IRREDUCIBLE MODULES FOR POLYGYCLIC GROUP ALGEBRAS

I. M. MUSSON

1. Introduction. If G is a polycyclic group and k an absolute field then every irreducible $k G$-module is finite dimensional [$\mathbf{1 0}$], while if k is nonabsolute every irreducible module is finite dimensional if and only if G is abelian-by-finite [3]. However something more can be said about the infinite dimensional irreducible modules. For example P. Hall showed that if G is a finitely generated nilpotent group and V an irreducible $k G$-module, then the image of $k Z$ in $\operatorname{End}_{k G} V$ is algebraic over k [3]. Here $Z=Z(G)$ denotes the centre of G. It follows that the restriction V_{Z} of V to Z is generated by finite dimensional $k Z$-modules. In this paper we prove a generalization of this result to polycyclic group algebras.

We introduce some terminology. A free abelian subgroup, A, of a polycyclic-by-finite group is said to be a plinth if there exists a subgroup G_{0} of G containing A such that
i) $\left|G: G_{0}\right|<\infty$ and $A \unlhd G_{0}$
ii) $A \otimes_{\mathbf{Z}} \mathbf{Q}$ is an irreducible $\mathbf{Q} H$-module whenever H is a subgroup of finite index in G_{0}.

It is known that any infinite normal subgroup of a polycyclic-by-finite group contains a plinth [10, Lemma 2].

If $\operatorname{dim}_{\mathbf{Q}}\left(A \otimes_{\mathbf{Z}} \mathbf{Q}\right)=1$, then A is said to be a centric plinth, and if $\operatorname{dim}_{\mathbf{Q}}\left(A \otimes_{\mathbf{Z}} \mathbf{Q}\right)>1 A$ is an eccentric plinth.

We consider the subgroup generated by all of the plinths and set
Pl soc $(G)=\langle A| A$ is a plinth in $G\rangle$,
the plinth socle of G. Clearly this is a characteristic subgroup.
Main Theorem. If G is a polycyclic-by-finite group, $A=\operatorname{Plsoc}(G)$ and V is an irreducible $k G$-module, then V_{A} is a locally fnite module.
A module is said to be locally finite if every element generates a finite dimensional submodule.

This result is proved by induction on the Hirsch number, $h(G)$, of G using a result, Theorem 2.5 (essentially due to D. L. Harper) that under certain circumstances an irreducible $k G$-module is induced from a subgroup of smaller Hirsch number.

In Section 3 we consider some applications of the main theorem. Following the terminology of [2] we shall call a $k G$-module V finitely
induced if $V \cong W \bigotimes_{k H} k G$ where H is a subgroup of G and W is a finite dimensional $k H$-module. If k is absolute then of course every irreducible $k G$-module is finite dimensional, and so we assume that k is non-absolute. Segal [12] has shown that if G is nilpotent-by-finite, then every irreducible $k G$-module is finitely induced if and only if G is abelian-by-finite. We prove

Theorem 3.1. Let G be polycyclic-by-finite and k non-absolute, then every irreducible $k G$-module is finitely induced if and only if every nilpotent subgroup of G is abelian-by-finite.

We also consider essential extensions of irreducible $k G$-modules. If V is a finite dimensional $k G$-module, then K. A. Brown has shown that the injective hull $E_{k G}(V)$ of V is locally finite as a $k G$-module. Hence if U is an infinite dimensional irreducible $k G$-module then $\operatorname{Ext}(U, V)=0,[\mathbf{1}$, Theorem 1.1.1]. We prove a dual result.

Theorem 3.3. If G is a polycyclic-by-finite group, k a field and V, U are irreducible $k G$-modules such that V is infinite dimensional and U is finite dimensional, then Ext $(U, V)=0$.

It is also known that if V is a finite dimensional irreducible module then $E_{k G}(V)$ is artinian ([1, Theorem 2.1.2], [7, Theorem B]). It seems likely that if V is an infinite dimensional irreducible module, then $E_{k G}(V)$ is not artinian. We can show this in particular cases.

Corollary 3.6. Let G be a polycyclic-by-finite group and suppose that $k G$ is a primitive ring with V a faithful irreducible module. Then $E_{k G}(V)$ is not locally artinian.

Finally in Section 4 we discuss the relationship of the plinth socle to the Zalesskii subgroup and give some examples.
The results of this paper are taken from the author's Ph.D. thesis at the University of Warwick. I should like to thank D. L. Harper for sending me a copy of his thesis and my supervisor Brian Hartley for some helpful suggestions. Thanks are also due to the Science Research Council of Great Britain for their financial support.
2. Locally finite modules. We quote some results from [6].

Theorem 2.1 ([6, Theorem 4.5]). Suppose that G is a polycyclic-by-finite group, k any field and A an infinite abelian normal subgroup of G. Then no irreducible $k G$-module can be torsion free as a $k A$-module.

This generalizes a result of Roseblade for absolute fields [10, Theorem E and remarks on p . 313].

If a subgroup B of a polycyclic group G is a plinth we do not require B
to be normal in G, only that $\left|G: N_{G}(B)\right|<\infty$. It is therefore useful to have the following result.

Lemma 2.2 ([6, Lemma 4.3]). If B is a plinth in the polycyclic-by-finite group G, then there exists an abelian normal subgroup A of G such that $A \cap B>1$.

