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PROBLEMS AND
* SOLUTIONS

This department welcomes problems
believed to be new. Solutions should ac-
company proposed problems.

Send all communications concerning this
department to

PROBLEMES ET
SOLUTIONS

Cette section a pour but de présenter
des problémes inédits. Les problémes pro-
posés doivent étre accompagnés de leurs
solutions.

Veuillez adresser les communications
concernant cette section a

E. C. Milner, Problem Editor
Canadian Mathematical Bulletin
Department of Mathematics
University of Calgary
Calgary 44, Alberta

PROBLEMS FOR SOLUTION

P.203. Prove the group identity

[x, y, 5FLy, & xI%, 3, yII5, x, &' = 1,
where x=x"1, x¥=yxy and the commutator [x, y]=Xyxy and [x, y, z]=[[x, y], z].

J. M. GanDHI AND D. KREILING,
WESTERN ILLINOIS UNIVERSITY

P.204. Let R be a ring with 1. Recall that (i) e € R is idempotent if e*=e, (ii)
u € R is a unit if there exists v € R such that uv=vu=1. Show that, if 141 is a
unit of R, then any idempotent is the sum of two units.

R. RAPHAEL,
SIR GEORGE WILLIAMS UNIVERSITY

P.205. Find the integer solutions of the diophantine equation y?=x(x+y—1).

Guy A. R. GUILLOT,
MONTREAL, QUEBEC

P.206. Let (iy, . . .

is divisible by 2k+1.

JAacQUEs TROUE,
McGiLL UNIVERSITY

,I,) be a partition of the integer k, i.e. the i; are positive
integers and i;+- - *+i,=k. Prove that

v= () ()
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P.207. A latin square (a;;) is idempotent if a;;=i. Show that there are n—2
mutually orthogonal idempotent latin squares (cf. H. J. Ryser, Combinatorial
Mathematics) of order # if and only if there is a projective plane of order n.

WILLIAM JONSSON,
McGILL UNIVERSITY

P.208. If 7(n) and o(n) denote respectively the number of and the sum of the
divisors of n, show that

I‘I dd—n/d — na(n)e—2nrr(7z),
d/n

where 0<r<e™1.

C. S. VENKATARAMAN,
SREE KERALA VARMA COLLEGE, INDIA

SOLUTIONS

P.180. Prove that in a groupoid (i.e. a set with a binary operation) satisfying the
identity
(YENC((xy))) = x
every equation xb=a has a unique solution.

N. S. MENDELSOHN,
UNIVERSITY OF MANITOBA

Solution by Stanley Wagon, McGill University. The unique solution to
xb=a is x=((ba)(a(ba))). To see this put y=>ba and x=a in the given identity to
get ((ba)(a(ba)))((a(ba))((ba)(a(ba))))=a or ((ba)(a(ba)))b=a. That this solution
is unique follows from the fact that xb=a implies that x=(b(xb))((xb)(b(xb))=
(ba)(a(ba)). |

Also solved by Paul Milnes, Univ. of Western Ontario; A. G. Heinicke, Univ.
of Western Ontario; R. Padmanabhan, Univ. of Manitoba; Arthur S. Finbow,
Dalhousie Univ.; Helen F. Cullen, Univ. of Massachusetts; R. D. Giri, Aligarh
Muslim University, India; P. Ramankutty, Univ. of Auckland, New Zealand, and
Lia Chang-Der, Ohio State University.

P.181. Show that there does not exist a variety of groupoids (i.e. a family
closed under subgroupoids, cartesian products and homomorphisms) with the
property that for any groupoid of the variety any two distinct elements generate a
subgroupoid of order 6 (except for the vacuous case of a variety containing only
one groupoid with exactly one element). Note that such varieties can be shown to
exist if 6 is replaced by any of 2, 3,4, 5,7, 8,9.

N. S. MENDELSOHN,
UNIVERSITY OF MANITOBA
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Solution by the Proposer. If such a variety existed there would be a groupoid G
in the variety with exactly six elements. The groupoid G X G is in the variety and
any two of its elements generate a subgroupoid of order 6. This implies that there
is a B.I.B. design with parameters v=36, b=42, r=7, k=6, A=1, a contradiction
since an affine plane of order 6 does not exist.

One other (incorrect) solution was received.

P.182. Find the number of solutions of the congruence in knm variables

n k
2 TI x;; = 0 (mod p),
. . i=1j=1
where p is a prime.
L. J. MorpeLL, ST. JOHN’S COLLEGE, CAMBRIDGE, AND

THE UNIVERSITY OF CALGARY

Solution by Kenneth S. Williams, Carleton University. Let p be a prime. For any
integer a we have

—1 .
A , __[p, if a =0 (mod p),
€)) goexp@max/p) = {0’ if @ % 0 (mod p),

as the left hand side of (1) is a geometric progression. Now if a0 (mod p) and
k>2 we have using (1)

1’2_: exp(2miax, -« - x/p) = E {gz— exp(2mi(ax, - - - xk_l)xk/p)}

Lyoeeen, =0 Lyseee, Tp—1=0\03=0
»—1
=p 2 1
Lyseeen x—1=0

Z1...25_3=0

= p{p* " —(p—1D* 1},

as the last sum is just the number of (k—1)-tuples (xy, . . . , X;_;) with at least one
zero entry. Putting this result together with (1) we have for a0 (mod p) and k>1

p—1

@) > exp(miax; - - - x/p) = p{p" ' —(p—1)*'}.

