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Abstract
The second smallest eigenvalue of the Laplacian matrix, known as algebraic connectivity, determines
many network properties. This paper investigates the optimal design of interconnections that maximizes
algebraic connectivity in multilayer networks. We identify an upper bound for maximum algebraic con-
nectivity for total weight below a threshold, independent of interconnections pattern, and only attainable
with a particular regularity condition. For efficient numerical approaches in regions of no analytical solu-
tion, we cast the problem into a convex framework and an equivalent graph embedding problem associated
with the optimum diffusion phases in the multilayer. Allowing more general settings for interconnections
entails regions of multiple transitions, giving more diverse diffusion phases than the more studied one-
toone interconnection case. When there is no restriction on the interconnection pattern, we derive several
analytical results characterizing the optimal weights using individual Fiedler vectors. We use the ratio of
algebraic connectivity and layer sizes to explain the results. Finally, we study the placement of a limited
number of interlinks heuristically, guided by each layer’s Fiedler vector components.

Keywords: algebraic connectivity; multilayer networks; convex optimization; graph embedding; optimal design

1. Introduction
We live in a world of networks that are seldom isolated and often function strongly based on
each other (Boccaletti et al., 2006). Such interacting networks can be found in every discipline,
with social (Cozzo et al., 2015; Estrada and Gómez-Gardeñes, 2014), biological (Sahneh et al.,
2012), transportation (De Domenico et al., 2014; Estrada and Gómez-Gardeñes, 2014), supply
chain (Borgatti and Li, 2009; Kim et al., 2011), engineering (Buldyrev et al., 2010; Mesbahi and
Egerstedt, 2010), and sport game (Buldú et al., 2018) networks representing only a few examples of
systems that can perform highly interconnected dynamics. The operation of such interdependent
systems may be considered in multiple layers, thereby motivating their multilayer name. While
studying multilayer networks, their interlayer structural property is a focal subject area (Kivelä
et al., 2014; Boccaletti et al., 2014) due to its impact on different dynamical and functional features
of such networks; for example, percolation (Buldyrev et al., 2010; Son et al., 2012; Yagan et al.,
2012; Kryven and Bianconi, 2019), robustness (Gao et al., 2012; Min et al., 2014; Zhang and Yagan,
2019), epidemic spreading (Saumell-Mendiola et al., 2012; Dickison et al., 2012; Yagan and Gligor,
2012; Zhuang and Yagan, 2019), synchronization (Aguirre et al., 2014;Wang et al., 2019), diffusive
behavior (de Arruda et al., 2018; Cencetti and Battiston, 2019), and controllability (Moothedath
et al., 2019). Consequently, significant effort have spurred toward optimizing the design of inter-
structures (Yagan et al., 2012; Li et al., 2015; Tejedor et al., 2018; Moothedath et al., 2019; Pan et al.,
2019; Yang et al., 2019; Chattopadhyay et al., 2019).
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2 A. Tavasoli et al.

The second smallest eigenvalue of Laplacian of the graph represents the connectivity of net-
works (Van Mieghem, 2010) and was appropriately coined by Fiedler (1973), the algebraic
connectivity of a graph. Moreover, the eigenvector corresponding to algebraic connectivity is
named Fiedler vector that plays a key role in spectral partitioning of networks (Van Mieghem,
2010). Algebraic connectivity increases monotonically by adding links (Fiedler, 1973) and can be
considered as a measure of network robustness (Jamakovic and Uhlig, 2007).

When the interconnection follows a one-to-one interconnection, with varying interlink
weights, the algebraic connectivity grows linearly with increasing weights up to a critical thresh-
old, say c∗, and then enters a nonlinear region afterward (Gomez et al., 2013a). The existence
of such threshold gives rise to structural transition in interdependent networks (Radicchi and
Arenas, 2013). Below the threshold c∗ the individual networks are structurally distinguishable,
while above that the multilayer network acts as a whole (Radicchi and Arenas, 2013).

In this paper, we are searching for optimal inter-structures that maximize the algebraic con-
nectivity. In a single-layer graph, with variable edge-weights subject to a total budget, Boyd et al.
(2004) and Goring et al. (2008) show that maximizing algebraic connectivity corresponds to a dual
semidefinite optimization problem and the optimal solutions of the dual are related to the eigen-
vectors of the optimal algebraic connectivity. Additionally, the dual problem can be interpreted
as an embedding of the single-layer graph in R

n (optimal realization of the graph in Euclidean
space), and the optimal embedding has structural properties tightly connected to the separators of
the graph. We pose similar problems in multilayer networks and similarly, our goal is to allocate
weights on the interlayer links so as to maximize the smallest positive eigenvalue of the Laplacian.
In this paper, this is achieved by formulating the primal-dual program (Boyd and Vandenberghe,
2004) and deriving its properties, and then extracting the equivalent graph realization problem
and identifying its features with respect to the multilayer network’s structure.

The significant part of above works on interdependent networks has been paid on a one-to-one
interconnection between nodes of different layers. Particularly, the multilayer graph is usually a
multiplex where the number of nodes in each layer is the same and the interconnection matrix
B= pI, with I being the identity matrix and p the coupling strength (Wang et al., 2019). However
there are many real world examples breaking the especial one-to-one interconnection pattern so
that a node in a layer may interact with multiple nodes from other layer (Van Mieghem, 2016;
Rapisardi et al., 2018; Wang et al., 2019). However, the functionality of such special structures is
very limited.

Furthermore, an effective strategy to make an interdependent system more robust is to
bring the superposition of the layers as close as possible to an all-to-all topology (Radicchi and
Arenas, 2013). These motivate the present research after the recent related work (Shakeri et al.,
2020) where the authors investigated the special case of multilayer networks with one-to-one
interconnection. We relax the assumptions regarding one-to-one structures and allow for mul-
tilayer structures where the number of nodes in each layer can be different in a more general
interconnections pattern.

When there is no restriction on the interconnection pattern, we derive several analytical results
for maximum algebraic connectivity and optimal weight distribution before threshold, as well as
for different transition thresholds and the conditions under which supperdiffusion is possible.
Furthermore, we find out a positive correlation between optimal weights and the components of
subgraph Fiedler vectors after the initial transition. We observe the role of a quantity equal to the
algebraic connectivity divided by number of nodes in a subgraph, which we call specific algebraic
connectivity, in sorting different results. When interconnections are restricted to a given admissi-
ble set, we note the conditions under which optimal weights are not uniform before the transition
c∗. This is different from conditions of multilayer networks with one-to-one interconnection
(Shakeri et al., 2016, 2020) where optimal weights before c∗ are always uniform. Another problem
pursued in this work is well-interconnected networks where our design parameter changes from
interlink weights to interconnection pattern, which plays a key role in characterizing multilayer
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Network Science 3

spectral properties. VanMieghem (2016) andWang et al. (2019) investigate the multilayer spectra
under some special inter-structures. However, it is not definite which interconnection pattern will
lead to maximum algebraic connectivity for a given number of interlinks. We address this prob-
lem through a simple greedy approach (Ghosh and Boyd, 2006) and observe that nodes having
substantially different components in a subgraph Fiedler vector are determinative in achieving
well-interconnected multilayer networks.

This paper considers the problem of assigning edge weights over a given topology of net-
work interconnections. In a separate line of recent work, empirical observations may lead to zero
weights thus dropping those edges from the network (Doherty et al., 2022). Here the edge weights
can be nonuniform but fixed, while these edges can be augmented to the network. This has also
found several practical applications by developing exact and upper-bounding algorithms for the
network design problem of maximizing algebraic connectivity (Nagarajan et al., 2015; Nagarajan
et al., 2015; Somisetty et al., 2024).

The findings of our study possess extensive implications for the design and management of
multilayer systems, particularly in contexts where resilience and robustness are paramount. Such
systems are represented in the design of multimodal transportation networks. In these networks,
the primary objective is to forge connections between two or more transportation networks, each
characterized by distinct delivery modes, through strategic linking of their nodes (Aparicio et al.,
2022; He et al., 2021; Baggag et al., 2018). This integration aims to enhance the overall efficiency
and robustness of the transportation infrastructure. By optimizing the interconnections between
different layers of the network—such as rail, road, and air transport—the study’s insights can
guide the development ofmore resilientmultimodal systems. This is crucial for ensuring that these
networks can withstand disruptions, adapt to dynamic demands, and maintain high levels of ser-
vice efficiency. Ultimately, the application of these findings in multimodal transportation system
design facilitates smoother, more reliable transitions between different transportation modes.