In fact if $\mathrm{Zal}(G)$ denotes the Zalesskii subgroup of G it is not hard to see that $\mathrm{Zal}(G) \cap B>1$ and we may take A to be the centre of $\mathrm{Zal}(G)$.

If A is a subgroup of a group G, we denote by $\underline{\underline{a}}_{s}$ the augmentation ideal of the subgroup

$$
A^{s}=\left\langle a^{s} \mid a \in A\right\rangle
$$

Lemma 2.3 ([6, Lemma 2.2]). Let A be an eccentric plinth in the poly-cyclic-by-finite group G, and suppose that $A \unlhd G$. If k is a field and $P a$ prime ideal of $k A$ such that $\left|G: N_{G}(P)\right|<\infty$ then there is a positive integer s such that $\underline{\underline{a}}_{s} \subseteq P$.

Since $A \unlhd G, G$ acts by conjugation on $k A$ and we set

$$
N_{G}(P)=\left\{g \in G \mid P^{g}=P\right\} .
$$

We notice that a theorem of Bergman [9, Corollary 9.3.9] shows that $\operatorname{dim}_{k} k A / P<\infty$.

Harper shows that certain group algebras of polycyclic groups cannot have primitive irreducible modules (a module is said to be primitive if it cannot be induced from a module for the group algebra of a proper subgroup). The technique is to use a result of Roseblade in conjunction with the results stated above.

If S is any ring and V an S-module, then for any subset X of S we denote by $\operatorname{ann}_{V} X$ the annihilator of X in V namely

$$
\operatorname{ann}_{V} X=\{v \in V \mid v x=0 \text { for all } x \in X\}
$$

We denote by $\Pi_{S}(V)$ the set of all ideals P of S which are maximal with respect to $\operatorname{ann}_{V} P>0$. If S satisfies the maximal condition on ideals, then $\Pi_{S}(V)$ is non-empty and it is easily seen that any member of $\Pi_{S}(V)$ is a prime ideal.

We shall consider the case where A is an abelian normal subgroup of the polycyclic group G and V is an irreducible $k G$-module. By Theorem 2.1, V cannot be torsion free as a $k A$-module, so if $P \in \Pi_{k A}(V)$, then $P>0$.

Lemma 2.4 ([10, Lemma 3]). Let k be a field, and R the group ring of a group G over k. Let S be the group ring of a normal subgroup H of G over k, and V a $k G$-module. If $P \in \Pi_{S}(V)$ and T is a right transversal to $N_{G}(P)$ in G then

$$
\left(\operatorname{ann}_{V} P\right) R=\bigoplus_{t \in T}\left(\operatorname{ann}_{V} P\right) t
$$

If V is irreducible, then as $\operatorname{ann}_{V} P>0$ we must have $\left(\operatorname{ann}_{V} P\right) R=V$ and hence

$$
V=\operatorname{ann}_{V} P \bigotimes_{k N} k G
$$

where $N=N_{G}(P)$.
The next theorem is a slight extension of a result of D. L. Harper, ($[\mathbf{5}$, Theorem 4.5] see also [6, Theorem A]).

Theorem 2.5. Let G be a polycyclic-by-finite group, k a field, V an irreducible $k G$-module, and suppose that B is an eccentric plinth in G such that $B \cap C_{G}(V)=1$. Then there exists a subgroup K of G such that $h(K)<h(G),|B: B \cap K|<\infty$ and $V=V_{1} \otimes_{k K} k G$ where V_{1} is an irreducible $k K$-module.

Proof. By Lemma 2.2 there exists an abelian normal subgroup A of G such that $A \cap B>1$. Therefore $\operatorname{rank}(B)=\operatorname{rank}(A \cap B)$, and if K is any subgroup of G such that $|A \cap B: A \cap B \cap K|<\infty$, then $|B: A \cap B \cap K|<\infty$ and so $|B: B \cap K|<\infty$.

Therefore by replacing B by $A \cap B$, we may assume that $B \subseteq A$.
Let $H=\operatorname{core}_{G}\left(N_{G}(B)\right)$, that is the largest normal subgroup of G contained in $N_{G}(B)$. Then $|G: H|<\infty$, and $A \subseteq H$. Now by Clifford's theorem $V_{H}=U_{1} \oplus \ldots \oplus U_{r}$ where the U_{i} are the homogeneous components of V as a $k H$-module. If $B \cap C_{H}\left(U_{i}\right) \neq 1$ for each i then $B \cap C_{H}(V) \neq 1$ which goes against our hypothesis. Hence $B \cap C_{H}\left(U_{i}\right)$ $=1$ for some i.

Let $H_{1}=\left\{g \in G \mid U_{i} g=U_{i}\right\}$, the stabiliser of U_{i}. Then again by Clifford's theorem $V=U_{i} \otimes_{k_{1}} k G$, and we may replace G with H_{1} to assume that V has only one homogeneous component as a $k H$-module. Therefore $V_{H}=W_{1} \oplus \ldots W_{s}$ where the W_{i} are irreducible $k H$-modules, which are all isomorphic to a fixed module W, say.

By Theorem 2.1 W is not torsion free as a $k B$-module. Choose $P \in \Pi_{k B}(W)$, then $P \neq 0$ and $\operatorname{ann}_{V} P \neq 0$. Therefore $\operatorname{ann}_{V}(P k A)>0$ and we can choose $Q \in \Pi_{k A}(V)$ such that $P k A \subseteq Q$. Then $P \subseteq Q \cap k B$.

