with families of surfaces in R

3. The main tools are transversality theorems on
the so-called Monge–Taylor map and a version of stratified Morse theory in [2].

The family of height functions also determines curves on the surface, namely the inte-
gral curves of the asymptotic direction field. These are integral curves of a special type of
implicit differential equation, called binary differential equations (BDEs). We establish in
§ 4 the stable configurations of these integral curves as well as their generic bifurcations
in one-parameter families. A topological result about compact orientable surfaces in R

4

is also deduced via the singularities of the BDE of the asymptotic directions.
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2. Surfaces in R
4 and the height function

We give here a brief review and establish some notation concerning a smooth surface M

in R
4. The main references are [5], [20] and [21]. There is a discussion in [21] of the

local quadratic geometry in terms of the curvature ellipse. This ellipse is the image by a
pair of quadratic forms (Q1, Q2) of the unit circle in the tangent plane TpM at a point
p in the normal plane NpM . This pair of quadratics is the 2-jet of the 1-flat (without
constant or linear terms) map F : R

2, 0 → R
2, 0, whose graph (in orthogonal coordinates)

is locally the surface M . However, the flat geometry of surfaces is affine invariant [9],
and the curvature ellipse is not. A different approach to the geometry of surfaces in R

4 is
given in [5]. This is via the pencil of the binary forms determined by the pair (Q1, Q2).
Each point on the surface determines a pair of quadratics:

(Q1, Q2) = (lx2 + 2mxy + ny2, ax2 + 2bxy + cy2).

Representing a binary form Ax2 + 2Bxy + Cy2 by its coefficients (A, B, C) ∈ R
3, there

is a cone B2 − AC = 0 representing the perfect squares. If the forms Q1 and Q2 are
independent, then they determine a line in the projective plane RP 2 and the cone a
conic. This line meets the conic in 0, 1, 2 points according as

δ(p) = (an − cl)2 − 4(am − bl)(bn − cm) < 0, = 0, > 0.

A point p is said to be elliptic/parabolic/hyperbolic if δ < 0/ = 0/ > 0. The set of points
(x, y) where δ = 0 is called the parabolic set of M and is denoted by ∆. If Q1 and Q2

are dependent, the rank of the matrix(
a b c

l m n

)

is 1 (provided either of the forms is non-zero); the corresponding points on the surface
are referred to as umbilics. The pencil determines a point in RP 2 which lies inside, on
or outside the cone. There is an action of GL(2, R) × GL(2, R) on pairs of binary forms.
The orbits are as follows (see, for example, [19]):

(x2, y2) hyperbolic point,

(xy, x2 − y2) elliptic point,

(x2, xy) parabolic point,

(x2 ± y2, 0) umbilic (or inflexion) point,

(x2, 0) degenerate umbilic point,

(0, 0) degenerate umbilic point,

We can see, for example, that the image of the unit circle by the map (x2, y2) is the line
segment joining (0, 1) to (1, 0). So one cannot use the curvature ellipse to study the flat
geometry of surfaces in R

4.
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The geometrical characterization of points on M can also be described in terms of the
singularity types of the height function. We recall that the family of height functions is
defined by

h : M × S3 → R

(p, v) �→ h(p, v) = p.v

Proposition 2.1 (see [21]).

(1) If δ(p) > 0, then p is a non-degenerate critical point of hv for any v ∈ NpM .

(2) If δ(p) < 0, then there are exactly two directions in NpM such that p is a degenerate
critical point of the corresponding height functions.

(3) If δ(p) = 0, then there is a unique direction in NpM such that p is a degenerate
critical point of the corresponding height function.

We next establish some notation that will be used throughout the paper. We choose
local coordinates at p so that the surface is given in Monge form:

(x, y, f1(x, y), f2(x, y))

where (f1, f2) is 1-flat. Then the (modified) family of height functions around the normal
direction (0,0,0,1) is given locally by

h(x, y, v) = v1x + v2y + v3f
1(x, y) + f2(x, y),

where v = (v1, v2, v3, 1). By rotating the coordinate axes in the normal plane we can
assume that (0,0,0,1) is a degenerate direction and write

f1(x, y) = lx2 + 2mxy + ny2 + r0x
3 + r1x

2y + r2xy3 + r3y
3 + · · · ,

f2(x, y) = a0x
2 +

i=3∑
i=0

bix
3−iyi +

i=4∑
i=0

cix
4−iyi +

i=5∑
i=0

dix
5−iyi + · · · .

Of course we can simplify the 2-jet of (f1, f2) further and consider it as one of the
normal forms of the pairs of binary forms given above. The given form allows us to study
all the cases together. (We observe that the origin is parabolic in the above setting if and
only if a0n = 0.)

It follows from a transversality result of Looijenga, or Montaldi [22], that for a generic
surface in R

4 the height functions h0 = f2(x, y) have singularities of type A�4 or D4.
We have the following result.

Proposition 2.2. With the above notation, the conditions for the generic singularities
of the height function h0 are as follows:

A2 : a0 �= 0, b3 �= 0,

A3 : a0 �= 0, b3 = 0, 4a0c4 − b2
2 �= 0,

A4 : a0 �= 0, b3 = 0, 4a0c4 − b2
2 = 0, 4a2

0d5 − 2a0b2c3 + b1b
2
2 �= 0,

D4 : a0 = 0, b0x
3 + b1x

2y + b2xy3 + b3y
3 is non-degenerate.
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These singularities are versally unfolded by the family of height functions if and only
if

A2 always,

A3 n �= 0 or b2 �= 0,

A4 n(a0c3 − b1b2) − b2(a0r3 − mb2) �= 0,

D4 3b0(nb2 − 3mb3) − b1(nb1 − mb2) + l(3b1b3 − b2
2) �= 0.

The proof follows from relatively straightforward calculations.

3. Generic transitions in the parabolic and A3 sets

As pointed out in § 1, there are two curves of interest on the surface: namely, the parabolic
set ∆, and the set of points where the height function has an A3-singularity (the A3-set).
We are interested in the way in which these sets can change in a one-parameter family
of surfaces. We first determine when the changes occur.

Let M be a given surface. We will be interested in families of embeddings f : M × I →
R

4, where I is some open, connected and finite interval. So for each t ∈ I the set ft(M)
is an embedded surface in R

4, and will be denoted by Mt. We first consider the contact
singularities occurring generically in such families, beyond those listed in Proposition 2.2.
To establish a list, we need the following transversality theorem.