Another intriguing example of integrating multiple networks arises in the context of airline
mergers driven by economic circumstances or strategic considerations (Sugishita and Masuda,
2021; Shaw and Ivy, 1994; Ciliberto et al., 2019). Such a merger presents a unique challenge in
the realm of unimodal transportation networks, necessitating a strategic integration of previously
separate networks. This integration often involves the introduction of new routes that serve as
bridges, linking the disparate segments into a cohesive whole. Such amethod not only expands the
operational reach of the newly merged airline but also enhances network connectivity, facilitating
smoother travel paths for passengers across a broader geographic area. The process of adding
these new routes requires meticulous planning to ensure that they not only connect high-demand
nodes but also optimize the overall network efficiency and robustness. This approach not only
capitalizes on the synergies between the merged airlines’ assets but also aims to improve service
quality and competitiveness in a challenging economic landscape. By carefully designing these
connecting routes, airlines can overcome the complexities associated with network integration,
ultimately leading to a unified system that is greater than the sum of its parts, offering enhanced
connectivity, improved resiliency against disruptions, and a more seamless travel experience for
passengers.

The main contributions of the paper are outlined as follows:

- In Section 3, we extend the findings of (Shakeri et al., 2016, 2020) to amore general scenario
that relaxes the assumption of one-to-one interconnections. We show that the uniform
optimal weights identified for interconnection strengths less than a threshold c∗ in (Shakeri
et al., 2016, 2020) are replaced with the regularity conditions formulated within the broader
framework presented in this paper.

- In Sections 4 and 5, we embark on a thorough exploration of optimal weights, par-
ticularly as the interconnection strength surpasses c∗. Here, we introduce the concept
of specific algebraic connectivity, offering valuable insights into optimal weights and
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4 A. Tavasoli et al.

sorting out various diffusion phases. We uncover and study diffusion phases that remain
elusive within the setting of one-to-one interconnection patterns (Shakeri et al., 2016,
2020). Additionally, employing perturbation analysis, we unravel the intricate relationship
between optimal weights and the Fiedler vector, shedding further light on their correlation.

- In Section 6, we explore well-interconnected multilayer networks, where our design objec-
tive transitions from optimizing weights (Shakeri et al., 2016, 2020) to optimizing the
inter-structure. Here, our emphasis lies in identifying the optimal interconnection struc-
ture within the constraints of a fixed number of interlinks and their associated weights.
Leveraging the relationship with the Fiedler vectors of individual layers, we introduce a
heuristic algorithm specifically tailored to address this combinatorial challenge. Through a
series of illustrative examples, we showcase the effectiveness and efficiency of our proposed
approach.

We organize the remainder of the paper as follows. Section 2 formulates multilayer networks
based on the Laplacian matrix. We formulate the maximum algebraic connectivity problem in
Section 3 and derive some of its main properties. In Section 4, we consider maximum algebraic
connectivity of multilayers with all-pairs interconnection possibility. Furthermore, we investigate
the condition when the interlinks can be chosen only from a given admissible set in Section 5.
In Section 6, we change our optimum design parameter from interlink weights to interconnec-
tions pattern and suggest well-interconnected multilayer networks. Finally Section 7 is devoted to
concluding remarks and a discussion on the applications.

2. Multilayer networks
Let G= (V , E) represent an undirected network and by V = {1, . . . ,N} and E⊂

(
V

2

)
, we denote

the set of nodes and links. For a link e between nodes i and j, that is, e : {i, j} ∈ E, we define a
nonnegative value wij as the weight of the link. Given G a multilayer network, let G1 = {V1, E1}
and G2 = {V2, E2}, |V1| = n, |V2| =m, represent the layers, and a bipartite graph G3 = {V , E3}
with E3 ⊆ {{i, j} : i ∈V1, j ∈V2} are connecting the layers. The whole multilayer network holds
total number of nodes N = n+m. Throughout the paper, we use the term intralayer links for E1
and E2, and interlayer links for E3.

The links in G3 bridge G1 and G2 and should be chosen strategically, for instance in a way that
minimizes the disruption of the flow of information, electric power or goods, or to avoid failures
against attackers and possible errors that can fragment the system or cause cascading phenomena
(Buldyrev et al., 2010). The edge weights of G3 are design parameters.

The Laplacian matrix is defined as:

L(w) :=
∑

{i,j}∈E1∪E2
Bij +

∑
{i,j}∈E3

wijBij, (1)

where Bij := (δi − δj)(δi − δj)T , for each link {i, j}, and δi is the delta function at vertex i. In partic-
ular, we think of the Laplacian matrix of G as a function of the interlayer weights w. Enumerating
the vertices in V1 followed by the vertices in V2, we can write L(w) in block form in terms of the
Laplacian matrices of the layers, L1 and L2, as follows:

L(w)=
⎡
⎣L1 + diag(W1m) −W

−WT L2 + diag
(
WT1n

)
⎤
⎦ (2)

We will first assume that it is possible to connect any node of G1 to any node in G2 andWn×m =[
wij

]
consists of nonnegative weights. We use 1n and 1m to denote the n- and m-dimensional all

ones vectors, respectively. Recall that the Laplacian matrix L(w) is positive semidefinite and has
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(at least for connected networks) one zero eigenvalue with eigenvector 1= [1, . . . , 1]T , the vector
of all ones of appropriate length. The eigenvalues of L(w) are ordered as 0= λ1(w)≤ λ2(w)≤
λ3(w)≤ · · · ≤ λN(w).

3. Maximum algebraic connectivity in multilayer networks
The smallest positive Laplacian eigenvalue is called the algebraic connectivity of graphs and is
characterized as:

λ2(L) = min
vT1=0v 	=0

vTLv
‖v‖2 (3)

We maximize λ2(L) by distributing a total budget c over the interlayer edges, formulated as:

F(c) := max
w≥0

wT1=c

λ2[L(w)] (4)

Lemma 1. The maximum algebraic connectivity function F(c) in (4) is upper-bounded as:

F(c) ≤
(
1
n

+ 1
m

)
c (5)

See A.1 for the proof.

The upper-bound in (5) is independent of the number and pattern of interconnections. In a
multilayer with one-to-one interconnection (Shakeri et al., 2016), n=m, the bound (5) is verified
as F(c) ≤ 2c

n .

Lemma 2. The upper-bound (5) is attainable only if the following regulatory conditions are satisfied

W1m ∈ span{1n}, WT1n ∈ span{1m} (6)

In other words, W has constant row sum and column sum. See A.2 for the proof.

Remark 1. Knowing that the total budget c satisfies 1TnW1m = c, the regularity condition (6)
implies

W1m = c
n
1n, WT1n = c

m
1m (7)

indicating the nodes in an individual layer are all assigned the same total interlayer weight
(i.e., equal weighted interlayer degree for all nodes of a layer). This generally does not imply identical
weights for all interlinks. Shakeri et al. (2016) show uniform optimal weights in a one-to-one inter-
connection structure when c≤ c∗. Another case where regularity is feasible with uniform weights
is an all-pairs interconnection pattern (Van Mieghem, 2016; Wang et al., 2019a). A more general
case where regularity is accompanied with uniform interlink weights is when interlayer connectivity
follows k-to-k coupling scheme (k integer) (Wang et al., 2019b).

To further clarify Remark 1 within a practical context, consider a transportation network char-
acterized by bimodal or multimodal features, akin to the framework outlined by He et al. (2021).
Here, the budget denoted as c represents the capacity for transportation between nodes belong-
ing to distinct modalities. According to Lemma 2, in conjunction with Remark 1, it becomes
evident that achieving maximal algebraic connectivity within such a transportation network
necessitates an equitable distribution of interlayer transportation capacity across nodes sharing
the same transportation mode. In essence, nodes operating under identical delivery modes must
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6 A. Tavasoli et al.

possess equivalent capacities for shipping goods to nodes employing different delivery modes,
thus achieving the network’s maximum algebraic connectivity.

Lemma 3. Suppose the regularity conditions given by (6) are feasible. For budget values c not greater
than a threshold c∗, c≤ c∗, the solution to the maximum algebraic connectivity problem (4) is λ∗ =( 1
n + 1

m
)
c with corresponding eigenvector

[
m1n

−n1m

]
, that is only attainable by regularity conditions (6).

See A.3 for the proof.

Further bounds can be derived based on the algebraic connectivity of the individual layers and
their corresponding eigenvectors. Specifically, denoting by λ

(1)
2 and λ

(2)
2 the second smallest eigen-

value of L1 and L2, respectively, and by u(1)2 and v(2)2 the corresponding Fiedler vectors we have (see
Appendix B):

λ2 < λ
(1)
2 + u(1)2

T
diag(W1m) u(1)2 (8)

λ2 < λ
(2)
2 + v(2)2

T
diag

(
WT1n

)
v(2)2 (9)

Attempting to maximize the minimum of the right-hand sides of (8), suggests assigning most
weight to the node with largest entries in the corresponding Fiedler vectors. This signifies the
importance of Fiedler vectors of the layers in determining the optimal weights that will be
discussed further in the paper.