Since the W_{i} are isomorphic, and Q has non-zero annihilator in V, we deduce that V has non-zero annihilator in W. Hence $Q \cap k B$ has non-zero annihilator in W.

By the maximality of P we have $P=Q \cap k B$. Now let $K=N_{G}(Q)$, $L=N_{H}(P)$. Then by Lemma 2.4 we have

$$
\mathrm{V}=\operatorname{ann}_{V} Q \bigotimes_{k K} k G \text { and } W=\operatorname{ann}_{W} P \otimes_{k L} k H
$$

Let $V_{1}=\operatorname{ann}_{V} Q$, an irreducible $k K$-module. We have $B \subseteq A$ and Q is an ideal of $k A$, so $B \subseteq N_{G}(Q)=K$.

It only remains to show that $h(K)<h(G)$. If this is not the case then $|G: K|<\infty$. Now $H \cap K \subseteq L$ and so $|H: L|<\infty$, so by Lemma 2.3, $\underline{\underline{b}}_{s} \subseteq P$ for some $s \geqq 1$.

Therefore $\left(\operatorname{ann}_{V} P\right) \underline{\underline{b}}_{s}=0$ and since B^{s} is characteristic in B, it is normal in H and so $\left(\operatorname{ann}_{V} P \otimes h\right) \underline{\underline{b}}_{s}=0$ for each $h \in H$. Therefore $W \underline{\underline{b}}_{s}=0$, but this contradicts the fact that $B \cap C_{H}(W)=1$.

Lemma 2.6. Let B_{1}, B_{2} be subgroups of a group G and V a $k G$-module.
i) If $B_{i} \unlhd G$ and $V_{B_{i}}$ is locally finite for $i=1,2$ then V_{B} is locally finite where $B=B_{1} B_{2}$.
ii) If $B_{1} \subseteq B_{2},\left|B_{2}: B_{1}\right|<\infty$ and $V_{B_{1}}$ is locally finite then $V_{B_{2}}$ is locally finite.

Proof. i) It suffices to show that if $v \in V$, then $\operatorname{dim}_{k} v k B<\infty$. By assumption $\operatorname{dim}_{k} v k B_{1}<\infty$, so let v_{1}, \ldots, v_{n} be a k-basis of $v k B_{1}$. Then

$$
v k B \subseteq \sum_{i=1}^{n} v_{i} k B_{2}
$$

which is finite dimensional.
ii) Let $v \in V$. We must show that $\operatorname{dim}_{k} v k B_{2}<\infty$. If g_{1}, \ldots, g_{n} is a left transversal to B_{1} in B_{2}, then any element of $k B_{2}$ can be written as $\sum_{i=1}^{n} g_{i} \beta_{i}$, where $\beta_{i} \in k B_{1}$. Therefore

$$
v k B_{2} \subseteq \sum_{i=1}^{n} v g_{i} k B_{1}
$$

and this is finite dimensional.
Proposition 2.7. Let B be a plinth in the polycyclic-by-finite group G and V an irreducible $k G$-module. Then V_{B} is locally finite.

Proof. We use induction on $h(G)$. If $h(G) \leqq 2, G$ is abelian-by-finite and the result is trivial.

Suppose first that $B \cap C_{G}(V) \neq 1$. Then since B is a plinth, we have $\left|B: B \cap C_{G}(V)\right|<\infty$. Now $V_{B \cap C_{G}(V)}$ is a direct sum of trivial modules, so is certainly locally finite, and the result follows from Lemma 2.6 (ii).

If rank $(B)=1$, the result follows by methods of P . Hall [3]. There is a normal subgroup H of finite index in G which centralises B. As a $k H$-module $V=\bigoplus_{i=1}^{r} W_{i}$ where W_{i} is an irreducible $k H$-module.

Let $\langle z\rangle=B \cap H$. Then by Lemma 2.1 or [9 , Lemma 12.2.8] there is a non-zero polynomial $f_{i}(z)$ in $k\langle z\rangle$ such that $W_{i} f_{i}(z)=0$. Hence each W_{i} is a locally finite $k\langle z\rangle$-module and the result follows from Lemma 2.6 since $|B:\langle z\rangle|<\infty$.

Now, we can in fact assume that $B \triangleleft G$. For, if $H=\operatorname{core}_{G}\left(N_{G}(B)\right)$, then $|G: H|<\infty$ and V is completely reducible as a $k H$-module, and it suffices to show that each $k H$-submodule of V is locally finite as a $k(H \cap B)$-module.

Let us suppose that $B \cap C_{G}(V)=1$, and rank $(B) \geqq 2$. Then by Theorem 2.5 there is a subgroup K of G such that $h(K)<h(G)$, $|B: B \cap K|<\infty$ and $V=V_{1} \otimes_{k K} k G$ where V_{1} is an irreducible $k K$ -
module. Since $h(K)<h(G)$ we can apply the inductive hypothesis to the plinths of K.

Consider the $\mathbf{Q} G$-module $B \otimes_{\mathbf{Z}} \mathbf{Q}$. It is a consequence of Mal'cev's theorem on soluble linear groups, $[9$, Theorem 12.1.3] that as B is a plinth $N_{G}(B) / C_{G}(B)$ is abelian-by-finite. Hence there is a normal subgroup G_{0} of finite index in G such that G_{0} / C is abelian where $C=C_{G_{0}}(B)$.