Theorem 3.1. Let M be a compact surface, I an open interval. Let k be a posi-
tive integer and S an A-invariant Whitney regular stratification of the multijet-space
rJ

k(M, R). Let Emb∞(M, I, R4) denote the open subset of the space of smooth map-
pings f : M × R → R

4, with ft : M → R
4 an embedding for each t ∈ I. Then the set of

f ∈ Emb∞(M, I, R4) with the jet-extension

rj
k
1 h ◦ f : M (r) × S3 × I → rJ

k(M, R)

given by

rj
k
1 h ◦ f(p, u, t) = rj

k(hu ◦ ft)(p)

transverse to S is residual. (We can replace residual by open and dense if we ask for
transversality over a compact subinterval J of I.)

Proof. The proof is a consequence of Theorem 1.1 in [3], which in turn follows easily
from the main result of [22]. The key fact enabling us to apply this result to the present
situation is that the family of height functions on the ambient space is A-versal. This
follows trivially from the definition. �

Note that in this paper we will largely ignore singularities arising from consideration of
multi-jet spaces (semi-local singular phenomena). The key consequence that we require
is the following result.
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Corollary 3.2. Let M , I, J be as before (J a compact subinterval of I). Then for
an open, dense set of mappings f in Emb∞(M, I, R4) there are finitely many points
{t(1), . . . , t(s)} in the interval J such that the following conditions are met.

(i) If t /∈ {t(1), . . . , t(s)}, then the only singularities of the height functions hu for
the surface Mt are of type A�4 and D4. Moreover, these singularities are versally
unfolded by the family h ◦ ft : M × S3 → R.

(ii) If t is one of the t(j), then either we have a singularity of type A5 or D5, or we
have one listed in (i) above which is not versally unfolded by the family h◦ft(j). All
singularities (including these) are versally unfolded by the family h◦f : M×S3×I →
R, defined by (h ◦ f)(p, u, t) = hu(ft(p)).

Proof. The proof follows that of Corollary 3.2 in [9] for the family of height functions.
�

So if f is a generic family of embeddings, then the flat geometry of the family of
surfaces ft(M) = Mt for t ∈ J , as determined by the families h ◦ ft, has finitely many
catastrophic events:

(i) some point of the surface Mt(j) has contact with its tangent hyperplane which is
more degenerate than an A4 or D4 singularity (an A5 or D5), or

(ii) the singularity is of type A�4 and D4 but not versally unfolded by the family h of
height functions alone.

We now determine the changes on the parabolic and A3-set. We proceed as in [9]
and [11], following the approach in [1].

Let p be a point on a surface, and choose two smooth independent vector fields in the
normal plane and two smooth independent tangent vector fields in a neighbourhood U

of p. This determines at each point near p a system of coordinates where the surface is
given locally in Monge form: (x, y, f1(x, y), f2(x, y)), with f1 and f2 having no constant
or linear terms.

Let Vk denote the set of polynomials in x, y of degree greater than or equal to 2 and less
than or equal to k. We obtain a smooth map, the Monge–Taylor map F : M, p → Vk ×Vk,
which associates to each point q near p the k-jet of the pair of functions (f1, f2) defined
above at the point q. The set Vk ×Vk has a natural G = GL(2, R)×GL(2, R)-action given
by linear change of coordinates in the tangent and normal plane. We showed in [9] that
the flat geometry of smooth manifolds in a Euclidean space is affine invariant. A subset
Z of Vk × Vk that is of any geometric significance will be G-invariant. Moreover, if Z is
furnished with a Whitney regular stratification, then for any generic M the map germ
M, p → Vk × Vk will be transverse to the strata of Z (see [1] for details).

Given a point p on our surface and a germ of a family of embeddings i : M ×
R, (p, 0) → R

4 we obtain a family of Monge–Taylor maps F̃ : M × R, (p, 0) → Vk × Vk.
This will be transverse to the A3 (or ∆) stratum, say Z, in Vk × Vk for a generic fam-
ily of embeddings. We then determine the diffeomorphism type of the inverse image
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F̃−1(Z) at (p, 0). For a generic family of embeddings we expect the natural projection
π : F̃−1(Z), (p, 0) ↪→ M × R, (p, 0) → R to be generic, in the sense that it will be a strat-
ified Morse function [2]. Usually, however, we can construct the module of vector fields on
M × R (locally just R

3) tangent to the germ F̃−1(Z). We can then make a classification
of smooth functions R

3, 0 → R, 0 up to diffeomorphisms in the source preserving F̃−1(Z).
(We also allow arbitrary changes of coordinate in the target.) We expect our projection
to be a stable (or the least degenerate) germ in the classification. This is established by
computing the conditions for the projection to be non-Morse (or non-stable, etc.), and
showing that the resulting set of embeddings can be avoided in one-parameter families.

To carry out the calculations explicitly in Vk × Vk we need to compute the tangent
space to the G-orbit of (f1, f2) and the generators of the image of dF . It is not difficult
to show that the tangent space to the G-orbit of (f1, f2) is generated by (xf1

x , xf2
x),

(yf1
x , yf2

x), (xf1
y , xf2

y ), (yf1
y , yf2

y ), (f1, 0), (0, f1), (f2, 0), (0, f2).
Proposition 2.2 in [1] can trivially be extended to cover the case of surfaces in R

4 and
give the generators u1 and u2 of the image of dF :

u1 = (−f1
xx(0, 0)x − f1

xy(0, 0)y + f1
x(x, y) − f1

xx(0, 0)f1
x(x, y)f1(x, y)

− f1
xy(0, 0)f1

y (x, y)f1(x, y) − f2
xx(0, 0)x − f2

xy(0, 0)y + f2
x(x, y)

− f2
xx(0, 0)f2

x(x, y)f2(x, y) − f2
xy(0, 0)f2

y (x, y)f2(x, y)),

u2 = (−f1
xy(0, 0)x − f1

yy(0, 0)y + f1
y (x, y) − f1

yy(0, 0)f1
y (x, y)f1(x, y)

− f1
xy(0, 0)f1

x(x, y)f1(x, y) − f2
xy(0, 0)x − f2

yy(0, 0)y + f2
y (x, y)

− f2
yy(0, 0)f2

y (x, y)f2(x, y) − f2
xy(0, 0)f2

x(x, y)f2(x, y)).