The problem in (4) is a convex optimization problem with a concave objective (Sun et al., 2006)
and linear constraints. For c≤ c∗, with regularity feasible, the solution to (4) is determined analyt-
ically. However, for c> c∗, the optimal weights are generally nonregular and numerical solutions
of are required. To this end, we recast the problem defined by (3) and (4) as a primal semidef-
inite programming (SDP) (Vandenberghe and Boyd, 1996; Boyd and Vandenberghe, 2004) and
investigate the associated dual problem. See Appendix C for the proposed primal and dual SDPs.

4. Multilayer networks with all-pairs interconnection possibility
In this section, we remove all topological constraints and allow all-to-all interconnection in
multilayer networks.

4.1 Uniformweights
Consider uniform weights for the interlinks, wij = c/nm and W = c

nmJ with J the n×m all ones
matrix.

Lemma 4. Consider the eigenvalue problem L

⎡
⎣u

v

⎤
⎦ = λ

⎡
⎣u

v

⎤
⎦. In the case of uniform weights, all

eigenvalues increase linearly with c. Furthermore, n− 1 nonzero solutions are

λ = λ
(1)
i + c

n
,

⎡
⎣u

v

⎤
⎦ =

⎡
⎣u(1)i

0

⎤
⎦ (10)

and m− 1 nonzero solutions are

λ = λ
(2)
j + c

m
,

⎡
⎣u

v

⎤
⎦ =

⎡
⎣ 0

v(2)j

⎤
⎦ (11)
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Figure 1. Algebraic connectivity of supra-Laplacian L as function of total budget c for uniformweight distribution. (a) Case 1:
n>m, λ2[L1]/n> λ2[L2]/m (thus λ2[L1]> λ2[L2]), (b) Case 2: n>m, λ2[L1]> λ2[L2], λ2[L1]/n< λ2[L2]/m, (c) Case 3: n<m,
λ2[L1]> λ2[L2] (thus λ2[L1]/n> λ2[L2]/m).

where λ
(1)
i , i= 2, . . . , n, are nonzero eigenvalues of L1 and u(1)i are the corresponding eigenvectors,

λ
(2)
j is the j-th eigenvector of L2 and v(2)j the corresponding eigenvector. The last nonzero eigenvalue

and its corresponding eigenvector are

λ =
(
1
n

+ 1
m

)
c,

⎡
⎣u

v

⎤
⎦ = 1√

2nm

⎡
⎣ m1n

−n1m

⎤
⎦ (12)

See A.4 for the proof.

The second largest eigenvalue is obtained as

λ2[L]=min
[(

1
n

+ 1
m

)
c, λ

(1)
2 + c

n
, λ

(2)
2 + c

m

]
(13)

Varying c results in transitions among the three linear functions in (13). Figure 1(a) illustrates a
case, where n>m, λ2[L1]> λ2[L2], and λ2[L1]/n> λ2[L2]/m, with two transitions occurring in

c∗ = nλ(2)2 , c∗∗ =
(
1
m

− 1
n

)−1 (
λ
(1)
2 − λ

(2)
2

)
(14)

Figure 1 also illustrates Cases 2 and 3 where each holds only one transition. The transition in
Case 3 is c∗ in (14), and the only transition in Case 2 is

c∗ =mλ
(1)
2 (15)

For the special case of subgraphs with the same number of nodes, n=m, the algebraic con-
nectivity before c∗ is 2c/n, and after c∗ is equal to λ

(0)
2 + c/n where λ

(0)
2 denotes the minimum

algebraic connectivity of subgraphs, λ
(0)
2 =min(λ(1)2 , λ(2)2 ). The threshold is c∗ = nλ(0)2 , in this

special case.
In all three cases illustrated in Figure 1, individual network components play no role on

supra-Laplacian algebraic connectivity for c≤ c∗. By increasing c beyond the threshold c> c∗,
the algebraic connectivities of individual layers G1 and G2 per unit node, that is, λ2[L1] /n and
λ2[L2] /m are the main parameters characterizing the algebraic connectivity of the whole net-
work. We call the algebraic connectivity per unit node the specific algebraic connectivity. The term
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8 A. Tavasoli et al.

“specific” is motivated by its use in thermodynamics (Sonntag et al., 2009) where it refers to a
quantity per unit mass. A specific quantity is an intensive property because it does not depend on
substance amount. Here, for instance, a complete graph with n nodes has algebraic connectivity
equal to n, while its specific algebraic connectivity is unity, thus independent of graph number of
nodes n. As a feature of three cases of Figure 1, the subgraph with larger specific algebraic con-
nectivity determines the supra-Laplacian algebraic connectivity only in Case 1 when c> c∗∗, and
under all other circumstances of c> c∗ it is the subgraph with smaller specific connectivity that
determines the supra-Laplacian algebraic connectivity.

Super-diffusion happens when diffusion in the interconnected network spreads faster than
in each individual network if isolated. In multilayer networks with one-to-one interconnec-
tion, super-diffusion is possible only if the algebraic connectivity of the average Laplacian Lave =
1
2 (L1 + L2) is greater than the algebraic connectivity values of individual networks (Gomez et al.,
2013b). This is possible provided the Fiedler vectors of G1 and G2 are far from being parallel
(close-to-orthogonal) (Darabi Sahneh et al., 2015). In contrast, in all-to-all interconnection con-
figurations, since algebraic connectivity increases linearly with c, super-diffusion always occurs
for sufficiently large budgets, and no restriction is imposed on Fiedler vectors of individual net-
works. In fact, having close-to-orthogonal Fiedler vectors in one-to-one interconnected networks
means that links of G2 connect those nodes that are far from each other in G1, and vice versa
(Darabi Sahneh et al., 2015). Since this condition is satisfied in all-to-all interconnection regime,
super-diffusion is always feasible. However, to explore whether super-diffusion is possible before
the threshold c∗, we investigate if the following inequality is satisfied:

λ2[L]>max
(
λ

(1)
2 , λ(2)

2

)
Figure 1 shows that in Cases 1 and 3,

λ
(2)
2
m

<
λ

(1)
2
n

<

(
1
n

+ 1
m

)
λ

(2)
2 (16)

and for Case 2,

λ
(1)
2
n

<
λ

(2)
2
m

<

(
1
n

+ 1
m

)
λ

(1)
2 (17)

The conditions (16) and (17) set restriction on the difference between the algebraic connectiv-
ity values of the network components, and thus correlation between structural properties of the
layers is required to allow super-diffusion for c≤ c∗. Presence of significant difference between the
algebraic connectivity values of individual networks postpones super-diffusion until large inter-
connection strengths. Conversely, for close values super-diffusion can occur for values of c< c∗,
where the network components function distinctly, thus allowing advantage of interconnections
while preserving the autonomy of each subsystem (Darabi Sahneh et al., 2015).

4.2 Maximum algebraic connectivity: A perturbation analysis
Lemmas 1 and 2 explain that the maximum algebraic connectivity is upper-bounded and the
upperbound (5) is attainable subject to the regularity conditions (6). Section 4.1 shows that with
uniformweights—which satisfy the regularity conditions—the algebraic connectivity can reach its
upper-bound (5) in c≤ c∗. Therefore, for c≤ c∗, the uniform weight distribution is the solution
of maximum eigenvalue problem (4). Although, Lemma 3 gives the solution of maximum alge-
braic connectivity analytically when c≤ c∗ and regularity is feasible, we resort to the solution of
primal and dual SDP formulations for other situations (see Appendix C for SDP). To this end, we
conduct a perturbation analysis to shed some light on how the maximum algebraic connectivity
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behaves after c> c∗ and then investigate the SDP results for all-to-all interconnection possibility
in Sections 4.3 and 4.4.

For the perturbation analysis, we consider a nominal budget c0 and the associated eigenvalue
problem L0x0 = λ0x0 where L0 is the nominal Laplacian with an eigenvalue λ0 and correspond-
ing eigenvector x0. Then, consider the perturbed quantities c= c0 + εc′, L= L0 + εL′, λ = λ0 +
ελ′, x= x0 + εx′, where ε is sufficiently small and the quantities with prime show the levels of
perturbations. Now, the eigenvalue problem Lx= λx is written as:(

L0 + εL′) (
x0 + εx′) = (

λ0 + ελ′) (
x0 + εx′) (18)

Equating the coefficients of ε in both sides of (18), we have

L0x′ + L′x0 = λ0x′ + λ′x0 (19)

Inner product of (19) by x0 yields the following expression for the perturbed value λ′

λ′ = xT0 L′x0
‖x0‖2 (20)

Figure 1(a) shows the above analysis for Case 1 at the threshold budget, c0 = c∗. We know that
before c∗ the optimal weights are the uniform ones and that at threshold c∗ the second and third
eigenvalues coalesce and the third eigenvalue (before c∗) becomes the algebraic connectivity (right
after c∗). Therefore, we repeat the perturbation analysis for the third eigenvalue λ3 at c∗; using the
results of Section 4.1 for Case 1, for c0 = c∗,

λ0 = λ3 = λ
(2)
2 + c∗

m
, x0 =

⎡
⎣ 0

v(2)
2

⎤
⎦ , L′ =

⎡
⎣diag

(
W′1m

) −W′

−W′T diag
(
W′T1n

)
⎤
⎦ .

where W′ is the perturbed weight matrix due to the perturbed budget c′. Substituting the above
x0 and L0 into (20) and after normalizing the eigenvector ‖v(2)

2 ‖ = 1, we obtain the following
expression for the increment in algebraic connectivity beyond c∗

λ′
2 = v(2)

2
T
diag

(
W′T1n

)
v(2)
2 (21)

Considering λ = λ0 + ελ′, we can approximate the algebraic connectivity for budget values just
above c∗. Therefore, maximizing the perturbed value (21) can be regarded as an equivalent
problem for maximizing the algebraic connectivity for sufficiently small increments of c beyond
c∗.

