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1. Introduction
A tournament Tn consists of a finite set of nodes 1,2, ..., n such that each pair

of distinct nodes i and/ is joined by exactly one of the arcs ij orji. If the arc
y is in Tn we say that / beats j or j loses to i and write i-*j. If each node of a
subtournament A beats each node of a subtournament B we write A-+B and
let A+B denote the tournament determined by the nodes of A and B.

A tournament Tn is transitive if its nodes can be labelled in such a way that
i-*j if and only if i>j; in this case we call node n the top node. A transitive
subtournament of a tournament Tn is maximal if it is not a proper subtournament
of any other transitive subtournament of Tn. Let f(n) denote the maximum
number of maximal transitive subtournaments a tournament Tn can have; we
find by inspection, for example, that /(I) = /(2) = 1 and /(3) = /(4) = 3.
Our object here is to prove the following result.

Theorem. Ifn = 5m+r, where m ^ 1 andO ^ r ^ 4, then

where c0 — 7, ct = 9, c2 = 15, c3 = 19, and c4 = 31.

Corollary. If 6 = lim (/(n))1/n, rAen 0 exwtt and 1-4757 | f l ^ 1-717.

2. A lower bound for/(n)
A tournament Tn is sfrowg if it cannot be expressed as Tn = A+B for some

nonempty tournaments A and B. If Tn is not strong it has a unique expression
of the type Tn = A+B+ ...+K where the non-empty tournaments A, B, ..., K
all are strong; if this is the case, then f(Tn) - f(A)f(JB)...f{K) where f(X)
denotes the number of maximal transitive subtournaments in the tournament
X. It follows, therefore, that if a+b = n then

f(n)^f(a)f(b). (1)

If Tn is any tournament with n nodes, let Tn+2 denote the tournament
obtained by adjoining two nodes p and q to Tn such that p-*Tn, Tn->q, and
q->p. It is not difficult to see that/(rn + 2) = 2f(Tn)+1; consequently,

^2f(n)+l. (2)

t On leave from the University of Alberta.
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Since/(3) = 3, it follows that/(5) ^ 7,/(7) ^ 15,and/(9) ^ 3 1 ; furthermore,
/(6) ^ (JO))2 = 9, by (1), whence/(8) ^ 19 by (2).

Let us now suppose that n = 5m + r where m ^ 2 and 0 ^ r ^ 4. Then

by (1) and the results in the preceding paragraph. We remark that the existence
of the limit in the corollary follows from inequality (1) and a well-known result
on sub-additive functions (2, Problem 98, pp. 17, 171).

3. An upper bound for/(n): a special case
We shall prove that/(rn) ^ /}", where P = 1-717, by induction on n. The

inequality certainly holds when 1 ̂ n ^ 4 and we may restrict our attention
to strong tournaments Tn in view of the observation made earlier.

The score of a node i in a tournament is the number st of nodes that i beats.
If x is the top node of any maximal transitive subtournament M of a tournament
Tn, let N denote the tournament obtained from M by deleting x (M must have
at least two nodes when n ^ 2). It is easy to verify that N is a maximal tran-
sitive subtournament of the tournament determined by the sx nodes of Tn that
lose to x; thus x is the top node of at most/OsJ maximal transitive subtourna-
ments of Tn. It follows, therefore, that if (su ..., sn) denotes the score sequence
of a tournament Tn, then

/(TJ^tjis,). (3)
If Tn is strong then st ^ n—2 for every node i. In this section we treat the

case where there exists a node p in Tn such that sp = n—2. Let q denote the
unique node of Tn that beats p. If two nodes of Tn have score n—2, then we
may take p and q to be these nodes. If three nodes had score n—2 then these
nodes would beat all the remaining nodes when n>3 and Tn would not be
strong. Thus we may suppose that st g «—3 for any node i of Tn other than
p or q. Let Ta and Tb denote the subtournaments determined by those nodes
of Tn other than p that beat q and lose to q, respectively. Since sq ^ n — 2 it
must be that a ^ 1 and b ^ n — 3.

Node q is the only node that beats p. It follows that every maximal tran-
sitive subtournament of Tn that does not contain q must certainly contain p.
It is not difficult to see that there are at most/(« —2) such subtournaments. A
maximal transitive subtournament that contains both p and q cannot contain
any nodes of Ta, for it would not be transitive otherwise. There are at most
f(b) such subtournaments (we adopt the convention that/(0) = 1).

We now consider those maximal transitive subtournaments of Tn that
contain q but not p. There are certainly no more than/(« — 1) such subtourna-
ments in general. We can obtain a sharper bound when a ^ 2 by observing
that the top node of such subtournaments must belong to Ta; if this were not
the case then they would contain no nodes of Ta and node p could be adjoined
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without destroying the transitivity properly. Hence, there are at most af{n—3)
such subtournaments.

We may suppose that/(m)</?m if m<n and that/(m) is an increasing func-
tion. It follows, therefore, that if Tn is strong and has a node of score n—2,
then

/(T_) ^ i /(„ _ 4) + 2/(n - 3) +/(« - 2) g

/ («-5)+/ («-2)+/ (»- l ) g ( l + j33

on-4

3_L fi4\on-5

according as b = n — 3, Z> = n—4, or 6 ^ n—5. Each of the last three bounds
is smaller than /?" when /? = 1-717 and a similar argument shows that/(Tn) ^ /?"
when Tn is strong and has a node of score 1. (Notice that the first three bounds
imply that f(T5) ^ 7 when Ts has a node of score 1 or 3; we shall use this
inequality in the next section.)