3.1. Changes on the A3-set away from ∆

Let (f1, f2) be as in § 2, with the origin being an A�3 singularity of the height function
h0 = f2 away from the parabolic set. We can write j3(f1, f2) = (lx2 + 2mxy + ny2 +
f1
3 , a0x

2 + f2
3 ), where f1

3 , f2
3 are cubics in (x, y) and a0n �= 0. Note that we can in fact

reduce the 2-jets to the pairs discussed in § 2, but by considering this normal form we
can do several cases together. A complete transversal to the G-orbit of (f1, f2) in V3 ×V3

is given by
(lx2 + 2mxy + ny2 + f1

3 + f1
3 , a0x

2 + f2
3 + f2

3 ),

where f1
3 and f2

3 are general cubics.
An element in this transversal has an A3 singularity if for some λ close to zero the

height function along the normal (0, 0, λ, 1) given by

λ(lx2 + 2mxy + ny2 + f1
3 + f1

3 ) + a0x
2 + f2

3 + f2
3

has an A3 singularity. This occurs when the quadratic part is degenerate, i.e. Q = L2

and L divides the cubic; this occurs if λ = 0 and b3 = 0. Therefore, the A3-stratum is
given by b3 = 0 in the transversal to the G-orbit, and the A3-stratum is a smooth set of
codimension 1 in V3 × V3.
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For a generic embedding of M the Monge–Taylor map is transverse to the A3-stratum,
so the pre-image of this set on M is locally a smooth curve. The Monge–Taylor map fails
to be transverse to the A3-stratum if and only if the tangent space to the A3-stratum in
the transversal together with the tangent vectors to the G-orbit and the generators u1

and u2 of the image of the Monge–Taylor map fail to generate V3 × V3. This occurs if
and only if

4a0c4 − b2
2 = 0 and n(a0c3 − b1b2) − b2(a0r3 − mb2) = 0.

Equivalently, the origin is an A4 and the family of height functions fails to versally
unfold this singularity. In a generic one-parameter family the associated Monge–Taylor
map is transverse to the A3-stratum and a three-dimensional transversal yields a smooth
surface. So the family of the A3-sets in the source is a smooth surface. One can show
that generically the projection to the time parameter yields Morse transitions (that is
max/min or saddles) on the A3-sets. In the case of surfaces in R

3, where we studied
transitions of the parabolic set [9], we showed that a versal family of the height function
implies that the projection to the time parameter is generic. However, this is not the
case here. The condition for a generic projection is distinct from that of the versality of
the family. Both conditions, being open, are satisfied for generic families of embeddings
of the surface.

We can also expect changes at an A5-singularity. It is clear from above and the condi-
tion in Proposition 2.2 that in general the A3 set is smooth in this situation. In fact what
occurs here is that the Monge–Taylor map fails to be transverse to the A4-stratum. In a
generic one-parameter family we obtain a birth of two A4-points on a smooth A3-set.

Proposition 3.3. In a generic one-parameter family the A3-set changes as follows
away from the parabolic set.

(1) Morse transitions at a non-transverse A3. This occurs at an A4 singularity where
the family of height functions fails to be a versal unfolding.

(2) The birth/annihilation of a pair of A4 points on a smooth A3-set at an A5 transition.

3.2. Changes on ∆ and the A3 sets away from umbilics

In the setting of § 2, the origin is a parabolic point if and only if n = 0. As we are
away from umbilic points, m �= 0 and a transversal to the G-orbit of (f1, f2) in V3 × V3

is given by
(lx2 + 2mxy + f1

3 + f1
3 , a0x

2 + a2y
2 + f2

3 + f2
3 ),

where f1
3 and f2

3 are general cubics and a2 ∈ R.
In this transversal the parabolic stratum is given by a2 = 0. At points on ∆ where

the height function has an A�2-singularity (b3 �= 0) the Monge–Taylor map is always
transverse to the parabolic stratum so on the surface the parabolic set is locally a smooth
curve.

When b3 = 0, the height function has an A3-singularity, so we expect an A3-curve in
a neighbourhood of the origin. To compute the A3-stratum in the above transversal we
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(a)

(b)

Figure 1. Changes on the A3-set (dashed) on a smooth parabolic curve (continuous).

need to consider the height function in the normal direction (0, 0, λ, 1), with λ close to
zero. This is given by

(a0 + λl)x2 + 2mλxy + a2y
2 + f2

3 + f2
3 + λ(f1

3 + f1
3 ).

The quadratic part of this function is degenerate if and only if

a2(a0 + λl) − λ2m2 = 0,

and it has a factor in common with the cubic if and only if

(f2
3 + f2

3 + λ(f1
3 + f1

3 ))(−λm, a0 + λl) = 0.

From the above two equations, we can write a2 and b3 as functions of λ and the
remaining variables in the transversal and give the A3-stratum in a parametrized form.
This set is a smooth hypersurface if and only if the coefficient of λ in b3 is not zero, if and
only if a0r3 − mb2 �= 0. Suppose this is the case (we shall analyse the case a0r3 − mb2 =
0 later). Then the ∆ and A3 strata are tangential along their points of intersection
a2 = b3 = 0. It follows that when the Monge–Taylor map is transverse to the A3 ∩ ∆-
stratum, the pre-images, on the surface, by this map are two tangential curves. This is
not surprising, as A3 singularities of the height function occur only in the non-elliptic
region.

Proposition 3.4. The parabolic curve and the A3-set are generically two tangential
curves at their (2-point) contact points (Figure 1a, top right).

One can show that the Monge–Taylor map fails to be transverse to the A3 ∩∆ stratum
if and only if

b2(3a0r
2
3 − 5mb2r3 + 8m2c4) = 0.

(Note that this condition is distinct from that giving an A4-singularity, so the Monge–
Taylor map does not detect the higher-order singularities of the height function at
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parabolic points.) The condition b2 = 0 implies that the Monge–Taylor map fails to be
transverse to both the A3 and ∆ strata. The second condition 3a0r

2
3−5mb2r3+8m2c4 = 0

(but b2 �= 0) implies that the Monge–Taylor map is transverse to these strata but not to
the A3 ∩ ∆-stratum.