We mention two highlights in maximizing (21); first, diagonal elements of diag
(
W′T1n

)
rep-

resent the total weight assigned to each node in Layer 2 and thus λ′
2 only depends on the interlink

weights of nodes in Layer 2. Thus, the optimization mechanism will make no difference between
nodes in Layer 1 and continue allocating equal interlink weights to all nodes in this layer and
the nodes in Layer 1 still experience uniform total interlink weights. Second, the increment in
algebraic connectivity in (21) is correlated with the Fiedler vector of L2. Consequently, maximiz-

ing (21), require assigning the weights in vector W′T1n to nodes with larger
(
v(2)
2 (i)

)2
, or larger

absolute value |v(2)
2 (i) |.

In summary, for sufficiently small increments of budget beyond c∗, while the optimal weights
in the Layer with larger specific connectivity, remain uniform, the optimal weights in the other
Layer are positively correlated with Fiedler vector. However, this situation turns conversely for
larger budget values above the second threshold c∗∗. This will be illustrated in next subsection.

We can get similar results for Cases 2 and 3 in Figure 1(b) and 1(c). In particular for Case 2,
note that for c0 = c∗ =mλ

(1)
2 the third eigenvalue is λ

(1)
2 + c

n . The corresponding eigenvector is
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x0 =
⎡
⎣u(1)

2

0

⎤
⎦. Using the above perturbation approach, we get the following increment for algebraic

connectivity just above c∗

λ′
2 = u(1)

2
T
diag

(
W′1m

)
u(1)
2 (22)

Likewise, by increasing the total budget c beyond c∗ in Case 2, the optimal weight distribution for
nodes in the layer with smaller specific connectivity (Layer 1) will be positively correlated with
Fiedler vector, and optimal weights for nodes in layer with larger specific connectivity (Layer 2)
will remain uniform. For Case 3, we get the same relation given in (21).

In the context of a bimodal transportation system, where each layer represents a distinct net-
work of transportation modes (for instance, one layer could be a network of bus routes, and the
other could be a network of subway lines), the concept of algebraic connectivity elucidates the
optimal strategy for allocating resources to enhance the overall efficiency and accessibility of the
transportation system. Considering the budget as the capacity or intensity of the intermodal con-
nections (i.e., the weight of interlayer edges that facilitate passenger transfers between bus and
subway systems), perturbation analysis becomes a pivotal tool for determining how increments in
the budget can optimally enhance the system’s connectivity. When the budget is below a certain
threshold (denoted as c∗), an even distribution of resources across all intermodal links maximizes
connectivity, ensuring that transfers between modes are uniformly facilitated. However, as the
budget exceeds c∗, the analysis indicates a nuanced shift in strategy; resources should be allo-
cated in a manner that is directly influenced by the patterns of usage and demand within the
system, as identified through the perturbation analysis. Specifically, enhancements should target
connections that are critical to improving the system’s overall flow, as determined by the anal-
ysis of eigenvalues and eigenvectors of the system’s Laplacian matrix, signifying a move toward
a more demand-driven allocation of intermodal resources. This approach not only maximizes
the utility of additional resources beyond the budget threshold but also ensures that the bimodal
transportation network adapts to evolving passenger needs and usage patterns, thereby enhancing
its efficiency and service quality.

4.3 Primal problem
The SDP (31) can be solved efficiently using convex solvers, for example, CVX package by Grant
and Boyd (2009). Figure 2 shows the optimal results for an example of Case 1. Figure 2(a)
compares the maximum algebraic connectivity with uniform weights case.

In Figure 2(b) and 2(c), we observe while the optimal weights assigned to nodes in Layer 1
remain uniform for budgets up to c∗∗, they start to become inhomogeneous in Layer 2 right above
c∗. Here, Layer 1 holds the larger specific algebraic connectivity and Layer 2 holds the smaller one.
Figure 3(a) and 3(b), further clarify that, after c∗, the optimal weights in Layer 2 are positively
correlated with Fiedler vector components of this layer—these results are in accordance with our
perturbation results in Subsection 4.2.

For c> c∗∗, Figure 2(b) illustrates that weight distribution in Layer 1 becomes heteroge-
neous and many nodes experience zero interlink weights. Investigation of optimum weights in
Figure 3(c) reveals that the nodes with no interlinks in Layer 1 are those with smallest components
in Fiedler vector. On the contrary, optimal weights in Layer 2 again become (almost) uniform for
some budget c> c∗∗ (see Figure 2(c)) where for strong coupling strength c, the intralinks in the
layer with smaller specific algebraic connectivity (here Layer 2) lose their significance against very
strong interlinks. This causes the nodes in this layer to be not effectively discriminated by an opti-
mal mechanism, and uniform weights are expected. Primal problems for Cases 2 and 3 in Figure 1
are solved similarly (see Appendix D.1).
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Figure 2. SDP results for an example of Case 1 in Figure 1: (a) Algebraic connectivity of supra-Laplacian L as function of total
budget c, (b) optimal interlayer weights assigned to nodes in Layer 1, and (c) optimal interlayer weights assigned to nodes in
Layer 2, for two Geo networks with n= 30,m= 15, λ(1)2 = 0.6798, λ(2)2 = 0.0712, c∗ = 2.1373, c∗∗ = 18.2554.

0 0.1 0.2 0.3 0.4 0.5

|v
2
(2)(i)|

0

0.1

0.2

0.3

0.4

O
pt

im
al

 W
ei

gh
ts

(a)

0 0.1 0.2 0.3 0.4 0.5

|v
2
(2)(i)|

0

0.4

0.8

1.2

1.6

O
pt

im
al

 w
ei

gh
ts

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6

|u
2
(1)(i)|

0

0.5

1

1.5

2

2.5

O
pt

im
al

 w
ei

gh
ts

(c)

Figure 3. Optimal weights as function of Fiedler vector components corresponding to Figure 2 in (a) Layer 2 for c= 5,
(b) Layer 2 for c= 20, and (c) Layer 1 for c= 30.

4.4 Dual problem and embedding
We investigate geometric dual problems of Case 1 in Figure 1 to show different diffusion phases
in various regions of optimal weights. Similar problems for Cases 2 and 3, as well as one more
example of Case 1, are discussed in D.2. For Case 1, Figure 4 shows the embedding of the exam-
ples that previously analyzed by solving the primal problem (Figure 3 and Figure 1(a)). For c< c∗
in Figure 4(a), we observe the clumped pattern predicted by Lemma 1. For the intermediate value
c∗ < c< c∗∗ in Figure 4(b), we note that while the nodes in Layer 1 with larger specific connec-
tivity keep their clumped pattern, the nodes in Layer 2 with smaller specific connectivity become
distributed around the clumped nodes. The conditions is reversed for larger c> c∗∗ in Figure 4(c)
where nodes in Layer 2 are clumped together while in Layer 1 are distributed. Different embed-
ding patterns illustrate different diffusion phases as discussed in Appendix E. The results are as
follows. For small c< c∗ in Figure 4(a), we observe an intralayer phase of optimal diffusion in
both layers. For intermediate budgets c∗ < c< c∗∗ in Figure 4(b), while optimal diffusion in Layer
1 is still in intralayer phase, it is through both intralinks and interlinks in Layer 2. For large budget
values c> c∗∗ in Figure 4(c), the situation is converse; while Layer 1 undergoes a combination of
intralayer and interlayer diffusion phases, Layer 2 undergoes a single phase of interlayer.

