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A b s t r a c t . The effect of anisotropic transport of the mean magnetic field by turbulence in a 
stratified rotating fluid is briefly discussed to find its qualitative correspondence to the observed 
field redistribution over a solar cycle. A kinematic model of a dynamo in a spherical shell is 
developed with the transport effect included to assess its importance in a more consistent way. 
The anisotropic transport brings the simulated field behavior closer to that observed on the Sun. 

1. Anisotropic field transport 

This is a long knowledge (Spitzer 1957; Zeldovich 1957) that apart from the famous 
α-effect and eddy diffusion the turbulence can produce the mean magnetic field 
transport. The transportation effects contribute the averaged induction equation 
through the advection-type terms, rot(Ve// x B), describing the field propagation 
with some effective velocity, which is not a real velocity of the fluid. 

This paper is aimed to draw attention to the turbulent transport effects which 
are nearly completely disregarded in solar dynamo models. However, they seem 
to deserve some attention and may be useful in getting agreement between the 
simulated and observed field dynamics. The motivation is that due to the near-
constancy of solar rotation with depth (cf., e.g., Libbrecht 1989) some mechanism 
of the mean field transport complementary to the dynamo wave propagation over 
isorotational surfaces is probably necessary to reproduce the observed latitudinal 
field migration. 

In this respect, a promising feature of the turbulent field transport in rotat-
ing fluids is its anisotropy: the effective velocities depend on the field orientation 
and possess finite horizontal components (Kichatinov 1988, 1991). The anisotropic 
transport contribution to the mean EM F is 

Ztrans = (V* Χ Β ) + Ω " 2 ( ( V ' - V ) X f t ) ( f t - Β) , (1 ) 

where Ω is the angular velocity. For the axi-symmetric fields, to which case we shall 
limit our consideration, the Vp and V* in (1) are the effective velocities for the 
poloidal and toroidal field components. 

The transportation effects exist for inhomogeneous fluids only. Between the two 
basic inhomogeneities of density and turbulence intensity the latter is probably 
more important for the Sun. We consider the transport velocities for the rapid 
rotation case (Ω* = 2τΩ 1 with τ being the convective turn-over time), 

V1 = i f r ( G - 2 G j . ) / 2 , Vp = i*(G + G x ) / 2 , (2) 
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where G = Vln(p) is the relative density gradient, G± means its normal component 
to the rotation axis, 

m = τπ < u2 > /(8Ω*) (3) 

is the isotropic part of the effective magnetic diffusivity for the rapid rotation case 
(Kichatinov 1988). The case Ω* 1 is chosen partly by the reason of simplicity 
and partly to show that the decrease of the transportation velocities due to rota-
tional quenching does not cancel the effect because the eddy diffusivity is equally 
quenched. The Sun with Ω* ~ β (Durney and Latour 1978) is nearly a rapid rotator. 

The velocities (2) describe the poloidal field transport to poles which poleward 
migration is really observed, at high latitudes at least. The toroidal field is trans-
ported to equator in qualitative agreement with the sunspot activity migration. 
Next, the radial component of the toroidal field velocity is negative (downward) at 
high latitudes and positive (upward) at low latitudes. This may be an explanation 
of why the sunspots are seldom at high latitudes: the toroidal fields may be locked 
there deep in the convection zone due to the downward transport. The estimations 
of the transportation times also give reasonable solar values (Kichatinov 1991). 
Thus, with the anisotropic transport effect different lines of observational evidence 
can be interpreted from a common point of view. This consideration seems promis-
ing but somewhat superficial however. Indeed, the toroidal and poloidal fields are 
physically related to each other (through the α-effect and differential rotation). It is 
not obvious that the physical ties can allow the anisotropic transport to redistribute 
the fields 'as it wants'. 

2. Dynamo model 

A more consistent way to assess the importance of the anisotropic turbulent trans-
port is probably to include it in a dynamo model. Than a comparison of the results 
of the runs made with/without inclusion of this effect can show whether it is sig-
nificant. 

A relatively simple linear and axisymmetric model of the αΩ-dynamo in a spher-
ical shell was used to this end. The normalized equations, 

db 2 f df da df da\ 1 δ 1 δ . Λ , 1 d2xb 
dt χ\δχδθ δθ dx J χ2 δθ sin θ δθ χ δχ2 

+ ( (1 — 2 sin2 θ ) ^ -2^- sin θ cos 0b 
2χ V δχ δθ 

δα . Λ . , sin 0 θ 1 δα δ2 α . . 
— = χ sm θ cos θ b + — - £ - 2 (4) 
dt χ2 δθ sin θ δθ δχ2 

ζ (/Λ . ο da Λ . Λ δα 
+ 2 ((1 + Sin ^ + 

include the anisotropic transport effect by their second lines. In this equations, χ = 
r/R is the fractional radius, b and a/χ sin θ are toroidal field and the poloidal field 
potential respectively, ξ = RG is a stratification parameter, Ρ = —a0Q0R3/(2η2) 
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is the dynamo number, and f(x, Θ) is the normalized angular velocity: 

Ω(χ,Θ) = Ω0/(χ, θ) . 