Now if $K_{0}=K \cap G_{0}$ then

$$
K_{0} C / C \triangleleft G_{0} / C
$$

and by Clifford's theorem it follows that $B \otimes_{\mathbf{z}} \mathbf{Q}$ is completely reducible as a $\mathbf{Q} K_{0}$-module.

Hence there is a subgroup $B_{1} \times B_{2} \times \ldots \times B_{n}$ of finite index in B such that each B_{i} is a plinth in K. By induction $\left.V_{1}\right|_{B_{i}}$ is locally finite for each $i=1, \ldots, n$. Therefore by Lemma 2.6 (i) $\left.V_{1}\right|_{B}$ is locally finite.

Since $\left.V_{1}\right|_{B}$ is locally finite and $B \unlhd G$ we conclude that $\left.V_{1} \otimes g\right|_{B}$ is locally finite for all $g \in G$ and therefore $V=V_{1} \otimes_{k K} k G$ is locally finite as a $k B$-module.

Proof of the main theorem. We have a polycyclic-by-finite group G, and an irreducible $k G$-module V and we must show that V_{A} is locally finite where $A=\operatorname{Plsoc}(G)$. Now

$$
A=\langle B| B \text { is a plinth in } G\rangle
$$

and since A is finitely generated there are finitely many plinths B_{1}, \ldots, B_{r} such that $A=\left\langle B_{1}, \ldots, B_{r}\right\rangle$.
Let $G_{0}=\operatorname{core}_{G}\left(\bigcap_{i=1}^{r} N_{G}\left(B_{i}\right)\right)$, so that G_{0} is a normal subgroup of finite index in G which normalises each B_{i}, and let $C_{i}=B_{i} \cap G_{0} \unlhd G_{0}$, and $C=\left\langle C_{1}, \ldots, C_{r}\right\rangle$. Then $\left|B_{i}: C_{i}\right|<\infty$ and by [11, Lemma 1], $|A: C|<\infty$.

Hence by Lemma 2.6 (ii) it suffices to show that V is locally finite as a $k C$-module. Now by Clifford's theorem V is completely reducible as a $k G_{0}$-module and by Proposition $2.7 V_{C_{i}}$ is locally finite. Since $C_{i} \unlhd G_{0}$, $C=C_{1} C_{2} \ldots C_{r}$ and Lemma 2.6 (i) shows that V_{C} is locally finite. This completes the proof.

In fact the restriction of an irreducible $k G$-module to the plinth socle is completely reducible.

Corollary 2.8. Let G be a polycyclic-by-finite group, k a field and V an irreducible $k G$-module. If $A=\mathrm{Pl}$ soc (G) then V_{A} is completely reducible.

Proof. Since V_{A} is locally finite it contains an irreducible $k A$-submodule. It is easily seen that the socle of V as a $k A$-module is a proper $k G$-submodule of V.

We have, as a consequence of the main theorem an 'intersection
theorem' for maximal right ideals which could be compared with [9, Lemma 7.4.9] and Bergman's theorem [9, Corollary 9.3.9].

Corollary 2.9. If G is a polycyclic-by-finite group, k a field, $M a$ maximal right ideal of $k G$ and $A=\mathrm{Pl} \operatorname{soc}(G)$, then

$$
\operatorname{dim}_{k} k A / M \cap k A<\infty .
$$

Proof. Since $k G / M$ is an irreducible $k G$-module it is locally finite as a $k A$-module. Hence for all $\alpha \in k G, \operatorname{dim}_{k}(M+\alpha k A) / M<\infty$. Putting $\alpha=1$ gives the result.
3. Applications. We first study finitely induced modules. Let \mathscr{X} be the class of polycyclic-by-finite groups all of whose nilpotent subgroups are abelian-by-finite. We need to know that the class \mathscr{X} is closed under taking homomorphic images. Suppose that $G \in \mathscr{X}, H \unlhd G$ and K / H is a nilpotent subgroup of G / H. Then K is a subgroup of G and so $K \in \mathscr{X}$. It suffices to show that if $G \in \mathscr{X}$, then every nilpotent factor group of G is abelian-by-finite. This follows from a result of Zaitsev, [13] which implies that if G is polycyclic-by-finite, $H \triangleleft G$ with G / H nilpotent, then there is a nilpotent subgroup X of G such that $|G: H X|<\infty$. Now, if $G \in \mathscr{X}$, then X is abelian-by-finite, and so G / H is abelian-by-finite.

Theorem 3.1. Let G be a polycyclic-by-finite group and k a non-absolute field. Every irreducible $k G$-module is finitely induced if and only if $G \in \mathscr{X}$.

Proof. Suppose that $G \in \mathscr{X}$ and V is an irreducible $k G$-module. We use induction on $h(G)$ to show that V is finitely induced. Since the class \mathscr{X} is closed under taking homomorphic images we may assume $C_{G}(V)=1$.

Now Fit (G), the Fitting subgroup of G is abelian-by-finite and hence G is metabelian-by-finite. If every plinth in G is centric, then by [8, Corollary 4.5] or [6, Proposition 5.2], G is nilpotent-by-finite and so abelian-by-finite, and V is finite dimensional.

If B is an eccentric plinth in G, then since $B \cap C_{G}(V)=1$, there is a subgroup K of G such that $h(K)<h(G)$ and $V=V_{1} \otimes_{k K} k G$ by Theorem 2.5. Now V_{1} is an irreducible $k K$-module, and hence by induction V_{1} and therefore V are finitely induced.