5. Interconnections constrained to an admissible set
In Section 4, we had constraint only on the total budget c and no restriction on the number or
patterns of interlinks. In this section, we consider a situation where the number of interlinks is
limited and we can assign weights only to an admissible set

(
i, j

) ∈ Ea ⊂ E3 and all other edges
E3/Ea have zero weight.
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Figure 4. Graph embeddings corresponding to Figure 2 for (a) c= 1, (b) c= 10, and (c) c= 30.
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Figure 5. Optimal weights for maximizing algebraic connectivity in a multilayer including two ER networks, each with
30 nodes, and 60 interlinks for (a) k-to-k interconnection with k= 2, and (b) random interconnections. In (a) regularity is
feasible with uniform weights before c∗, while in (b), without regularity feasible, optimal weights are always distributive
(nonuniform) and there is no uniform optimal weights region. After c∗, maximum algebraic connectivity in both patterns is
attained by a weight distribution that does not satisfy the regularity conditions.

For c≤ c∗ and following Lemma 3, we know that regular weight distribution leads tomaximum
algebraic connectivity. The regularity condition (6) is generally not feasible for all interconnection
patterns. When regular interconnection is not feasible for a given set of admissible interlinks,
the bound λ∗

2 = ( 1
n + 1

m
)
c is not attainable and there is generally no region of optimal uniform

weights. In such conditions, the region c≤ c∗ corresponding to uniform weights, and hence the
associated transition fades away (see Figure 5). This means, with no regularity, there is no region
for unified operation of individual network components. As a consequence, interlinks start to
contribute to diffusion within each individual layer from small values of coupling strength c.

Lemma 3 implies that for a given set of admissible interlinks, regular interconnection is fea-
sible, the maximum algebraic connectivity and the corresponding Fiedler vector are the same
for all interconnection patterns for c≤ c∗. Therefore, before the threshold there is no depen-
dency of maximum algebraic connectivity on the number of interconnections or admissible set
Ea. However, what distinguishes between different interconnection patterns is the value of thresh-
old c∗ that depends on the number and pattern of interlinks. We have shown that for the case of
all-pairs interconnection, c∗ is computed by (14) and (15). However, there is no explicit expres-
sion for c∗ in general regular interconnections. For particular configurations, Darabi Sahneh et al.
(2015); Van Mieghem (2016); Wang et al. (2019) provide some bounds, and for one-to-one inter-
connection pattern, the exact threshold budget is calculated in Darabi Sahneh et al. (2015), and in
Shakeri et al. (2016) from different approaches.

Moreover, Wang et al. (2019) shows that for regular k-to-k interconnections, the transition
threshold c∗ is upper-bounded by the minimum algebraic connectivity of subgraphs times n, and

lower-bounded by it times n/2, that is, when n=m it follows nλ(0)2
2 ≤ c∗ ≤ nλ(0)2 . The upper-bound
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Figure 6. Graph embedding of a k-to-k interconnected multilayer including two random ER networks, each with 30 nodes,
and different values for k, number of interlinks, and total budget c. For the first, second, and third rows from above we have
k= 1, k= 2, and k= 3, and the number of interlinks are 30, 60, and 90, respectively. the values of c are as follows: (a) c= 10,
(b) c= 100, (c) c= 1000, (d) c= 10, (e) c= 100, (f) c= 105, (g) c= 10, (h) c= 1000, (i) c= 106.

is attained when k= n. This implies that, the coupling is postponed as much as possible through a
complete interconnection; or equivalently, for a given total budget c the weakest coupling occurs
with all-pairs interconnection.

Among numerous inter-structures satisfying regularity, the class of k-to-k interconnectiv-
ity pattern, which is a generalization of the one-to-one scheme, is representative of more real
interdependent networks (Wang et al., 2019). To unravel more facts about optimized k-to-k inter-
connections, Figure 6 shows embedding results for k= 1, k= 2, and k= 3, respectively. These
figures use the same individual network components where c> c∗. Figure 7 shows the correspond-
ing maximum algebraic connectivity values. For the smaller budget c= 10 in Figure 6(a), 6(d),
and 6(g), we observe that the most unified embedding of individual network components is asso-
ciated with k= 3, next followed by k= 2 and k= 1. Therefore, for a given total budget c, the larger
the number of interconnections, the weaker the coupling. However, Figure 7 illustrates that the
algebraic connectivity increases with increasing the number of interconnections for a given total
budget. Therefore, despite the networks coupling is becoming weaker by increasing the number
of interlinks for fixed total budget c, the diffusion becomes faster in such a condition—the speed
of diffusion and the modes of diffusion are two distinct properties (Darabi Sahneh et al., 2015).
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Figure 7. Maximum algebraic connectivity for k-to-k interconnection of two ER networks with n=m= 30.

For intermediate values of total budget c, the main observation in Figure 6(b), 6(e), and 6(h) is
that the one-to-one interconnection holds the minimum embedding space dimension of 2, which
increases by 3 in two other cases k= 2 and k= 3. For the larger budget c in Figure 6(c), when
k= 1, it is seen that each two interlinked nodes are embedded at the same point. Hence, the
interlinked nodes are unified due to significant coupling strength c. In such conditions, in one-
to-one interconnected networks, the diffusion is connected with an average Laplacian (Radicchi
and Arenas, 2013). An average network can also be concluded in Figure 6(i) where nodes from
different networks are embedded in pairs at same point. However, here, for k= 3, the average
network associated with intralinks is elaborated with a circle network of interlinks. This circle of
interlinks will promote diffusion with respect to one-to-one interconnected. This is verified by
comparing the cases k= 1 and k= 3 in Figure 7. For the odd interconnection pattern k= 2 in
Figure 6(f), the existence of an average network for large c is not directly deducible.

6. Well-interconnected multilayer networks
In Section 5, we observed the importance of the admissible set Ea in final characterization of inter-
dependent network. In this section we ask two questions; First, which interconnection pattern
leads to the optimal performance. For multilayers with one-to-one interconnection, Gomez et al.
(2013a) show that the super-diffusion occurs only if some definite condition is satisfied; namely,
if the algebraic connectivity of the average Laplacian Lave = 1

2 (L1 + L2) is greater than the alge-
braic connectivity values of individual network components. Second, if there is any other interlink
connection strategy, other than the one-to-one connection strategy that with a given number of
interlinks, can lead to super-diffusion without satisfying the condition proposed by Gomez et al.,
To answer these questions, we use an interlink connection strategy based on a greedy approach by
means and show that the approach can result in super-diffusion without requiring the algebraic
connectivity of average Laplacian greater than those of individual networks.

We investigate the situation where, for constant budget c and number of interlinks r, the
weights wij =w0 = c/r assigned to all interlinks are identical, and in turn interconnection pattern
is the design parameter. The general optimization problem is combinatorially difficult. A heuristic
is following the greedy method in Ghosh and Boyd (2006) that is developed for well-connected
single-layer networks. By previous analyses, it is evident that, for small budgets c, the optimal
interconnection pattern is regular, if feasible. However, this is not the case for larger budget val-
ues, and we will see that, for a larger given total budget c, the optimal interconnection pattern is
generally not a regular one, such as a k-to-k coupling scheme—although it is feasible.

Our design parameter is choosing the inter-structure with given number of interlinks r. Based
on the greedy approach in Ghosh and Boyd (2006), we add r edges one at a time, each time choos-
ing the interlink e∼ {i, j}, between nodes i ∈V1 and j ∈V2, which has the largest value of (vi − vj)2
with v being a unit Fiedler vector of the current Laplacian. Themotivation for this heuristic is that,
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Figure 8. (a) Small well-interconnected multilayer network for c= 10 with n=m= 6 and λ2[L1]= 1, λ2[L2]= 0.4384, and
(b) λ2 as function of total budget c.

when λ2 is isolated, w0(vi − vj)2 gives the first order approximation of the increase in λ2, if edge
e∼ {i, j} with weight w0 is added to the graph.

Figure 8 shows a small well-interconnected network. Here, supper-diffusion is not possible
with a one-to-one interconnection since max(λ2[L1] , λ2[L2]) > λ2[Lave], and hence, the condi-
tion suggested by Gomez et al. (2013a) is not met. The one-to-one interconnected pattern used
as reference case in this section follows a multiplex setting (Wang et al., 2019). However, it is
observed that under a well-interconnected strategy, the diffusion in multilayer network imme-
diately turns into super-diffusion after small values of budget c. In fact, the well-interconnected
multilayer is achieved only at the expense of one change with respect to a one-to-one interconnec-
tion pattern. This further highlights the impact of interconnection pattern on structural properties
of interdependent networks.