In a generic one-parameter family the Monge–Taylor map is transverse to the A3, ∆

and A3 ∩ ∆ strata and a three-dimensional transversal is diffeomorphic to the variety
V = {(u, v, w) ∈ R, 0 : w(w − v2) = 0} (Figure 1a, left). We seek to classify functions up
to diffeomorphisms that preserve V in the source and any diffeomorphism in the target.
The module of vector fields tangent to V is generated by ∂u, w∂v + 2vw∂w, v∂v + 2w∂w

(where, for example, ∂u is shorthand for ∂/∂u). After some calculation it follows, from
the complete transversal approach in [10], that the orbits of interest are u, v + u2 and
w ± u2 + αv2, where α is a smooth modulus distinct from −1, 0.

The germ u corresponds to the case when the Monge–Taylor map is transverse to the
A3 ∩ ∆-stratum.

The configuration here is a pair of tangential curves (see Proposition 3.4 and Figure 1a,
top right). The germ v + u2 corresponds to the case when the Monge–Taylor map is
transverse to ∆ and the A3 strata but not to the A3∩∆-stratum. Here, on the surface M ,
both the parabolic and the A3-sets are smooth but have higher contact. In a generic one-
parameter family we have a birth/annihilation of two A3-points on a smooth parabolic
curve (see Figure 1a, bottom right).

The germ w±u2+αv2 yields Morse transitions on both surfaces w = 0 and w−v2 = 0.
The restriction of this function to w = 0 is given by ±u2 + αv2 and its restriction to
w − v2 = 0 is given by ±u2 + (α + 1)v2. We obtain six different cases (see Figure 2). On
the surface M , these transitions occur when the Monge–Taylor map fails to be transverse
to both ∆ and the A3-strata. In a generic one-parameter family, both the parabolic and
A3-sets undergo Morse transitions. The six cases depend on whether the parabolic/A3-
sets are born in a hyperbolic or elliptic region. These transitions are drawn in Figure 2.
We can show that all the transitions occur, and now give some examples realizing them.

Hyperbolic case: (f1, f2) = (xy + y3, x2 + x2y2 + xy3 + λy4)

We have j2δ = x2 +3xy+3(2λ+3)y2, and the 2-jet of the function giving the A3-set is
−x2+ 8

3λxy+ 16
3 λ(λ+ 3

2 )y2. (When ∆ is an isolated point the surface patch is hyperbolic.)
The exceptional values for λ are − 9

8 , 0, when one of the above sets is not Morse, together
with − 3

2 . The latter value is best understood by looking at the equation determining the
asymptotic directions in § 4. When λ = − 3

2 we have a change from a foci type equation
to one involving saddles. We obtain the transitions in Figure 2f if λ < − 3

2 , Figure 2e if
− 3

2 < λ < − 9
8 , Figure 2b if − 9

8 < λ < 0, and in Figure 2c if 0 < λ (birth of an elliptic
island in a hyperbolic sea).

Elliptic case: (f1, f2) = (xy + y3, x2 + x2y − 3x2y2 + λy4)

We have j2δ = −x2 − 2xy + (2λ + 3)y2 and the 2-jet of the function giving the A3-set
is x2 −λxy +λ(λ+ 3

2 )y2. (When ∆ is an isolated point the surface patch is elliptic.) The
missing transitions in the hyperbolic case (Figure 2a) is obtained for the values λ < −2
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(a)

(b)

(c)

(d )

(e)

( f )

Figure 2. Morse transitions on the parabolic (continuous) and A3-sets (dashed).

(birth of a hyperbolic island in an elliptic sea), and Figure 2d is obtained for the values
0 < λ.

We return now to the case a0r3 −mb2 = 0. Then the A3-stratum is no longer a smooth
hypersurface, and we can change coordinates in the transversal so that it is given by

a2 = λ2,

b3 = λr3.

This is a generalized cross-cap tangent to the parabolic stratum along a2 = b3 = 0. We
get a product stratification and a three-dimensional model is given by w(v2 − u2w) = 0,
removing the handle of the Whitney umbrella (Figure 1b, left). In other words this is
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Figure 3. Changes on the parabolic set at a non-versal D4:
real type top right and imaginary type bottom right.

the form of the pull-back in the M × I space. The Monge–Taylor map is generically
transverse to the A3 ∩ ∆-stratum, so we are seeking germs of submersions transverse to
the u-axis. These are all equivalent to germs of the form u + w (this follows from [8] and
an extra calculation) and the transition on the A3 and ∆-sets are shown in Figure 1b,
right. The A3-set undergoes the cusp transitions here.

Proposition 3.5. Changes on the parabolic set away from umbilic points occur at A3-
points. In a generic one-parameter family of surfaces the A3 and parabolic sets undergo
the Morse transitions described in Figure 2. The A3-set also undergoes the transitions in
Figure 1 on a smooth parabolic curve.

3.3. Changes on ∆ at an umbilic

In the setting of § 2 the origin is an umbilic point when j2f2 = 0. If the curvature
κ = m2 − ln �= 0 (see [20]) and m �= 0, a transversal to the G-orbit of (f1, f2) in V3 × V3

is given by
(lx2 + 2mxy + ny2 + f1

3 + f1
3 , a0x

2 + a2y
2 + f2

3 + f2
3 ),

where f1
3 and f2

3 are general cubics and a0, a2 ∈ R. (If m = 0 we can consider another
transversal and the results follow in the same way.) In this transversal the D4-stratum
is given by a0 = a2 = 0 and the parabolic stratum by

n2a2
0 + 2(2m2 − nl)a0a2 + l2a2

2 = 0.

This is a non-degenerate quadratic if m2 − ln �= 0 and m �= 0. In this case a three-
dimensional transversal consists of two intersecting planes at an inflection point of real
type, with the intersecting set the D4-stratum, and of a line (the D4-stratum) in the case
of an inflection point of imaginary type. Models for these are provided by the varieties
V = {(u, v, w) ∈ R, 0 : w2 ± v2 = 0} (Figure 3, left).

It follows that when the Monge–Taylor map is transverse to the D4-stratum, the
parabolic set on the surface consists of a pair of transverse-intersecting curves at an
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Figure 4. Changes on the parabolic set at a D4 point with κ(p) = 0.

inflection point of real type, and an isolated point at an inflection point of imaginary
type. (This is proved in [21] by direct calculations.)