4. An upper bound for/(n): the general case
Let Tn denote a strong tournament with no nodes of score 1 or n—2; if the

nodes of Tn are labelled so that the sequence s = (su ..., sn) of scores is non-
decreasing, then it follows from our assumptions that

2 . +1 , for 1 ̂ / c ^ w - l , a n d (5)

i = 1

We remark that for any sequence s satisfying these conditions there exists at
least one tournament with score sequence s; this is a consequence of a theorem
due to Landau (see (1; p. 61)).

We first treat the cases where 5 5S « ^ 8. It follows from inequality (3)
that/(Tn) ^ nf(n—3) for tournaments Tn whose scores satisfy conditions (4)-(6).
Consequently,/(T5) < 5-1, f(T6) g 6-3, /(T7) g 7-3, and f(T8) ^ 8-7 for such
tournaments when 5 | H ^ 8. All these bounds are less than P" for the appro-
priate values of n, so we may now suppose that n ^ 9 and that f(m) ^ pm

for m<«.
If n 5: 9, let SB denote the set of all sequences s = (su •••, sn) of n integers

that satisfy conditions (4)-(6). Let s* denote the sequence (2, 2, 2, 2, 4, 6, 6, 6, 6)
or (2, 2, 2, 2, 3, 5, 6, ..., n —6, n—4, «—3, n—3, «—3, n —3) according as « = 9
or n ^ 10; it is easy to verify that s* e Sn. Ifg(x) = px let

for any s in Sn. We shall prove the following result in the next section.
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Lemma. If s e Sn where n ^ 9, then G{s) g G(s*).
It follows from inequality (3), the induction hypothesis, and the lemma,

that
f(T9) ^ G(s) ^ G(s

and, in general, that

/(TB) ^ G(s) £ G(s*) =4p2+l
^ pn~5KP-i)+p"~4+4pn-3 g pn

when P — 1-717. This will suffice to complete the proof of the theorem. (We
remark that it is easy to show that if Tn is strong and « ^ 3 then the minimum
value/(rn) can have is 3.)

5. Proof of the lemma
Let s denote any sequence in Sn such that G(s) = max {(7(0: t e Sn}; such

a sequence certainly exists. We shall prove the lemma by establishing a series
of assertions (the only property of the function g(x) that we use is that it is
strictly convex).

Assertion 1. If two consecutive elements of s are equal, they must equal 2
or n — 3.

Suppose there exist integers u and v, where 1 ^ u<v ^ n, such that
2<su = ... = sv<n-3;

we may suppose that J U _ 1 < J U if u>\ and su<sv+l if v<n. Let r = (rls ..., /•„)
denote the sequence that differs from s only in that ru = su— 1 and rv = sD+1.
The sequence r certainly satisfies conditions (4) and (6); it satisfies condition
(5) as well unless there exists an integer k, where u ^ k<v, such that

+ 1- (7)

If k = I then st = 1 and if A: = n— 1 then sn = n—2 by (6); both these alter-
natives contradict condition (4) so we may suppose 2 ^ k ^ «—2.

It follows from (7) and condition (5) that

Furthermore, sk+1 = sk so

This contradicts condition (5) so it must be that the assumption that equation
(7) holds is incorrect. Consequently, if assertion 1 does not hold then the
sequence r is in Sn. Since g is a strictly convex function it follows that

G(r)-G(s) =

https://doi.org/10.1017/S0013091500009639 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500009639


ON MAXIMAL TRANSITIVE SUBTOURNAMENTS 349

where x = su = sa. This contradicts the definition of s so it must be that
assertion 1 does in fact hold.

Assertion 2. The sequence s must start with between two and four 2's and
end with between two and four (n — 3)'s.

There are at most (n —4)—2 = n—6 st's between 3 and n—4, inclusive, by
Assertion 1; thus there are at least six st's equal to 2 or n—3. It is easy to verify
that s would not satisfy condition (5) if it started with more than four 2's or
ended with more than four {n — 3)'s. Assertion 2 now follows.

Assertion 3. The sequence s must start with four 2's and end with four
(n-3)'s.

If s does not start with four 2's then 2 = st = ... = sa_1<sa where a = 3
or 4, by Assertion 2. Now a+\<n — 3, since n ^ 9, so sa<sa+1<sa+2, by
Assertions 1 and 2. Let r = (rt, ..., rn) denote the sequence that differs from
s only in that ra = sa— 1 and /-o+1 = sa+1 +1. It is easy to verify that r is in
Sn in this case. However,

G(r)-G(s) = (g{y+\)-g{y))-{g(x)-g{x-\))>0

where x = Ja<*a + 1 = y. This contradiction implies that s must start with four
2's and the last part of the assertion can be proved in a similar way.

Assertion 4. s = s*.
It follows from Assertions 1 and 3 that the middle n—8 elements of s consist

of n — 8 of the w—6 numbers 3, 4, ..., n—4. Condition (6) implies that if h is
one of the missing numbers then n — l—h is the other, where we may suppose
that 3 j£ h<i(n— 1). If h ^ 5 then J does not satisfy condition (5) when
k = 6 so h = 3 or 4. When « = 9 the only possibility is that A = 3; when
n ^ 10 both values are possible but the function G has the larger value for the
sequence corresponding to h = 4. It follows, therefore, that s = s* and the
lemma is proved.
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