A CLASS OF THREE-GENERATOR,
THREE-RELATION, FINITE GROUPS

J. W. WAMSLEY

Mennicke (2) has given a class of three-generator, three-relation finite
groups. In this paper we present a further class of three-generator, three-
relation groups which we show are finite.

The groups presented are defined as:

Gile, B,v) = {a,b,c| clac = a®, cbc™ = bB, ¥ = a1 'ab},
Gale, B,v) = {a,b,c|clac = a*, ¢ ¢ = bB, ¢ = a~b~lab},
with al?l &£ 1, il £ 1, v £ 0.
We prove the following result.
THEOREM 1. Each of the groups presented is a finite soluble group.
We state the following theorem proved by Macdonald (1).

THEOREM 2. Gi(a, B8, 1) is a finite nilpotent group.

1. In this section we make some elementary remarks.

Suppose that in each case, ¢ has finite order; then G:(e, 8, v) is a factor
group of Gi(e, 8, v) for suitable 6 and it follows from Theorem 2 that the normal
subgroup N;(e, 8, v) of Gi(a, B, v) generated by @ and b is a finite nilpotent
group, and since G/ (a, B8, v) is a subgroup of N;(«, B8, v), we have G/ (a, 8, v)
is a finite nilpotent group, whence G;(a, B, v) is a finite soluble group.
Furthermore, finiteness of the order of ¢ follows if we show that ¢ is of
finite order in all cases with ¥ equal to &1, since ¢ of finite order implies ¢ of
finite order; and since G:(a, 8, —v) = G2(B, a, v), the theorem will be proved
if we show that ¢ has finite order in G;(«, 8, —1) and G:(«, 8, 1).

The groups G;(0, B, v) and G;(a, 0, v) are easily treated, for then the groups
are finite metacyclic.

If we add relations implying that G;(e, B8, v) is a commutative group, we
see that all groups other than G;(2, 2, #=1) have order greater than 1.

Theorem 1 when proved together with Theorem 2 imply that G;(2, 2, 1)
is trivial.

2. Finiteness of the order of ¢ in Gi(«, 8, —1). Note that
Gl(ar B, '_'1) = Gl(:By a, _1)1

thus we may assume that « = 8, giving three possible cases:
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Case (i): a>1,8>1,

Case (ii): a < 0,8 <0,

Case (iii): @ > 1,8 < 0.

We will prove Case (i) in detail, the other two cases being essentially similar.
The defining relations for Gi(a, 8, —1) are:

(2.1) clac = a,

(2.2) cbc™! = b8,

(2.3) b~lab = ac™,

or

(2.4) a~ba = be.

From (2.1) and (2.3) we have, for w > 0,

(2.5) blaeb = (ac~1)* = gltet-+a®~ 1w,
similarly, (2.2) and (2.4) yield, for v > 0,

(2.6) aWra = (bc)» = bitpt+6" 1,

The relation to which calculation will be applied is
(2.7) c(a=eb~tab)c™! = a~bPabb.
Witha > 1, 8 > 1 we have:
(2.8) c(a=®b=1a*b)c ! = ca=(b~'a%b)c?

= ca—egltet-+a® Il by (2.5)

= cglte’ted+ . ta®=1 —a—1

Il

which, together with
(2.9) a~1Babf

(a=1bBa)bs
cPp1=p—-—8=1p8 by (2.6)
= ¢ Bp—1-p%—pS—..—pF—1

and (2.7), yields

(2.10) glte a1l —a1 c—ﬁ—lb—1—ﬁ2—...—gﬂ—1’

conjugation of (2.10) by ¢ yields

(2.11) cac—lgetett . ta®=2—a—1 _ —p—1)—p—p3—...—pB
Elimination of ¢#*! from (2.10) and (2.11) yields
(2.12) gl-oeta®—a® a2 — —a—2p1—p+62—58

whereas elimination of ¢**! from (2.10) and (2.11) yields
(2.13) al—a+a2—aac—ﬂ—-2 = C—'ﬂ—2bl—ﬁ+ﬁ2"ﬁﬂ_
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Combining (2.12) and (2.13), we have