The Monge–Taylor map fails to be transverse to the D4-stratum if and only if the
family of height functions is not a versal unfolding of the D4-singularity at the origin.
Then in a generic one-parameter family of surfaces, we obtain transitions on ∆ equivalent
to those given by Morse sections on V . These are represented by the germ v + u2 and
are as in Figure 3.

When the curvature is zero, a transversal has the form

(lx2 + 2(m + m)xy + ny2 + f1
3 + f1

3 , a0x
2 + a2y

2 + f2
3 + f2

3 ).

Now the quadratic part of the equation giving the parabolic stratum is degenerate.
(Note that when κ = 0, the family of height functions remains a versal unfolding of
the D4-singularity.) One can show that, in an appropriate system of coordinates in the
transversal, this stratum is given by v2 − uw2 = 0 (Figure 4, left). So we have a product
stratification and a three-dimensional transversal yields a Whitney umbrella. Generic
sections on a Whitney umbrella are as in Figure 4, right (see [8]).

The curvature does not vanish in general at a D5-singularity and the Monge–Taylor
map is transverse to the D4-stratum, so no transitions occur here on the parabolic set.
However, we shall see below that changes occur on the A3-set in this situation.

Proposition 3.6. The parabolic set undergoes the following transitions at an umbilic.

(1) Birth of two inflection points of real or imaginary types at a non-versal D4 (Fig-
ure 3).

(2) Change from a real-type to imaginary-type inflection via sections of a Whitney
umbrella at a D4 singularity when the curvature is zero (Figure 4).

(3) No changes occur on the parabolic set at a D5-singularity.

3.4. Changes on the A3-set at an umbilic

To simplify the calculations, we shall take here, without loss of generality, j2f =
(x2 ± y2, 0) at an umbilic point. Then j3f = (x2 ± y2 + f1

3 , f2
3 ), where f1

3 , f2
3 are general

cubics. We can rotate coordinates so that f2
3 = x(x + αy)(x + βy) at an elliptic umbilic
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(D+
4 ) with α �= 0, β �= 0 and α �= β, and to f2

3 = x(x2 + 2sxy + ty2) with s2 − t < 0 at
a hyperbolic umbilic (D−

4 ). We shall treat the D+
4 case in detail, the D−

4 follows in the
same way and is easier. A transversal to the G-orbit of (f1, f2) in V3 × V3 is given by

(x2 ± y2 + f1
3 + f1

3 , a0x
2 + a1xy + x(x + (α + α)y)(x + (β + β)y)),

where f1
3 is a general cubic and a0, a1, α, β ∈ R, 0.

In this transversal the D4-stratum is given by a0 = a1 = 0. We are seeking the A3-
stratum. Recall that the height function along a normal direction (0, 0, λ, 1), with λ close
to zero, is given by f2 + λf1 = Q + C, where

Q = (a0 + λ)x2 + a1xy ± λy2,

C = x(x + (α + α)y)(x + (β + β)y) + λ(f1
3 + f1

3 ).

As λ is close to zero we can write the cubic C of the form

C = (x + λA1y)(x + (α + α + λA2)y)(x + (β + β + λA3)y).

The height function along (0, 0, λ, 1) has an A3-singularity if and only if Q = L2 and L

divides the cubic C. For the quadratic to be degenerate we need

a2
1 ∓ 4λ(a0 + λ) = 0. (3.1)

Then it is not hard to show that L is a multiple of the first factor of C if and only if
a1 = 0.

For the remaining two factors in C, we can assume that the coefficient of x2 in Q is
not zero, that is, (a0 + λ) �= 0. In this case L is a multiple of x + (α + α + λA2)y if and
only if

a1 − 2(a0 + λ)(α + α + λA2) = 0. (3.2)

Substituting this in (3.1) we get

(a0 + λ)(α + α + λA2)2 ∓ λ = 0.

We can parametrize a0 and a1 in this equation and equation (3.2) by λ and the remaining
variables in the transversal. This results in a smooth hypersurface in V3 ×V3. In the same
way, when L is a multiple of the last factor in C, we obtain a smooth hypersurface in
V3 × V3. So the A3-stratum in the transversal consists of three hypersurfaces meeting
transversally along the D4-stratum when α �= β and αβ �= ∓1, and a three-dimensional
model is given by V = {(u, v, w) : vw(v−w) = 0}. The transverse sections are equivalent
to u. These represent the case when the Monge–Taylor map is transverse to the D4-
stratum, so the A3-set consists here of three smooth curves meeting transversally at the
elliptic umbilic. One can show that the Monge–Taylor map fails to be transversal to
the D4-stratum if and only if the height function is not a versal unfolding of the D4-
singularity. In this case the Morse functions on V are equivalent to v + aw + u2 with
a �= −1, 0, and the transitions of the A3-curves are drawn in Figure 5a (see also Figure 5b

for the hyperbolic umbilic case).
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(d )

(a)

(b)

(c)

Figure 5. Changes on the A3-set at an umbilic: (a), (b) a non-versal D4;
(c) αβ = ∓1; and (d) a D5-umbilic.

We can also obtain transitions on the A3-set when the roots of the cubic f2
3 satisfy

αβ = ∓1 or when f2
3 has a double root (at a D5 umbilic).

Following the above calculations further, we can show that when αβ = ∓1, the A3-
stratum is given, after changes of coordinates, by

a1a0(a0 − a1β) = 0.

Generic sections of this set have been determined in [11] and are as shown Figure 5c.
At a D5-singularity, similar calculations show that the A3-stratum is given, after

changes of coordinates, by a1(a2
1 + α a2

0) = 0 (Figure 5d, left), and the generic sections
on this set are also given in [11] and are as in Figure 5d, right.
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Proposition 3.7. At an umbilic point, the A3-set consists generically of three trans-
verse smooth curves at a D+

4 and a single smooth curve at a D−
4 .

The A3-set undergoes the following transitions at an umbilic.

(1) Birth of two elliptic or hyperbolic umbilics at a non-versal D4 (Figure 5a, b).

(2) Removing the tangency of two A3 curves at an elliptic umbilic (Figure 5c).