Figures 9 and 10 unravel more properties of well-interconnected networks. In Figure 9, we note
an interconnection pattern where nodes that are far from each other in an individual network
component are bridged by nodes in the other layer. Therefore, overall interconnected network
gains increased connectivity among its nodes compared to each isolated component. In a one-
to-one interconnection setting, such condition is possible only by close-to-orthogonal Fiedler
vectors (Darabi Sahneh et al., 2015). Moreover, Figure 10 unfolds an interconnection pattern that
is essentially inhomogeneous as only few nodes in Layer 2 undergo interlinks. On the other hand,
all nodes in Layer 1 are (equally) assigned interlink. What marks this situation is the large gap
between algebraic connectivity values of individual network components, with Layer 2 holding
the (very) larger algebraic connectivity. Furthermore, the Nodes 3 and 5 of Layer 2, that is, the
nodes assigned most interlinks in subgraph with larger connectivity, hold the most negative and
positive values in this subgraph Fiedler vector, and each bridges nodes with different signs in
Fiedler vector of Layer 1.

Figure 11 shows the results for two Geo networks each with 30 nodes. The feature is that, while
the numbers of interlinks assigned in Layer 2 with smaller algebraic connectivity aremore uniform
and most nodes are assigned one interlink, the nodes in Layer 1 with larger algebraic connectivity
are assigned more different interlinks. In fact, the nodes with most interlinks in Layer 1 are those
corresponding to the most negative and positive values in this layer Fiedler vector.

In all above examples, the well-interconnected graph is not regular for the given c. To empha-
size that the well-interconnected pattern depends on the budget c given, we show in Figure 12 the
situation where the interlinks may or may not be regular depending on c.

In the context of a bimodal transportation system, where each layer represents a distinct mode
of transportation—such as road networks for vehicles and pathways for cyclists—the optimiza-
tion of interlayer connections emerges as a pivotal challenge. Given a fixed budget that dictates
the capacity and number of intermodal links (e.g., bridges or tunnels that facilitate transitions
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Figure 9. (a) Small well-interconnected multilayer network for c= 10 with n=m= 6 and λ2[L1]= 1.2679, λ2[L2]= 0.4384,
and (b) λ2 as function of total budget c. The well-interconnected strategy bridges the nodes that are far from each other in
a subgraph. Therefore, Nodes 4 and 5 that are far from each other in Layer 1 are interconnected to the common Node 6 in
Layer 2. In the samemanner, the Node 1 in Layer 1 is interconnected with two far Nodes 2 and 5 in Layer 2, and the Node 4 in
Layer 1 is interconnected to far Nodes 1 and 6 in Layer 2. Moreover, the Nodes 1 and 4 that are far in Layer 1 are interlinked to
Nodes 1 and 2 that are close in Layer 1. Therefore, the diffusion between nodes that are far from each other in an individual
network component speeds up by interconnecting to a common node, or some closer nodes, within the other layer.
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Figure 10. (a) Small well-interconnectedmultilayer network for c= 20with n=m= 10 andλ2[L1]= 0.1338, λ2[L2]= 1.4498,
and (b) λ2 as function of total budget c. Figure indicates an unbalanced interlink assignment strategy where the nodes of the
set {3, 5} in Layer 2, with the very larger algebraic connectivity, undergo themost interlinks in this layer and bridge the nodes
that are far from each other in Layer 1, having the very smaller algebraic connectivity.
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Figure 11. Well-interconnection of two Geo networks each with 30 nodes: (a) λ2 as function of c, and number of interlinks
for each node in Layer (b) 1 with larger algebraic connectivity (λ2 = 2.3621), and (c) 2 with smaller algebraic connectivity
(λ2 = 0.2101).
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Figure 12. (a) Small well-interconnected multilayer network in Figure 8 revisited with 2n= 12 admissible interlinks: (a) for
smaller budget c= 1 the well-interconnected graph is a regular k-to-k interconnection with k= 2, and (b) for larger budget
c= 2 the well-interconnected graph is not regular.

between cycling paths and roads), our investigation adopts a strategic approach to determine the
most effective pattern of interconnection. Leveraging the insights from the greedy approach out-
lined previously, we prioritize the establishment of intermodal links that promise the greatest
increase in system-wide accessibility and fluidity of movement across transportation modes. This
method entails the analytical selection of interlayer edges, where each link is appraised for its
potential to significantly enhance the algebraic connectivity of the bimodal system. Such a strategy
diverges from conventional uniform or one-to-one interconnection models, advocating instead
for a nuanced allocation of resources. By focusing on strategic link placement based on the dif-
ferential impact on the network’s connectivity, this approach aims to maximize the efficiency and
cohesiveness of the transportation systemwithin the constraints of a limited budget. This method-
ology underscores the critical role of targeted investments in intermodal infrastructure to facilitate
superior connectivity and ensure the optimal integration of diverse transportation networks.

7. Conclusion and discussion
In this paper, we considered optimal interlayer weights and structure determination for maxi-
mizing the algebraic connectivity in multilayer networks. We first investigated optimal weight
distribution subject to a total budget c. Using an appropriate formulation of maximum algebraic
connectivity problem, we showed analytically that before a known threshold budget c∗, the max-
imum algebraic connectivity is attainable subject to a set of regularity conditions, which may or
may not lead to uniform weights depending on inter-structure pattern. For efficient numerical
solution of larger budget c> c∗, we presented a convex formulation of the considered optimization
problem. Under a primal-dual setting, we obtained a graph embedding problem that enables easier
interpretations of some physical aspects. In particular, we found the graph embedding related to
the phase of diffusion, as well as interlayer and intralayer interactions, over the multilayer graph.
We showed that when c≤ c∗, the graph embedding is one-dimensional and implies intralayer
phase of optimum diffusion. When regularity is feasible in such a small budget condition, graph
embedding involves nodes in same layers clumped together. The most apparent cases of this situ-
ation are the case of no restriction on interconnection pattern, that is, when all nodes in one layer
are allowed to be connected to all nodes in the other layer, and the case of k-to-k interconnection
pattern. For larger budgets beyond c∗, interactions between interlayer and intralayer connections
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result in graph embeddings of higher dimensions, and more diverse versions of intralayer and
interlayer phases of optimal diffusion emerge. It was observed that while in an all-to-all intercon-
nection pattern any interlink is possible, the optimal inter-structure may include many interlinks
with zero weights. Using a perturbation analysis, we found out a positive correlation between opti-
mal weights and Fiedler vector components of subgraphs. When sorting several results, we also
noted the role of specific algebraic connectivity, that is, algebraic connectivity divided by number
of nodes in a subgraph. Additionally, we investigated determination of optimal inter-structure
that, for a given number of interlinks with identical weights, yields the maximum algebraic con-
nectivity. In this regard, we concluded another role of subgraphs Fiedler vectors in identifying
optimized inter-structures, which may or may not be regular depending on weight per number of
interlinks.

The findings of this study have far-reaching implications in designing andmanagingmultilayer
systems where resiliency and robustness are of concern. Two cases of such systems are exemplified
by multimodal transportation networks and airline mergers. In multimodal networks, the goal is
to enhance infrastructure efficiency and robustness by strategically connecting networks with dif-
ferent delivery modes, such as rail, road, and air transport. This ensures networks can withstand
disruptions, adapt to changing demands, and maintain high service efficiency. Similarly, airline
mergers, driven by economic or strategic needs, require careful integration of previously separate
unimodal networks. This involves planning new routes to connect disparate segments, thereby
expanding operational reach and enhancing network connectivity. Such strategic integration not
only leverages synergies between the assets of merged airlines but also aims to bolster service qual-
ity and market competitiveness. Both examples underline the importance of optimizing network
interconnections to create more resilient, efficient, and seamless transportation systems for users.
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Note
1 For nonvanishing subgraph algebraic connectivities, this concurrence of different eigenvalues is inevitable because the
eigenvalues of L are continuous functions of the coupling strength c (Darabi Sahneh et al., 2015; Wang et al., 2019).
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Appendix A. Proofs
A.1 Proof of Lemma 1
We rewrite (3) by separating the components of v,

vT1
(
L1 + diag(W1m)

)
v1 − 2vT1Wv2 + vT2

(
L2 + diag(WT1n)

)
v2

− λ2(L)
(‖v1‖2 + ‖v2‖2

) ≥ 0, ∀ vT1 1n = −vT2 1m (23)

where
[
vT1 vT2

]T = v, v1 ∈R
n and v2 ∈R

m. We further decompose v1 and v2,

v1 = α1n + u1, v2 = −αn
m

1m + u2, ∀u1 ∈R
n, u2 ∈R

m, uT1 1n = uT2 1m = 0 (24)

Here, α denotes a scalar factor facilitating the independent decomposition of v1 and v2.
Throughout the paper, we utilize α to finely adjust the decomposition along our desired directions
relative to u1 and u2. Substituting (24) in (23) gives the following inequality:

α2
(
1+ n

m

) [(
1+ n

m

)
c− nλ2

]
+ 2α

(
1+ n

m

) [
uT1W1m − 1TnWu2

]
+ uT1

(
L1 + diag(W1m)

)
u1 − 2uT1Wu2 + uT2

(
L2 + diag

(
WT1n

))
u2 − λ2

(‖u1‖2 + ‖u2‖2
) ≥ 0,

∀ α, uT1 1n = uT2 1m = 0 (25)

Since the inequality (25) must hold for every α, it follows the coefficient of α2 must be
nonnegative, so that (

1+ n
m

)
c− nλ2 ≥ 0

which is satisfied only for λ2 ≤ ( 1
n + 1

m
)
c.