(2 14) c*—Bq 1—a+a2—a°‘cﬂ—-¢x — al—a+a2—a"

whence (if & # 8) (2.1) yieldsa of finite order, then (2.5) yields ¢ of finite order.
In the case a = 8 > 1, the relation (2.10) yields

(2.15) abcel=c¢co*% 3 whered=14+a?+a®+ ...+ a7},
and since we have
(2.16) b = ce—lpettlietl = (cre1p=dat1)aFl = goactl

it follows that 5~% in the centre of Gi(e, 8, —1), hence b? and ¢ commute,
whereby (2.2) yields b of finite order, whence (2.6) yields ¢ of finite order.
With e < 0, 8 < 0, the relation (2.10) becomes

@. 17) gitet - da— " lal=@01 _ p-1p—1-6-.. —8—B— 1_.51—18;

relations (2.12) and (2.13) become

(2.18) al-a~ *tal=2—a?=%a—2 _  a—2p1—p—Bi1pl—Pp2—f
and

p—agglea_g2—a g 07 1_g—Bygl—B_g2—B
(219) ql—a” %tatT%—a® T p—2 — cB—2p1—B8—P+8 B8 ,

which together yield ¢ of finite order.
For the casea > 1, 8 < 0, (2.10) becomes

(2.20) gttt e =l —atf-1 — —1p1+6+...+6—B—14g1—B
and as previously, ¢ is of finite order.
3. Finiteness of the order of ¢ in G:(«, 8, 1). Note that

G2(_11 By 'Y) = Gl(_ly By 'Y) and G2(0(, _11 ’Y) = Gl(ay _11 7)'

Thus we may consider || > 1, |8| > 1. The defining relations are:

3.1) clac = a°,
3.2) ¢ e = b8,
(3.3) b~lab = ac,

and the following relations hold:
(3.4) c2(a2)c? = (a2, e = b5, ¢ = b=1(a?)b(a2),

where 7 = (a2 + «)/2.
Let G be the group defined by (3.4), i.e.

G = {a,b,c|clac = a*, ¢ e = bF, ¢ = b~laba™},
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wherea > 1,8 > 1,4 = 1. Then if we show that G is a finite group, Theorem 1
will follow.

4. Finiteness of G. The defining relations are:

(4.1) clac = a2, a>1,
4.2) clbc = bh, B>1,
4.3) b~lab = ca, v > 0.

We first prove the following result.
LEmMMA. For n > 0 and m = 0 we have
(4.4) a™" = c¢bat

for suitable integers r, s, and t, each depending on m and n, where t > ym for
m > 1.

Proof. Induction on #n. For n = 1, (4.3) yields
(4.5) b—lgmp = cmay(tet-+a™= D for 4 S 0

whence a™b = bemar(tet. 4ol = mpsToy(tat.t+e™ =Y gpd

yA4+a+...4+a™) >ym
for m > 1. Suppose that a™b" = ¢’b%a’; then
a™"™tt = ¢'b%a'h
= cbshelar(tet . Aal—h by (4.5)
= THIpHDB g (Lhat. dat— ]

andyQ +a—+...+a") > ymif t > ym.
Now from (4.3) we have

(4.6) ¢ = b~laba~" = b~Fa*bPa—r

which with (4.4) yields

4.7) ¢ = bFcb%atr witht > ya

or

(4.8) ?bia™ =1

for suitable p, ¢, and m with m # 0. Conjugation by ¢ yields
(4.9) a™e=b ¢ {b}

whereby a™e 1 commutes with ¢ and (4.1) yields

(4.10) amevt =1 g =0,
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Substitution in (4.5) and (4.2) yields ¢ and b of finite orders whence (4.1),
(4.2), and (4.3) show that G is a finite group since every element of G may be
written in the form ¢’d%* for suitable 7, s, and ¢.

We do not settle the question as to the precise order of each G;(e, 8, 7).
However, if p is a prime which divides the order of G;, then p divides either
al"l — 1, 8l — 1 or v, whereby (1) yields an upper bound on the orders.

G.(3, 3, £2) is a 2-group and G;(—2, —2, +£3) a 3-group.

Some of the G;(a, B, v) are well known as three-generator, four-relation
groups, for example, for v odd we have

G2(2,2,v) = {a,b,c|ab = ba, c"lac = a?, c"bc = b2, ¢¥ = 1}.
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