Conversely suppose that the polycyclic-by-finite group G does not belong to \mathscr{X}. We claim that G has a subgroup H isomorphic to a free nilpotent group of class two on two generators,

$$
\langle x, y, z \mid(x, y)=z,(x, z)=(y, z)=1\rangle .
$$

Now G has a nilpotent subgroup H_{1} which is not abelian-by-finite, and H_{1} has a subgroup H_{2} of finite index which is torsion free, but not abelian-by-finite. Let $Z_{1}=Z\left(H_{2}\right), Z_{2}=Z\left(H_{2} / Z_{1}\right)$ and choose $x \in Z_{2} \backslash Z_{1}$. Then $(x, y) \neq 1$ for some $y \in H_{2}$ and $(x, y)=z \in Z_{1}$. Take $H=$ $\langle x, y, z\rangle$ as the required subgroup.

We use Segal's construction [12] of a primitive irreducible $k H$-module. Let ζ be an element of k^{*} which is not a root of one, and

$$
M=(z-\zeta) k H+(x+y+1) k H
$$

a right ideal of $k H$. In [12], Segal shows that $U=k H / M$ is a primitive irreducible module (see also [4]).

Let V be an irreducible $k G$-module such that $U \subseteq V_{H}$. Suppose if possible that $V=W \bigotimes_{k K} k G$, where $K \subseteq G$, and W is a finite dimensional $k K$-module. Then by Mackey's theorem

$$
V_{H}=\oplus\left(\left.W_{a}\right|_{K_{a}}\right)^{H},
$$

where $K_{a}=K^{a} \cap H, W_{a}=W \otimes a$ a module for $k K^{a}$, and the sum is taken over all double cosets $K a H$. Now since U is irreducible and $U \subseteq V_{H}$, we see that
$U \subseteq\left(\left.W_{a}\right|_{K_{a}}\right)^{H}$ for some $a \in G$.
Let $L=K_{a}$ and $W^{\prime}=W_{a}$ so that $U \subseteq W^{\prime} \bigotimes_{k L} k H$.
We now analyze the possibilities for L. Let $Z=\langle z\rangle$. If $L \cap Z=1$, let $\left\{g_{t} \mid i \in I\right\}$ be a transversal to $L Z$ in H. Then as a transversal to L in H, we may take $\left\{z^{j} g_{i} \mid j \in \mathbf{Z}, i \in I\right\}$ and so as a $k Z$-module, $W^{\prime} \otimes_{k L} k H$ is free of rank $|I| \cdot \operatorname{dim}_{k} W^{\prime}$. Since U has non-zero annihilator in $k Z$ it cannot be embedded in a free $k Z$-module. Therefore $|L Z: L|<\infty$ and we may assume that $Z \subseteq L$.

Now U is generated by an element u such that

$$
u(z-\zeta)=u(x+y+1)=0 .
$$

Suppose that $x_{1}=x^{n} y^{m} \in L$ where $x_{1} \neq 1$, then as W^{\prime} is finite dimensional $W^{\prime} f\left(x_{1}\right)=0$, for some non-zero polynomial $f\left(x_{1}\right) \in k\left[x_{1}\right]$. Now x_{1} is contained in the abelian normal subgroup $A=\left\langle x_{1}, z\right\rangle$ of H, and so commutes with each of its conjugates in H, so as $u \in W^{\prime} \otimes_{k L} k H, u g\left(x_{1}\right)$ $=0$, for some non-zero polynomial $g\left(x_{1}\right)$. Therefore the ideal

$$
I=g\left(x_{1}\right) k A+(z-\zeta) k A
$$

has non-zero annihilator in U, and we may choose $P \in \Pi_{k A}(U)$ containing I.

Then by Lemma $2.4 U=\operatorname{ann}_{V} P \otimes_{k N} k H$, where $N=N_{H}(P)$. Since U is a primitive module $N=H$, but then $P k H$ is a two-sided ideal of $k H$ properly containing $(z-\zeta) k H$, which is impossible as $(z-\zeta) k H$ is primitive and so by [11, Theorem $G 1$] a maximal ideal of $k H$. Therefore $L=Z$.

If w_{1}, \ldots, w_{t} is a vector space basis for W^{\prime}, then

$$
\left\{w_{i} x^{j} y^{k} \mid i=1, \ldots, t ; j, k \in \mathbf{Z}\right\}
$$

is a basis for $W^{\prime} \otimes_{k z} k H$.

Now if we express u as linear combination of these basis elements and we use the fact that $u(x+y+1)=0$, we easily obtain a contradiction to their linear independence. This shows that the irreducible $k G$-module V is not finitely induced.

Particular cases of the above result have been obtained by Harper, [5, Corollary 4.9] and Segal [12, Theorem A]. In [2] Farkas and Snider show that any primitive ideal in the group algebra of a polycyclic-byfinite group is the annihilator of a finitely induced module.

We now examine essential extensions of irreducible modules. The following sufficient condition for a short exact sequence to split is taken from [8, Proposition 4.6].

Proposition 3.2. Let G be any group, k a field and
(*) $0 \rightarrow V \rightarrow W \rightarrow U \rightarrow 0$
an exact sequence of $k G$-modules. Suppose that A is a finitely generated nilpotent normal subgroup of G such that V_{A} is locally finite. If $C_{V}(A)=0$ and $C_{U}(A)=U$, then the sequence of $k G$-modules $\left({ }^{*}\right)$ splits.