Several simplifying assumptions are adopted in (4). The eddy diffusivity is also 
anisotropic under rapid rotation; this anisotropy is ignored and the diffusivity co-
efficient (3) is assumed constant. The coefficient a of the α-effect is taken constant 
with depth and latitude dependent as cos Θ. The stratification parameter is also 
assumed constant, the value ξ = 20 was used in the computations. The angular 
velocity distribution adopted is depth-independent rotation from the top to the 
middle of convection zone and the disc-shaped rotation isoplanes from the middle 
to the bottom: 

û\ - f 1 - (* /2zi ) 2 cos 2 0 for xq < x < Xi 
J(x, V) - I χ _ c o g 2 0/4 for X! < χ < 1 , W 

where xo and x\ = χ ο + (1 — xq)/2 are the radii of the bottom boundary and of the 
middle of the shell respectively. The value xq = 0.5 was used in the computations. 

As usual, the linear dynamo model was reduced to the eigenvalue problem and 
the latitude dependences were represented as the series expansions in the adjoint 
Legendre polynomials: 

a = exp(A*) ] Γ α η ( ζ ) sin (cos 0) , 6 = exp(At) bn(x)P^(cos 0) . (6) 
η η 

14 harmonics were kept in the expansions (6). A uniform grid over the variable χ 
with 21 grid points was used. 

The usual boundary conditions were imposed corresponding to vacuum outside 
the spherical shell, 

bn = 0 , dan/dx — —nan for χ — 1 , 

and a superconductor below it, 

an= 0 , χζ(1 - 2sm2 6)b + 2d(xb)/dx = 0 ϊοτ χ = x0 . 

3. Some results and discussion 

Only negative dynamo numbers are considered because this sign is expected for 
the Sun. The linear stability diagram is shown in Fig. 1. The modes with dipol 
and quadrupol parities have nearly the same critical dynamo numbers, P c r , defined 
by the equation, Re[\(Pcr)] = 0. Still, the Pcr for dipol parity is a bit smaller (in 
absolute value). We consider only dipol parity modes because they dominate on the 
Sun (Stenflo 1988). 

Fig. 2 shows the simulated butterfly diagram and isocontours of the radial com-
ponent of the field on the upper surface for the critical dynamo number. The same 
diagrams found with the anisotropic transport neglected are shown in Fig. 3. On 
comparing these two figures, we can notice that the anisotropic turbulent transport 
does not produce any dramatic changes. Nevertheless, the changes are quite pro-
nounced and they are generally to improve agreement with observations. Indeed, 
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Fig. 1. The dependences of the real parts of the eigenvalues on the dynamo number. The 
full and broken lines show the results for dipol and quadrupol parities respectively 

Fig. 2. Butterfly diagram for toroidal field at a small depth below the surface (x = 0.9) 
in coordinates latitude-phase of the dynamo cycle (lower panel) and the contour-lines for 
the radial component of the field on the surface (upper panel). The full and broken lines 
show positive and negative levels respectively. For this case, Pcr = —1.40 · 104 and the 
critical frequency ωοτ = 7ra[A(PCr)] = 65.4 
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Fig. 3. The same as in Fig.2 but with the turbulent transport neglected. Pcr = —1.18· 104 

and u)cr = 79.2 for this case 

the butterfly diagram of Fig. 2 has narrower 'wings', though still somewhat too 
wide, and is closer to the observational picture. Next, the poloidal field isocontours 
of Fig. 2 are rather similar to the diagram found by Stenflo (1988). Note that the 
turbulent transport produces a polar branch of the poloidal field which branch is 
quite pronounced in the observational diagram by Stenflo (1988). No such a branch 
exists in Fig. 3 found with the anisotropic transport neglected. 

We can notice, however, that a very small radial inhomogeneity of rotation law 
(5) produces quite noticeable latitudinal field migration in Fig. 3. The anisotropic 
turbulent transport is certainly not the only process governing the latitudinal field 
redistribution over a dynamo-cycle but it is important. 

There are probably two main points to conclude: 
1. The turbulent transport of the mean magnetic fields in a density-stratified 

rotating fluid is anisotropic.' In particular, the transport velocities for poloidal and 
toroidal components of an axisymmetric field are different and possess finite hori-
zontal components. 

2. The anisotropic transport influences the dynamo modes generally to improve 
agreement with observations. 
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