(3) Change from an elliptic to a hyperbolic umbilic at a D5 singularity of the height
function (Figure 5d).

We can use the fact that the A3-singularities occur only in the non-elliptic region to
sketch all possible joint transitions of the parabolic and A3-set at an umbilic point, by
superimposing the configurations in Figures 3 and 4 with those in Figure 5. (Note that
we can have an inflection point of real or imaginary type at both elliptic and hyperbolic
umbilics.)

4. Asymptotic directions on M

The contact of a surface M ⊂ R
4 with lines is determined by the family of orthogonal

projections

P : M × S3 → TS3

(p, v) �→ (v, p− < p, v > v),

where TS3 is the tangent bundle to the unit sphere. For most (respectively, all) tangent
directions v at a hyperbolic (respectively, elliptic) point of M the corresponding germ
Pv : M → R

3 is stable. At a hyperbolic point there are two directions of projection,
called the asymptotic directions, where the singularity of Pv is degenerate (worse than a
cross-cap).

It is shown in [5] that the contact of a surface M ⊂ R
4 with lines is also deter-

mined by a pencil of binary forms. Again suppose that the surface is given locally
by (x, y, f1(x, y), f2(x, y)) with the 1-jets of f1 and f2 identically zero, and denote
by (Q1, Q2) the 2-jet of (f1, f2). Then projecting along a tangent direction (α, β, 0, 0)
yields a map-germ with 2-jet (−βx + αy, Q1(x, y), Q2(x, y)). As [A : B] varies in the
projective line RP 1, the 2-jet of the projection defines a pencil of binary forms with
−βx + αy as a factor. This gives a line in RP 2, one for each direction, parametrized by
[s : t] �→ [−βs : (αs − βt)/2 : αt], or with equation α2A + 2αβB + β2C = 0, and it is
the tangent line to B2 − AC = 0 at [β2 : −αβ : α2] that corresponds to (−βx + αy)2.
Therefore, the pencil of quadratic forms correspond to the tangent lines to the conic of
degenerate forms.

Proposition 4.1 (see [5]). The direction of projection yields a cross-cap unless
the line it determines passes through one of the points of intersection of the conic of
degenerate forms with the pencil (Q1, Q2) and is consequently tangent to the conic there.
So there are two asymptotic directions at a hyperbolic point, one at a parabolic point
and none at an elliptic point.
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Corollary 4.2. The asymptotic directions are solutions of the BDE

(am − bl) dx2 + (an − cl) dx dy + (bn − cm) dy2 = 0,

where a, b, c and l, m, n are the coefficients of the quadratic forms Q1 and Q2 at (x, y).
This equation is affine invariant and can also be written in the following form:∣∣∣∣∣∣∣

dy2 − dx dy dx2

a b c

l m n

∣∣∣∣∣∣∣ = 0.

The discriminant of the BDE is given by the zero set of the function

δ = (an − cl)2 − 4(am − bl)(bn − cm)

and coincides with the parabolic set of the surface.

Proof. Using Proposition 4.1, one only has to determine the condition for the pro-
jection along the direction [dx : dy] to be worse than a cross-cap. The equation follows
from a straightforward calculation. �

To study the configurations of the asymptotic curves, and the way they bifurcate in
generic one-parameter families of surfaces, we need to recall some results on BDEs. These
equations are a particular type of implicit differential equation of the form

A(x, y) dx2 + 2B(x, y) dx dy + C(x, y) dy2 = 0,

where A, B, C are smooth germs of functions R
2, 0 → R. A BDE defines pairs of directions

at points (x, y) in the plane where δ = B2 − AC > 0. These directions coincide on the
discriminant ∆ given by δ = 0; the BDE has no solutions at points where δ < 0.

One way to proceed in the study of BDEs is to consider in R
2 × RP 1 the set S of

points (x, y, [α : β]), where δ(x, y) � 0 and the direction [α : β] is a solution of the BDE
at (x, y). One can lift the bivalued field defined by the BDE to a single-valued field ξ

on S. Generically M is smooth, and there is a natural involution on S that interchanges
points with the same image under the projection to R

2. The set of fixed points of this
involution is the lift of the discriminant. By studying this single field together with the
involution, a number of useful classifications have been carried out for BDEs with the
simplest discriminants (those which are smooth or have only Morse singularities).

One can separate BDEs into two categories distinguished by whether the coefficients
all vanish at the origin or not. In the first category, the stable configurations of the
integral curves at a point on the discriminant are obtained in [13–15]. If the discriminant
is smooth and the unique direction defined by the equation is transverse to it, then a
smooth model is given by dx2+y dy2 = 0 [13,14]. If the unique direction is tangent to the
discriminant, then the stable BDEs are smoothly equivalent to dx2 +(−x+λy2) dy2 = 0
with λ �= 0, 1

16 [15]. The singularity is a well-folded saddle if λ < 0, a well-folded node
if 0 < λ < 1

16 , and a well-folded focus if 1
16 < λ. The modulus λ can be eliminated

topologically [12,15].
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The bifurcations in generic one-parameter families of BDEs with non-vanishing coef-
ficients have also been established. These consists of the well-folded saddle/node bifur-
cations (λ = 0 above) and occur when the discriminant is smooth and the lifted field ξ

has a saddle-node singularity [16]. When λ = 1
16 we have a change from node to focus

and the normal form is given in [17]. The other case occurs when the discriminant has a
Morse singularity. These equations are labelled Morse type 1 and are studied in [12].

When the coefficients of the BDE vanish at the origin the surface S is smooth if and
only if δ has a Morse singularity [6]. These equations are of codimension 1 and are labelled
Morse type 2 [6,7]. In this case the whole projective line (the exceptional fibre) 0× RP 1

is in S, and the field ξ has generically three or one zeros on the exceptional fibre of type
saddles (S) or nodes (N). When the discriminant is an isolated point (A+

1 singularity)
the coefficients of the topological models are:

(i) (L) lemon (1S), (y, x,−y),

(ii) (S) star (3S), (y, −x,−y), and

(iii) (M) monstar (2S + 1N), (y, 1
4x,−y),

where the numbers 1S, 3S, 2S + 1N indicate the number and type of the singularities of
the field ξ on S.