Here $C_{V}(A)$ denotes the fixed points of V as a $k A$-module, that is the submodule

$$
\{v \in V \mid v a=v \text { for all } a \in A\}
$$

Theorem 3.3. If G is a polycyclic-by-finite group, k a field and U, V are irreducible $k G$-modules such that V is infinite dimensional and U is finite dimensional, then Ext $(U, V)=0$.

Proof. Let

$$
\text { (**) } 0 \rightarrow V \rightarrow W \rightarrow U \rightarrow 0
$$

be a sequence of $k G$-modules with V and U as in the statement of the theorem. We have to show this sequence splits.

Clearly we may assume $C_{G}(W)=1$. Also, if $H \unlhd G$, with $|G: H|<\infty$ and $\left({ }^{* *}\right)$ splits as a sequence of $k H$-modules, then $W=V \oplus U^{\prime}$ where $U^{\prime} \cong_{k H} U$ and $U^{\prime} k G$ is a finite dimensional $k G$-submodule of W, and therefore $V \cap U^{\prime} k G=0$ and $\left({ }^{* *}\right)$ splits as a sequence of $k G$-modules.

Let $C=C_{G}(U), D=C_{G}(V)$. If $a, b \in C \cap D$ and $w \in W$, then

$$
w((a-1)(b-1)-(b-1)(a-1))=0
$$

so $(a, b) \in C_{G}(W)=1$ and so $C \cap D$ is abelian. Hence if F denotes the Fitting subgroup of G, then $C \cap D \subseteq C \cap F$. Now G / C and G / F are abelian-by-finite and so $G /(C \cap F)$ is abelian-by-finite. If $\mid C \cap F$: $C \cap D \mid<\infty$ then $G /(C \cap D)$ would be abelian-by-finite. However, this contradicts the fact that W is an infinite dimensional irreducible module.

Therefore $(C \cap F) /(C \cap D)$ is an infinite normal subgroup of
$G /(C \cap D)$ and so contains a plinth $A /(C \cap D)$. Dropping to a subgroup of finite index we may assume that A is a normal subgroup of G.

Now A is a nilpotent normal subgroup of G, and it is easily seen that $C_{V}(A)=0$, and $C_{U}(A)=U$. Moreover since V is an irreducible $k G /(C \cap D)$-module and $A /(C \cap D)$ is a plinth in $G /(C \cap D)$, Proposition 2.7 shows that V_{A} is locally finite. In other words the conditions of Proposition 3.2 are satisfied and so the sequence (**) splits.

As our final application, we consider the injective hull $E_{k G}(V)$ of an irreducible $k G$-module V, for G a polycyclic-by-finite group.

If $\operatorname{dim}_{k} V$ is finite, then as we have remarked $E_{k G}(V)$ is artinian and it seems likely that the converse holds.

If A is a plinth in G, then by [9 , Lemma 12.3.1] we can find an element $x \in N_{G}(A)$ such that A is a plinth in $\langle A, x\rangle$. In contrast with Theorem 2.1 we have the following result.

Lemma 3.4. With G, A and x as above, suppose that V is an irreducible $k G$-module and A is an eccentric plinth in G such that $A \cap C_{G}(V)=1$. Then $V_{\langle x\rangle}$ is torsion free.

Proof. Let $H=\operatorname{core}_{G}\left(N_{G}(A)\right)$. Then H is a normal subgroup with finite index in G which normalizes A. Clifford's theorem shows that $V_{H}=\oplus_{i=1}^{r} W_{i}$, a direct sum of irreducible $k H$-modules, and it suffices to show each W_{i} is torsion free. Hence we may suppose that $A \unlhd G$.
If $V_{\langle x\rangle}$ is not torsion free, it has a finite dimensional $k\langle x\rangle$-submodule. Since $B=\langle A, x\rangle$ is a split extension of A by x, and V_{A} is locally finite it follows that V has a finite dimensional $k B$-submodule, by arguments similar to those used in proving Lemma 2.6.
Hence V has a finite dimensional irreducible $k B$-submodule V_{1}. Let $P=\operatorname{Ann}_{k A} V_{1} \neq 0$ since $\operatorname{dim}_{k} V_{1}<\infty$. Hence by Lemma $2.3 \underline{\underline{a}}_{s} \subseteq P$ for some $s \geqq 1$. Therefore $V_{1} \underline{\underline{\underline{a}}} s=0$, and since $A \unlhd G, V_{1} g \underline{\underline{a}}_{s}=0$ for all $g \in G$. Since V is an irreducible $k G$-module this shows that $V \underline{\underline{a}}_{s}=0$ contradicting our assumption that $A \cap C_{G}(V)=1$.

Theorem 3.5. If G is a polycyclic-by-finite group, k a field, V an irreducible $k G$-module, and A an eccentric plinth in G such that $A \cap C_{G}(V)$ $=1$, then $E_{k G}(V)$ is not locally artinian.

Proof. Since V_{A} is locally finite it contains a finite dimensional irreducible $k A$-submodule $U_{0}=u_{0} k A$ for some $u_{0} \in U_{0}$. Now there exists $x \in N_{G}(A)$ such that A is a plinth in $\langle A, x\rangle=H$. We consider the $k H$-submodule $U=u_{0} k H$ of V.