A.2 Proof of Lemma 2
When the upper-bound is reached, that is, λ2 = ( 1

n + 1
m

)
c, inequality (25) reads

2α
(
1+ n

m

) [
uT1W1m − 1TnWu2

]
+ uT1

(
L1 + diag(W1m)

)
u1 − 2uT1Wu2

+ uT2
(
L2 + diag

(
WT1n

))
u2 − λ2

(‖u1‖2 + ‖u2‖2
) ≥ 0, ∀ α, uT1 1n = uT2 1m = 0

Since this inequality must hold for every α, the coefficient of α must vanish

uT1W1m − 1TnWu2 = 0 (26)

Setting u2 = 0 in (26) yields uT1W1m = 0, which in addition to uT1 1n = 0 imply the vector W1m
belongs to the space spanned by 1n. Similarly, setting u1 = 0 in (26) will yield 1TnWu2 = 0, and
thus the vector 1TnW belongs to the space spanned by 1m.

A.3 Proof of Lemma 3
When regularity is feasible, one can check that λ = ( 1

n + 1
m

)
c is always an eigenvalue of L with

eigenvector

⎡
⎣ m1n

−n1m

⎤
⎦. Recall that this eigenvalue is zero when c= 0, and that the algebraic con-

nectivity is bounded by this eigenvalue (Lemma 1). In fact, a perturbation approach for sufficiently
small values of budget c–starting from zero and increasing–indicates that the maximum algebraic
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connectivity is λ = ( 1
n + 1

m
)
c with the corresponding Fiedler vector

⎡
⎣ m1n

−n1m

⎤
⎦. This eigenvalue

increases linearly with c and by increasing the coupling budget and at some point, there exists a
transition threshold c∗ where the second and third smallest eigenvalues coalesce.1 After c∗, the
regularity conditions is broken and the optimal weights will be generally non-regular and the
maximum algebraic connectivity is a nonlinear function of c, concluding the proof.

A.4 Proof of Lemma 4

The proof is achieved by inserting the eigenvalue–eigenvector pairs in (10)-(12) in L

⎡
⎣u

v

⎤
⎦ =

λ

⎡
⎣u

v

⎤
⎦ and checking that they satisfy this equation for the Laplacian (2) with uniform weights

W = c
nmJ = c

nm1n1
T
m. For instance, for (10) we have:

L

⎡
⎣u(1)i

0

⎤
⎦ =

⎡
⎣ L1 + c

n In − c
nm1n1

T
m

− c
nm1m1

T
n L2 + c

mIm

⎤
⎦

⎡
⎣u(1)i

0

⎤
⎦ =

⎡
⎣L1u(1)i + c

nu
(1)
i

− c
nm1m1

T
nu

(1)
i

⎤
⎦ =

(
λ
(1)
i + c

n

) ⎡
⎣u(1)i

0

⎤
⎦

where In and Im are respectively n× n and m×m identity matrices. We consider that
1Tnu

(1)
i = 0 for any eigenvector u(1)i associated with a nonzero Laplacian eigenvalue in a connected

graph.

Appendix B. Further bounds on algebraic connectivity
Decomposing v1 and v2 in (23) in various ways can yield various bounds for algebraic connectivity.
For instance, consider the decomposition v1 = αu(1)2 + y1, ‖u(1)2 ‖ = 1, y1 ∈R

n, yT1 u
(1)
2 = 0, where

u(1)2 is the eigenvector associated with the second smallest eigenvalue λ
(1)
2 , or Fiedler vector, of L1,

L1u(1)2 = λ
(1)
2 u(1)2 , 1Tnu

(1)
2 = 0. To ensure vT1 1n = −vT2 1m, we should have yT1 1n = −vT2 1m. Inserting

this decomposition of v1 into (23), we can get

α2
(

λ
(1)
2 + u(1)2

T
diag(W1m) u(1)2 − λ2

)
+ 2α

(
u(1)2

T
diag(W1m) y1 − u(1)2

T
Wv2

)

− 2yT1Wv2 + vT2
(
L2 + diag

(
WT1n

))
v2 − λ2

(‖y1‖2 + ‖v2‖2
) ≥ 0,

∀ yT1 u
(1)
2 = 0, yT1 1n = −vT2 1m (27)

Since the condition in (27) must hold for every α, the coefficient of α2 must be positive, which
yields the following bound for algebraic connectivity

λ2 ≤ λ
(1)
2 + u(1)2

T
diag(W1m) u(1)2 (28)
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Lemma 5. The upper-bound in (28) is not attainable.

Proof. Considering the condition in (28) as equality, we see that the coefficient of α2 in (27)
becomes zero. Then, since (27) must hold for every α, the coefficient of α must vanish as
well:

u(1)2
T
diag(W1m) y1 − u(1)2

T
Wv2 = 0,

∀ yT1 u
(1)
2 = 0, yT1 1n = −vT2 1m (29)

Setting y1 = 1
n1n, v2 = − 1

m1m in (29), we get 1
nu

(1)
2

T
diag(W1m) 1n + 1

mu
(1)
2

T
W1m = 0. Since

diag(W1m) 1n =W1m, it follows the weights matrixW should belong toW ∈ S1 = {u(1)2
T
W1m =

0} = {u(1)2
T
W ⊥ spam{1m}}. On the other hand, setting y1 = 0 in (29), we note that W ∈ S2 =

{u(1)2
T
Wv2 = 0, vT2 1m = 0} = {u(1)2

T
W ∈ spam{1m}}. The proof follows since S1 ∩ S2 = {∅} for

c 	= 0. �
Similarly, denoting λ

(2)
2 the second smallest eigenvalue of L2 and v(2)2 the corresponding Fiedler

vector, we can get the following upper-bound in terms of spectral properties of L2

λ2 ≤ λ
(2)
2 + v(2)2

T
diag

(
WT1n

)
v(2)2 (30)

which is not attainable as well. Although the bounds in (28) and (30) are not attainable, they can
give some intuition about the maximum algebraic connectivity problem under investigation.

Appendix C. Primal and dual semidefinite programmings
Our approach in this section closely follows (Sun et al., 2006; Goring et al., 2008; Shakeri et al.,
2020).

C.1 Primal SDP
We recast (4) as a semidefinite programming (SDP) problem (Goring et al., 2008, 2011),

maximize
wij,λ2,μ

λ2

subject to
∑
ij∈E3

wijBij + L0 + μ11T − λ2I � 0

∑
ij∈E3

wij = c

wij ≥ 0 (31)

where L0 = ∑
ij∈E1∪E2 Bij is the Laplacian for the disjoint union of the layers. The semidefinite

constraint ensures that upon achieving the optimal solution (w∗
ij, λ∗

2,μ
∗), λ∗

2 is the smallest eigen-
value of

∑
ij∈E3 w

∗
ijBij + L0 + μ∗11T . In this manner, the auxiliary μ is used to ensure that λ∗

2 is
equivalently the second smallest eigenvalue of the supra-Laplacian

∑
ij∈E3 w

∗
ijBij + L0. For non-

negative budget c, the feasible set of the primal problem is not empty, and the primal problem
attains its optimal solution (Shakeri et al., 2020).
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C.2 Dual SDP and equivalent graph embeddings
The primal problem (C.1) maximizes the diffusion speed over the multilayer network. We study
the Fiedler eigenspace to explore the route to this fastest spread over the network. The dual of (31)
provides valuable information about the fastest diffusion mode. The dual is obtained by the usual
Laplacian approach (Vandenberghe and Boyd, 1996; Boyd and Vandenberghe, 2004):

maximize
ξ∈R,X∈RN×N

cξ − 〈X, L0〉
subject to 〈X, I〉 = 1

〈X, eeT〉 = 0
〈X, Bij〉 ≤ −ξ ∀{i, j} ∈ E3
X � 0 (32)

where 〈X, L0〉 = Tr(LT0X)=
∑

{i,j}∈E1∪E2 xii + xjj − 2xij, and ξ serves as the dual variable corre-
sponding to λ2 in the primal problem. The feasible set of the dual problem is not empty, and strong
duality holds for the primal and dual problems (31) and (32) (Shakeri et al., 2020). Therefore the
dual problem attains its optimal solution, and optimal values of the primal and dual problems are
the same.