Now leta;, . . . , a, be nintegers not divisible by p, a, any integer, and &y, . . . , k,,
integers > 1. We determine the number N, (n, k, a, a,) of solutions of the congruence

n
Zla,.x,-l- ** X, +a, = 0 (mod p),
=

where we have written k for (k,, ..., k,) and a for (a,, ..., a,).

9A—(4 pp.)
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From (1) we have

Np(n9 k) a, aO)

= El :—1 S:lexp (2wit(§1a,~x,-1 e 'xjkj+a0) /P)}

Lygreer Piky do1seer Enpn=0\P (=0

p—1 n =1
- pk1+"'+kn—1+—11—) ;:lexp(%ritao/P) 1_-! ( > exp(2mitazx; - - xjk,-/P))
= 7=

Ljpeees Lip;=0

n p—1
= p"“““'“""‘“1+p““H1 (p"""—(p—1)""")21 exp(2mitay/p) (using (2))
j= i=

pk1+...+k,,_1+pn—1(p__1) I]l: (pki—l_(p_l)ki—l), if ay = 0 (mod p),
=

prtHe Tt T (M = (=157, if a, # 0 (mod p).
j=1
The number asked for by Mordell is therefore

N,(n, k1,1,0) = p™ 4 p"(p—1)(p* 1 —(p— 1))

Also solved by E. M. Charles, Calgary, and L. Carlitz, Duke Univ. Professor
Carlitz obtained a similar generalization (with a=1) and gave the following two
references for more general results of this kind: (1) The number of solutions of
certain equations in a finite field, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 515-519;
(2) The number of solutions of some special equations in a finite field, Pacific J.
Math. 4 (1954), 207-217.

P.183. For which cardinals m, n is the following statement true: If & is a set of
sets, | #|=m, then there is a set X such that [X|=rnand FN X#£F' N X if F, F’
are distinct members of &.

J. P. Jongs, E. C. MILNER AND N, SAUER,
UNIVERSITY OF CALGARY

Solution by E. C. Milner, University of Calgary. We remark first that if X dis-
tinguishes the members of & (i.e. Fy, F, € #, F,#F,=F, N\ X5#F,NX), then so
also does X U Y for an arbitrary set Y. It follows that all one is really interested
in is the least cardinal n=f(m) such that: if & is any set of sets with |F|=m,
then there is an n-element set X which distinguishes the members of #.

If & is a family of m mutually disjoint sets and |X|<m—1, then there are two
members of & which have the same (empty) intersection with X. Hence, f(rm)>
m—1. We will prove that equality holds.
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First a simple lemma.

LEMMA. Let A be a finite, nonempty set and let & be a set of subsets of A such
that whenever x € A there are Fy, F, € & such that

6Y) x ¢ Fy, Fy={x} U F,.
Then |F|>]A]|.

Proof. We use induction on |4|. For |[4]|=1 the result is obvious. Assume
|[4]>1 and fix some a€ 4. If Fe Z, put F'=F\{a} and let #'={F:Fe Z}.
For x € A\ {a} there are F,, F, which satisfy (1) and which therefore also satisfy
x ¢ Fy, F;={x} U F,. Then, by the induction hypothesis, |#’|>|4\ {a}|. Since
& contains two sets U, V with a ¢ U, V={a} U U, it follows that| F|>|F'|+1>
|4]. This proves the lemma.

Now let m be a positive integer and let F be a set of m sets. We want to show
that there is a distinguishing set X with [X|<m—1.

Case 1. U is finite. In this case we use induction on |[UZ|. If [UF | <m, put
X=UZ. Now suppose that |UF|>m. For each x € UF, let F,={F\{x}:
Fe F}.If |F,|=|F], then the result is immediate, for & has a distinguishing set
X with |X|<m by the induction hypothesis, and X also distinguishes between the
sets in & . Therefore, we can assume that for each x € U there are F,, F, € #
such that (1) holds. By the lemma it follows that m=|%|>|U&|>m, a contra-
diction.

Case 2. UZ is arbitrary. Let &#={F,, ..., F,} and, for each set of indices
N c{l,...,m}let

Ay =N F\U F..
ieN i¢N
If Ay=¢ let Xy=¢, and if Ay7%¢ let Xy be a one-element subset of 4. Put

B, = U Xy (1<Li<m).
ieNc{l,...,m}
The sets By, . . . , B,, are finite and distinct and so, by Case 1, there is a set X with
fewer than m elements which distinguishes between these sets. Suppose
X N BNX N B;#¢. Then there is N < {lI,...,m} such that ie N, j¢ N and
Xy#¢. Then Xy < X N FANX N F;#¢, i.e. X also distinguishes the members
of .

Finally we consider the case when m is infinite. Suppose & ={F,:» € I}, where
I'is an index set of cardinal power m. Let A,,=F\F, (u, velI). If A,,=¢ put
X,,=¢, and if 4, ,#¢ let X, be a one-element subset of 4,,. Put

B,=UX,, (nel), X=U B,

VER nel

The set X has power at most m (=m—1) and distinguishes the members of &.
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