By Lemma 3.4, the elements $\left\{u_{0} x^{i} \mid i \in \mathbf{Z}\right\}$ are linearly independent. Let $u_{i}=u_{0} x^{i}$ and $U_{i}=u_{i} k A=U_{0} x^{i}$. Suppose that

$$
U_{r+1} \cap \sum_{i=0}^{n} U_{i} \neq 0
$$

Then $U_{n+1} \subseteq \sum_{i=0}^{n} U_{i}$ since U_{n+1} is an irreducible $k A$-module. Hence

$$
u_{0} x^{m} \in \sum_{i=0}^{n} U_{i} \text { for all } m \geqq 0
$$

and so these elements cannot be linearly independent.
It follows that the sum $\sum_{i \in \mathbf{Z}} U_{i}$ is direct and therefore $U=U_{0} \bigotimes_{k A} k H$ and if v_{1}, \ldots, v_{n} is a basis for U_{0}, then

$$
\left\{v_{i} x^{j} \mid i=1, \ldots, n, j \in \mathbf{Z}\right\}
$$

is a basis for U.
Now since $(x-1)$ is a non-zero divisor, there exists $w \in E_{k H}(U)$ such that $w(x-1)=v_{1}$. It is easily seen that w cannot belong to U since we have an explicit vector space basis for U. Hence we have an essential extension

$$
0 \rightarrow U \rightarrow W \rightarrow \bar{W} \rightarrow 0
$$

of $k H$-modules and using Bergman's theorem, as in [8] we see that either $\operatorname{dim}_{k} \bar{W}<\infty$ or \bar{W} is free as a $k A$-module. The first alternative is impossible by Theorem 3.3.

Now $w \in E_{k H}(U) \subseteq E_{k H}(V) \subseteq E_{k G}(V)$. Let $W_{1}=w k G$, a finitely generated essential extension of V. If W_{1} is artinian, then it has a composition series of finite length, and hence by Proposition 2.7 the restriction of W_{1} to A is locally finite. This is patently not the case since W_{1} has a non-zero free $k A$-module as a factor module of a submodule.

We have shown that $E_{k G}(V)$ is not locally artinian.
Corollary 3.6. Let G be a non-trivial polycyclic-by-finite group and suppose that $k G$ is a primitive ring with V a faithful irreducible module. Then $E_{k}(V)$ is not locally artinian.

Proof. Clearly $C_{G}(V)=1$. Also since $k G$ is primitive no plinth in G can be centralized by a subgroup of finite index. Hence any plinth in G is eccentric and the result follows.
4. Properties of the plinth socle. Throughout this section, G will denote a polycyclic-by-finite group, $F=F(G)$ the finite radical of G, H / F the Fitting radical of G / F and $\mathrm{Zal}(G) / F$ the centre of H / F. The subgroup $\mathrm{Zal}(G)$ is the Zalesskii subgroup of G.

As noted by Roseblade [11, p. 390] every non-trivial normal subgroup of G meets $\mathrm{Zal}(G)$ non-trivially. Since any infinite normal subgroup of G contains a plinth in G, any infinite normal subgroup of G has non-trivial intersection with $\mathrm{Pl} \operatorname{soc}(G)$, and so any non-trivial normal subgroup of G meets Pl soc $(G) F(G)$ non-trivially.

Lemma 4.1. If G is a finitely generated nilpotent group, then

$$
\mathrm{Zal}(G)=\mathrm{Pl} \operatorname{soc}(G) F(G)
$$

Proof. Take $b \in \operatorname{Zal}(G)$. If b has finite order then $b \in F(G)$. Otherwise $B=\langle b\rangle$ is a plinth in G.

Conversely, suppose that B is a plinth in G. Then $B F / F$ is a plinth in G / F, and so is centralized by a subgroup of finite index in G. However centralizers are isolated in a torsion free nilpotent group and so $B F / F \subseteq \mathrm{Zal}(G) / F$. Therefore $B F \subseteq \mathrm{Zal}(G)$.

Lemma 4.2. If B is a plinth in a polycyclic-by-finite group G, and $G_{0}=N_{G}(B)$, then $B \subseteq \operatorname{Zal}\left(G_{0}\right)$.

Proof. Since the Zalesskii subgroup meets any non-trivial normal subgroup of G_{0}, we have

$$
\left|B: B \cap \operatorname{Zal}\left(G_{0}\right)\right|<\infty
$$

Let $F=F\left(G_{0}\right)$ and H / F be the Fitting subgroup of G_{0} / F.
If $(B, H) \neq 1$, then $(B, h) \neq 1$ for some $h \in H$. The map $\theta: b \rightarrow(b, h)$ is an endomorphism of B. Moreover

$$
B^{n} \subseteq B \cap \mathrm{Zal}\left(G_{0}\right)
$$

for some $n \geqq 1$, and if $b \in B \cap \operatorname{Zal}\left(G_{0}\right)$ and $h \in H$, then $(b, h) \in B \cap$ $F=1$.

Therefore $B^{n} \subseteq \operatorname{ker} \theta$ and hence (B, h) has finite order. Hence $(B, h)=1$.

We remark that if L is any subgroup of a polycyclic-by-finite group G having the property of the plinth socle expressed in the main theorem, then L must be abelian-by-finite. For any irreducible $k L$-module V can be embedded in an irreducible $k G$-module W, and if W_{L} is locally finite then V must be finite dimensional. If this is true for all fields k, then L must be abelian-by-finite.