Sun et al. (2006) use the Gram representation of the dual matrix X =UTU, where U ∈R
N×N

to rewrite (32) as:

maximize
ξ∈R,ui∈RN

cξ −
∑

{i,j}∈E1∪E2
‖ui − uj‖2

subject to
∑

i∈V1∪V2

‖ui‖2 = 1

∑
i∈V1∪V2

ui = 0

‖ui − uj‖2 ≤ −ξ ∀{i, j} ∈ E3 (33)

This is a realization of the graph in R
N such that the distances between nodes are minimized

and the barycenter is in the origin, but since the sum of the squared norms equals one, not all
nodes can be embedded in the origin. By the following lemma some main structural properties of
the optimal graph can be derived from the geometric dual problem.

Lemma 6. The projections of optimal embedding onto (nonzero) one-dimensional subspaces yield
eigenvectors for the algebraic connectivity.

The following proposition is a result of Lemmas 3 and 6.

Proposition 1. Assume the regularity condition (6) is feasible. For budget values up to the threshold
c∗, c≤ c∗, the optimal solution of the embedding problem is given as

u∗
i =

{
mh if i ∈V1
−nh, if i ∈V2

(34)

where h= 〈h〉 is a one-dimensional subspace.

The embedding (35) implies each layer clumps together at the opposite sides with respect to the
other layer, while distanced from the origin inversely proportional to the number of its nodes. In
this case, the Fiedler cut distinguishes the individual layers (Martín-Hernández et al., 2014). The
condition in (35) is similar to the momentum balance condition (Shames, 1996) of two masses
attached to opposite sides of a rotating rigid uniform rod.
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Lemma 6 is a result of the complementary condition in the primal-dual formulation (Boyd
and Vandenberghe, 2004), and is first established by Sun et al. (2006) for single-layer networks
and extended to multilayer networks by Shakeri et al. (2020). It relates the solution of the dual
problem to the eigenspace of maximum λ2 and helps understanding how to improve diffusion
speed (Gomez et al., 2013a), and how synchronization (Strogatz, 2001; Arenas et al., 2008) can
happen faster. This is particularly of interest in multilayer networks where processes show richer
dynamics (Buldyrev et al., 2010; Gomez et al., 2013a; Radicchi and Arenas, 2013; Zhang et al.,
2015).

Remark 2. The multiplicity of λ2(L) sets an upper-bound on the dimension of realization (Helmberg
and Reiss, 2010). This can be understood from Proposition 6 and the dimension of the eigenspace
corresponding to λ2.

For connected single-layer networks, we scale the weights in (32) by cλ2 	= 0 and obtain a scaled
version of the primal-dual problem for multilayer networks (Goring et al., 2008)

minimize
ŵi,j

∑
{i,j}∈E3

ŵij

subject to c
∑
i,j∈E3

ŵijBij +
⎛
⎝ ∑

{i,j}∈E3
ŵij

⎞
⎠ L0 + μ̂eeT − I � 0

ŵij ≥ 0 ∀{i, j} ∈ E3 (35)

where ŵij = wij
cλ2 and the scaled dual (embedding) problem (34) is written as

maximize
ûi∈RN

∑
i∈V1∪V2

‖ûi‖2

subject to c‖ûi − ûj‖2 +
∑

{k,l}∈E1
‖ûk − ûl‖2+

∑
{k,l}∈E2

‖ûk − ûl‖2 ≤ 1 ∀{i, j} ∈ E3

∑
i∈V1∪V2

ûi = 0 (36)

Goring et al. (2008) used the scaled primal-dual formulation to prove the Separator-Shadow
Theorem. Moreover, Goring et al. (2011) introduced the rotational dimension of a graph which is
themaximal minimum dimension of an optimal graph realization, and proved it is bounded based
on the graph tree width (Diestel, 2017). The importance of these theorems is that they establish
the existence of low dimensional optimal realizations.

Appendix D. More SDP results for the cases in Figure 1
D.1 Primal problem
Figure 13 shows the SDP results for Case 2. We observe that, while the weights in Layer 1 with
smaller specific connectivity become inhomogeneous for budgets c> c∗, they remain (almost)
uniform in Layer 2 with larger specific connectivity. Figure 14 reports a positive correlation
between the optimal weights in Layer 1 and the corresponding Fiedler vector components.
Figures 15 and 16 show the results corresponding to Case 3. These results are the same of Case 2
by changing Layers 1 and 2.
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Figure 13. SDP results for an example of Case 2 in Figure 1: (a) Algebraic connectivity of supra-Laplacian L as function of total
budget c, (b) optimal interlayer weights assigned to nodes in Layer 1, and (c) optimal interlayer weights assigned to nodes in
Layer 2, for two Geo networks with n= 30,m= 10, λ(1)2 = 0.9123, λ(2)2 = 0.6546, c∗ = 9.1235.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

|u
2
(1)(i)|

0

0.1

0.2

0.3

0.4

0.5

0.6

O
pt

im
al

 w
ei

gh
ts

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

|u
2
(1)(i)|

0

0.5

1

1.5

2

2.5

O
pt

im
al

 w
ei

gh
ts

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

|u
2
(1)(i)|

0

1

2

3

4

5

O
pt

im
al

 w
ei

gh
ts

(c)

Figure 14. Optimal weights in Layer 1 as function of Fiedler vector components corresponding to Figure 13 for (a) c= 10,
(b) c= 20, and (c) c= 50.
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Figure 15. SDP results for an example of Case 3 in Figure 1: (a) Algebraic connectivity of supra-Laplacian L as function of total
budget c, (b) optimal interlayer weights assigned to nodes in Layer 1, and (c) optimal interlayer weights assigned to nodes in
Layer 2, for two Geo networks with n= 20,m= 30, λ(1)2 = 1.3902, λ(2)2 = 0.4766, c∗ = 9.5320.
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Figure 16. Optimal weights in Layer 2 as function of Fiedler vector components corresponding to Figure 15 for (a) c= 10,
(b) c= 20, and (c) c= 30.
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Figure 17. Graph embedding results for two WS networks as an example of Case 1 in Figure 1 with n= 30,m= 15, λ(1)2 =
0.5444, λ(2)2 = 0.0828, c∗ = 2.4834, c∗∗ = 13.8486: (a) the first three eigenvalues for optimal weights, and embedding for
(b) c= 10, (b) c= 20, (d) c= 24, and (e) c= 50.

Figure 18. Graph embeddings corresponding to Figure 13 for (a) c= 10, (b) c= 50, and (c) c= 200.

D.2 Dual problem and embedding
Figure 17 shows embedding results for onemore example of Case 1 in Figure 1(a). By Figure 17(a),
it is observed the embedding dimension at each c is equal to corresponding multiplicity of
supra-Laplacian algebraic connectivity. Embedding for c≤ c∗ has a clumped pattern similar to
Figure 4(a), thus one-dimensional.

Examples of embedding results for Cases 2 and 3 in Figure 1 are shown in Figures 18 and 19,
respectively. When c> c∗, in both cases, the optimal diffusion in subgraph with larger specific
algebraic connectivity is prominently through intralinks, while through interlinks and intralinks
in subgraph with smaller specific connectivity.

E. Different diffusion phases
Figure 20 shows different diffusion phases corresponding to the conditions considered in Figure 4.
To better realize the interlinks effect, we have assumed identical initial conditions of nodes in
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Figure 19. Graph embeddings corresponding to Figure 15 for (a) c= 10, (b) c= 50, and (c) c= 100.
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Figure 20. Diffusion process Ẋ = −LX corresponding to Figure 4 for (a) c= 1, (b) c= 10, and (c) c= 30.

same layers. In Figure 20(a), when c< c∗, each network operation is distinguishably unified.
Indeed, for small c, the interconnection strength is too weak to affect the intralayer connections
and break the individual networks unity. In such condition, the optimal diffusion process within
each network component is prominently through its intralinks. For the intermediate value c= 10
in Figure 20(b), while the network G1 with larger specific connectivity still operates as a unity,
the network G2, with smaller specific connectivity, loses its operation unity due to being inter-
connected with G1. Thus, the subgraph with larger specific connectivity is more robust against
intermediate couplings while the other with smaller specific connectivity is more vulnerable and
loses unity in this region. As such, for intermediate c∗ < c< c∗∗ in Figure 20(b), the optimal dif-
fusion within G1 is mostly due to its intralinks while in G2 it is through intralinks and interlinks.
The situation turns conversely for the larger value c= 30> c∗∗ in Figure 20(c) where G1 loses
unity while G2 becomes again unified. This time, the optimal interlinks strength is so high that it
completely overcomes the intralink effects withinG2. In fact, the strong interlinks may be thought
of as powerful attracting forces that pull the nodes in G2 toward each other from all sides, due to
all-to-all interconnection possibility, thus making them unified. However, the interlinks are only
strong enough to destroy G1 unity but not strong enough to completely overcome the intralink
effects in this subgraph. As such, diffusion within G2 forms prominently through interlinks while
it is through interlinks and intralinks in G1.
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