When the discriminant is a crossing (A+
1 singularity) the topological models are:

(i) (U1) 1S, (y, x, y),

(ii) (U2) 1N, (y, − 1
4x, y),

(iii) (U3) 3S, (y, −2x, y),

(iv) (U4) 2S + 1N, (y, y − x, y), and

(v) (U5) 1S + 2N, (y, − 2
3x, y).

We shall now determine the relevant local models for the BDE of the asymptotic curves,
i.e. the conditions for the BDE to be equivalent to one of the above models, and where
possible the geometrical interpretation of each case. There are two situations to consider
here depending on whether the origin is an umbilic (inflection) point or not.

4.1. The origin is not an umbilic point

In this case the pair of quadratics (Q1, Q2) could be taken, after affine changes of
coordinates, in the form (xy, x2), so that the height function along the normal direction
(0, 0, 0, 1) has a degenerate singularity. We can then write the functions f1 and f2 in § 2
in the form

f1 = xy + r0x
3 + r1x

2y + r2xy2 + r3y
3 +

i=4∑
i=0

six
4−iyi + · · · ,

f2 = x2 + b0x
3 + b1x

2y + b2xy2 + b3y
3 +

i=4∑
i=0

cix
4−iyi + · · · .
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Figure 6. Changes from well-folded node to well-folded focus.

The 2-jets of the coefficients of the second fundamental forms are given by

a = 1
2f1

xx = 1
2 (6r0x + 2r1y + 12s0x

3 + 6s1xy + 2s2y
2),

b = 1
2f1

xy = 1
2 (1 + 2r1x + 2r2y + 3s1x

2 + 4s2xy + 3s3y
2),

c = 1
2f1

yy = 1
2 (2r2x + 6r3y + 2s2x

2 + 6s3xy + 12s4y
2),

l = 1
2f2

xx = 1
2 (2 + 6b0x + 2b1y + 12c0x

3 + 6c1xy + 2c2y
2),

m = 1
2f2

xy = 1
2 (2b1x + 2b2y + 3c1x

2 + 4c2xy + 3c3y
2),

n = 1
2f2

yy = 1
2 (2b2x + 6b3y + 2c2x

2 + 6c3xy + 12c4y
2),

and the resulting 1-jets of the coefficients of the BDE of the asymptotic curves are given,
after scaling, by

A = 1 + (3b0 + 2r1)x + (b1 + 2r2)y,

B = r2x + 3r3y,

C = −b2x − 3b3y.

The BDE is equivalent to dx2 + y dy2 if and only if b3 �= 0 [13, 14], that is, when
the origin is an A2 singularity of the height function. In this case the asymptotic curves
(integral curves of the BDE) form a family of cusps.

When b3 = 0 but b2 �= 0, that is, a height function has an A3 singularity and the
parabolic set is smooth, we can reduce the 2-jet, and hence the BDE, to

dx2 + (−x − (3/b2
2)(3r2

3 − 5
2b2r3 + 2c4)y2) dy2 = 0

if λ �= 0, 1
16 , where λ = −(3/b2

2)(3r2
3 − 5

2b2r3 + 2c4). The singularity of the asymptotic
field has a well-folded singularity [15] of type saddle if λ < 0, node if 0 < λ < 1

16 and
focus if 1

16 < λ.
When λ = 0 we get, in a generic one-parameter family of surfaces, a well-folded sad-

dle/node bifurcation [16]. This condition is precisely that for the Monge–Taylor map to
fail to be transverse to the A3-stratum at a parabolic point (see § 3.2, where a0 = 1 and
m = 1

2 here). In particular, one of the newly born A3-points is of type well-folded saddle
and the other well-folded node.

When λ = 1
16 we get, in a generic one-parameter family of surfaces, a change from a

well-folded node to a well-folded focus [17]. A normal form for this family is given by
dy2 + (−y + ( 1

16 + t)x2) dx2 = 0. We draw in Figure 6 the changes of integral curves of
this family, as they have not been drawn anywhere else. We observe that the condition
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λ = 1
16 for the BDE of the asymptotic curves is not related to any of those arising from

the family of height functions or from the Monge–Taylor map.
When b3 = b2 = 0, the discriminant is singular, and as the coefficients of the BDE are

not all zero at the origin, we generally get a Morse type 1 singularity [12]. Changes of
coordinates show that the 2-jet, and hence the BDE, is equivalent to

dx2 + [(−r2
2 + 2b1r2 − c2)x2 + 3(−2r2r3 + 2b1r3 − c3)xy − 3(3r2

3 + 2c4)y2] dy2 = 0,

when 3(−2r2r3 + 2b1r3 − c3)2 + 4(3r2
3 + 2c4)(−r2

2 + 2b1r2 − c2) �= 0 (Morse condition
on the discriminant) and −3r2

3 − 2c4 �= 0. The last condition ensures that the reduction
is valid [12]. It also means that the BDE has multiplicity 2; alternatively, the unique
direction determined by the equation is not tangent to the discriminant. We get two
well-folded saddles on one side of the transition when −3r2

3 −2c4 < 0 and two well-folded
foci otherwise. We can use the fact that the A3-set and the asymptotic curves lie in the
hyperbolic region to draw the configurations of the asymptotic directions on Figure 2
using the models in [12].

Proposition 4.3. Away from umbilic points the asymptotic lines have the following
stable topological configurations at a parabolic point on a surface M ∈ R

4.

(1) A family of cusps at an ordinary parabolic point.

(2) A well-folded singularity at an A3-point of the height function.

In a generic one-parameter family of surfaces these curves undergo the following bifur-
cations.

(3) Well-folded saddle/node bifurcations at a non-transverse A3-point on a smooth
parabolic set.

(4) Changes from well-folded node to well-folded focus at an A3-point on a smooth
parabolic set when the lifted field has one eigenvalue with multiplicity 2.

(5) Morse type 1 bifurcations at a Morse singularity of the parabolic set.

4.2. The origin is an umbilic point: the stable structures

When the origin is an umbilic, the coefficients of the BDE of the asymptotic curves
vanish, and in general the discriminant has a Morse singularity so we have a Morse
type 2 BDE. Although this BDE is of codimension 1 in the set of all BDEs, it is stable
in this context as generic umbilic points are stable. We shall determine here only the
type of this BDE at generic umbilics. In order to determine its bifurcations we need to
understand codimension 2 phenomena in BDEs with zero coefficients. This is part of a
future investigation.