Finally, we give two examples of polycyclic groups G such that $\mathrm{Zal}(G) / \mathrm{Pl} \operatorname{soc}(G)$ is infinite.

Example 4.3. Let

$$
x=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

act on a free \mathbf{Z}-module $A=\langle a, b, c, d\rangle$ of rank 4. Thus

$$
a \cdot x=b, b \cdot x=a+b, c \cdot x=c+d, d \cdot x=d .
$$

We form the split extension $G=A \rtimes \mathscr{J}\langle x\rangle$ and regard A as a subgroup of G. Let $A_{1}=\langle a, b\rangle, A_{2}=\langle c, d\rangle$ and $A_{3}=\langle d\rangle=Z(G)$.

Since A is an abelian normal subgroup of G, we have $A \subseteq$ Fit (G). Since no power of x acts nilpotently on A_{1} (this can be checked by computing the eigenvalues of x), $A=\mathrm{Fit}(G)=\mathrm{Zal}(G)$.

Now if we regard $A \otimes_{\mathbf{Z}} \mathbf{Q}$ as a $\mathbf{Q}\left\langle x^{n}\right\rangle$-module for $n \geqq 1$, we see that there are just two irreducible submodules $A_{1} \otimes_{\mathbf{Z}} \mathbf{Q}$ and $A_{3} \otimes_{\mathbf{Z}} \mathbf{Q}$. Hence Pl soc $(G)=A_{1} \times A_{3}$, with A_{1} an eccentric and A_{2} a centric plinth.
We remark that in this example it is possible to construct irreducible $k G$-modules V such that V_{A} is not locally finite where $A=\operatorname{Zal}(G)$.

Example 4.4. Let H be a free abelian group of finite rank $\geqq 1$, and A_{1} a free abelian group of rank $\geqq 2$ on which H and its subgroups of finite index act rationally irreducibly.

It is easily seen that $V=A_{1} \otimes_{\mathbf{Z}} \mathbf{Q}$ cannot be injective as a $\mathbf{Q} H$ module. However the injective hull $E_{\mathbf{Q}_{H}}(V)$ is artinian and has all its composition factors isomorphic to V. Hence there is an essential extension W of V such that $W / V \cong V$. Now choose a $\mathbf{Z} H$-submodule A_{2} of W such that $W=A_{2} \otimes_{\mathbf{z}} \mathbf{Q}$ and let G be the split extension of A_{2} by H. It is easily seen that

$$
\text { Fit }(G)=\mathrm{Zal}(G)=A_{2} \quad \text { and } \quad \mathrm{Pl} \mathrm{soc}(G)=A_{1} .
$$

This method yields many explicit examples.
Let $H=\langle x\rangle$ be infinite cyclic and let A_{1} be the $\mathbf{Z}[x]$-module $\mathbf{Z}[x] /$ $\left(x^{2}-x-1\right)$. Then $V=A_{1} \otimes_{\mathbf{Z}} \mathbf{Q}$ is irreducible as a $Q\left[x^{n}\right]$-module for each $n \geqq 1$, and we can choose a \mathbf{Z}-basis $\{a, b\}$ such that

$$
a \cdot x=b \quad \text { and } \quad b \cdot x=a+b .
$$

There exists an element $c \in E_{\mathbf{O}[x]}(V)$ such that $c\left(x^{2}-x-1\right)=a$. If $d=c \cdot x$ then $d \cdot x=a+c+d$. Let A be the $\mathbf{Z}[x]$-module $\langle a, b, c, d\rangle$ and $G=A \rtimes \mathscr{J}\langle x\rangle$. Then

$$
\mathrm{Zal}(G)=A \quad \text { and } \quad \mathrm{Pl} \mathrm{soc}(G)=A_{1} .
$$

References

1. S. Donkin, Locally finite representations of polycyclic groups, to appear.
2. D. R. Farkas and R. L. Snider, Induced representations of polycyclic groups, Proc. London Math. Soc. (3) 39 (1979), 193-207.
3. P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595-622.
4. D. L. Harper, Primitive irreducible representations of nilpotent groups, Proc. Camb. Philos. Soc. 82 (1977), 241-247.
5. - Thesis (Queen's College, Cambridge, 1977).
6. - Primitivity in representations of polycyclic groups, Proc. Camb. Philos. Soc. 88 (1980), 15-31.
7. I. M. Musson, Injective modules for group rings of polycyclic groups I, Quarterly J. Math. 31 (1980), 429-448.
8. -Injective modules for group rings of polycyclic groups II, Quarterly J. Math. 31 (1980), 449-466.
9. D. S. Passman, The algebraic structure of group rings (Wiley-Interscience, New York, 1977).
10. J. E. Roseblade, Group rings of polycyclic groups, J. Pure and Applied Algebra 3 (1973), 307-328.
11. - Prime ideals in group rings of polycyclic groups, Proc. London Math. Soc. (3) 36 (1978), 385-447.
12. D. Segal, Irreducible representations of finitely generated nilpotent groups, Proc. Camb. Philos. Soc. 81 (1977), 201-208.
13. D. I. Zaitsev, On soluble groups of finite rank, Algebra i Logika 16 (1977), 300-312. English translation Algebra and Logic 16 (1977), 199-207.

The University of Wisconsin-Madison, Madison, Wisconsin