There are two types of umbilics: imaginary type, where the pair of quadratics (Q1, Q2)
is equivalent to (x2 + y2, 0) (∆ is an isolated point); and the real type, when (Q1, Q2) is
equivalent to (xy, 0) (∆ is a crossing). We shall treat the cases separately.
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2S + 1N

1S + 2N

2S + 1N
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HS
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M

M

HS

HS

Figure 7. Partition of the set of cubics left, and of the (a, b)-plane right (‘L’ denotes lemon,
‘M’ denotes monstar, ‘ES’ denotes elliptic star, and ‘HS’ denotes hyperbolic star).

The imaginary type: (x2 + y2, 0)

(This case has also been dealt with in [18] using an alternative method.) The 3-jet of
the parametrization of the surface is of the form (x, y, x2 + y2 + O(3), v(x, y) + O(3)),
where v(x, y) = b0x

3 + b1x
2y + b2xy3 + b3y

3. Then the 1-jet of the BDE is given by

vxy dx2 + (vyy − vxx) dx dy − vxy dy2.

This is precisely the 1-jet of the BDE giving the principal directions of the surface
(x, y, a0(x2 + y2) + v(x, y) + O(3)) in R

3 at the origin, an umbilic point (see [4]). So its
configuration follows the same pattern, and, in particular, if the cubic v is written in
the complex form Re(z3 + βz2z), we obtain the well-known partition of the β-plane into
the various regions where the lemon, star and monstar umbilic occur (Figure 7, left). As
inflection points are stable on surfaces in R

4, the BDEs giving the asymptotic curves are
stable in this context.

The real type: (xy, 0)

The surface is given by (x, y, xy + O(3), v(x, y) + O(3)), where v(x, y) = x3 + b1x
2y +

b2xy3 + y3 after scaling provided b0b3 �= 0 (see [5]). The 1-jet of the BDE is then given
by

vxy dx2 − vyy dy2,

and its discriminant by vxyvyy = (3x + b1y)(b2x + 3y) = 0. This quadratic is non-
degenerate (singularity of Morse type) if b1b2 − 9 �= 0. The curve b1b2 − 9 = 0 in the
(b1, b2)-plane also represents the set of cubics where the family of height functions fails to
be a versal unfolding of the D4 singularity at the origin (see Proposition 2.2 and Figure 7,
right, the continuous hyperbola).

There are two curves of interest in the (b1, b2)-plane (see [6]). The first represents
the cubics where the singularity of the lifted field are not stable (i.e, its linearization
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has a zero eigenvalue at a singular point). This set coincides with the non-Morse curve
b1b2 − 9 = 0.

The second curve consists of points (b1, b2), where the cubic giving the zeros of the
lifted field has a double root. This cubic is φ(p) = 3p3 + b2p

2 − b1p − 3 and the double
root curve is given by

b1(t) = −3(t2 − (2/t)),

b2(t) = 3(2t − (1/t2)),

or alternatively given by the equation

(b1b2 − 81)2 − 4(b2
2 + 9b1)(b2

1 + 9b2) = 0

(Figure 7, right, the dashed curve). This curve coincides with the set of points where
the direction of the orthogonal projection has a double S2 singularity [5]. In Figure 7,
right, we indicate the different topological types in each region bounded by the above
curves. We observe that all the cases of Morse type 2 BDEs occur in this context. As
hyperbolic umbilics are stable points on a surface in R

4, the BDE of asymptotic lines
provides a geometric context where Morse type 2 BDEs with a discriminant having an
A−

1 singularity are stable.

Proposition 4.4. The asymptotic directions have the configurations of the lemon,
star or monstar BDEs at an umbilic point of imaginary type. At an umbilic point of real
type it is topologically equivalent to one of the five models of BDEs of Morse type 2 with
a discriminant of type A−

1 . In both cases the configurations are stable.

We shall now deduce some global properties of a compact surface in R
4 from the

singularities of the BDE of the asymptotic lines. We shall denote by HC (hyperbolic
cusp) (respectively, EC (elliptic cusp)) the well-folded saddle singularity (respectively,
well-folded node/focus singularity) of the BDE of the asymptotic curves. The lemon,
star and monstar singularities of this BDE are denoted by L, S and M, respectively.
The different types of singularities of Morse type 2 BDEs where the discriminant is a
node are denoted by U1, . . . ,U5 (see the beginning of this section). The symbol n(sing)
indicates the number of singularities on a surface M of one of the given types above,
Mh denotes the hyperbolic region of M , Mh its closure, and X (M) denotes the Euler
characteristic of M .

Theorem 4.5. Let M be a generic compact embedded surface in R
4. Then

X (Mh) = 1
2 [n(L) − n(S) + n(M)] + 1

2 [n(EC) − n(HC)]

+ 1
2 [n(U1) + 3n(U2) − n(U3) + n(U4) + 3n(U5)].

In particular, if N is convex, then

X (M) = 1
2 [n(L) − n(S) + n(M)],

and if M has no inflection points of real type, then

X (Mh) = 1
2 [n(L) − n(S) + n(M)] + 1

2 [n(EC) − n(HC)].
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Proof. As in the proof of Theorem 2.1 in [4], we consider in the projectivized tan-
gent bundle to M , P(TM), the set M̃ which consists of the asymptotic directions at
non-umbilics and all directions at umbilic points. Since the surface M is generic, the
parabolic set is either smooth or has Morse singularities at umbilic points, and hence the
surface M̃ is smooth [6], and the boundary of Mh, the closure of the hyperbolic region
of M , is a union of circles. The projection π : M̃ → Mh is a smooth 2-fold covering away
from the parabolic set and umbilics. The exceptional fibres over umbilic points are real
projective lines, that is circles, with cylindrical neighbourhoods. The set M̃ is obtained
by deleting disk neighbourhoods of the umbilic points of Mh taking two copies of the
result, gluing along the boundary of Mh and sewing in the cylinders. It is not hard to see
that X (M̃) = 2(X (Mh) − m), where m is the number of umbilics. The bivalued asymp-
totic field on Mh lifts to a smooth line field ξ on M̃ . For a generic surface M this field
has one or three zeros on each exceptional fibre [6], and well-folded saddles/nodes/foci
on the lift of the parabolic set. The result now follows using Poincaré’s Theorem. �
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