
A CLASS OF THREE-GENERATOR, 
THREE-RELATION, FINITE GROUPS 

J. W. WAMSLEY 

Mennicke (2) has given a class of three-generator, three-relation finite 
groups. In this paper we present a further class of three-generator, three-
relation groups which we show are finite. 

The groups presented are defined as: 

Gi(a, 13, y) = {a,b,c\ c~lac = aa, cbc~l = ¥, cy = arlb-lab), 

G2(a,l3,y) = {a,b,c \ c~lac = aa,c~lbc = ¥,& = arlb~lab), 

with a'?' 5* 1, 0W ^ 1, 7 ^ 0. 

We prove the following result. 

THEOREM 1. Each of the groups presented is a finite soluble group. 

We state the following theorem proved by Macdonald (1). 

THEOREM 2. Gi(a, /3, 1) is a finite nilpotent group. 

1. In this section we make some elementary remarks. 
Suppose that in each case, c has finite order; then G2(a, 13, 7) is a factor 

group of Gi(a, 5, 7) for suitable 5 and it follows from Theorem 2 that the normal 
subgroup Ni(a, 13, 7) of Gt{a, (3, 7) generated by a and b is a finite nilpotent 
group, and since G/(a, 13, 7) is a subgroup of Ni(a, /3, 7), we have G/(a, 0, 7) 
is a finite nilpotent group, whence Gt{a, 13, 7) is a finite soluble group. 
Furthermore, finiteness of the order of c follows if we show that c is of 
finite order in all cases with 7 equal to =tl , since cy of finite order implies c of 
finite order; and since G2(a, /3, — 7) = G2(f3, a, 7), the theorem will be proved 
if we show that c has finite order in Gi(a, fi, —1) and G2(a, 13, 1). 

The groups Gi(0, /3, 7) and Gi(a, 0, 7) are easily treated, for then the groups 
are finite metacyclic. 

If we add relations implying that Gi(a, /3, 7) is a commutative group, we 
see that all groups other than Gt{2, 2, ± 1 ) have order greater than 1. 

Theorem 1 when proved together with Theorem 2 imply that G*(2, 2, ± 1 ) 
is trivial. 

2. Finiteness of the order of c in Gi(a, ft, — 1). Note that 

GMP, - l ) ^ G i ( 0 , a , - 1 ) , 

thus we may assume that a ^ (3, giving three possible cases: 
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Case (i): a > 1, & > 1, 
Case (ii): a < 0, 0 < 0, 
Case (hi): a > 1, 0 < 0. 
We will prove Case (i) in detail, the other two cases being essentially similar. 
The defining relations for Gi(a, 0 , - 1 ) are: 

(2.1) c~lac = aa, 

(2.2) cbc-1 = W, 

(2.3) b~lab = a<r\ 

or 

(2.4) arlba = be. 

From (2.1) and (2.3) we have, for to > 0, 

(2.5) b~laab = (atr1)» = ai+a+...+^-^c-u. 

similarly, (2.2) and (2.4) yield, for co > 0, 

(2.6) cr*b*a = (bc)« = &1+0+...+/*"- V . 

The relation to which calculation will be applied is 

(2.7) c(ar°b-laab)<rl = ar^-taW. 

With a > 1, & > 1 we have: 

(2.8) c{a-ab-laab)c~1 = ca^ib'^b)^1 

= ca-"al+<*+-+<*"-'"c-"-1 by (2.5) 
= c a i+« 2 +« 3 + . . .+«« - 1

{ r *- i 

which, together with 

(2.9) a - ^ - % ^ = (arlb-*a)bt 

= crPb-1-*---^"V by (2.6) 

and (2.7), yields 

(2.10) ^ i + a ^ . - . + a - 1 ^ - ! = c-e-ii)-i-e*-...-ffi-1
9 

conjugation of (2.10) by c yields 

(2.11) cacr1a<^a2+''-+aa~2(rar'1 = ^ - i & - ^ - ^ - - - ^ . 

Elimination of ^ + 1 from (2.10) and (2.11) yields 

(2 .12 ) a l - a + « 2 _ a a c _ a _ 2 = c _ a _ 2 & 1 _ W 2 _ ^ 

whereas elimination of ca+l from (2.10) and (2.11) yields 
(2 .13 ) a l _ a + a 2 _ a « c _ ^ _ 2 = c _ ^ _ 2 6 1 _ ^ + ^ 2 _ ^ ^ 
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Combining (2.12) and (2.13), we have 

(2 .14 ) ca-^al-a+a^aa^-a = al-a+a2-ct<* 

whence (if a ^ j3) (2.1) yieldsa of finite order, then (2.5) yields c of finite order. 
In the case a = 0 > 1, the relation (2.10) yields 

(2.15) a5c-«~l = c-a~lb-\ where Ô = 1 + a2 + a3 + . . . + aa~\ 

and since we have 

(2.16) b~8 = c-^-ib-""*1'*^1 = (c-a-1b-8ca+1)<x<x+1 = a8'*a+1 

it follows that b~8 in the centre of Gi(a, /3, —1), hence b8 and c commute, 
whereby (2.2) yields b of finite order, whence (2.6) yields c of finite order. 

With a < 0, 0 < 0, the relation (2.10) becomes 

(2 .17 ) al+a+...+a~a-1+a1-a
ca-l — £0-1£-1-/3-. . .-/S ~ # ~ 1-fi1~^. 

relations (2.12) and (2.13) become 

(2 .18 ) al-a-a+a1~a-a2-a
ca-2 = ca-2^1-/3-^+/S1-^-/32-^ 

and 

(2 .19 ) al-a-
a+a

1-a-a2~a
cP-2 = çP^frl-p-P+pl—P-fil-P ^ 

which together yield c of finite order. 
For the case a > 1, 0 < 0, (2.10) becomes 

(2 .20 ) al+a2+ad+...+aa-1
c-a+0-l — £-l£l+/3+.. .+0-P~ ^ / S 1 " ^ 

and as previously, c is of finite order. 

3. Finiteness of the order of c in G2(«, p, 1). Note that 

G 2 ( - l , / 3 , 7 ) ^ G i ( - l , / 3 , Y ) and G2(a, - 1 , 7 ) ^ Gi(a, - 1 , 7) . 

Thus we may consider |a| > 1, |/3| > 1. The defining relations are: 

(3.1) c^ac = aa, 

(3.2) c-^c = fr3, 

(3.3) b~lab = ac, 

and the following relations hold: 

(3.4) c~2(a2)c2 = (a2)-2, c~2bc2 = W\ c2 = J r ^ a 2 ) ^ 2 ) - ' , 

where r = (a2 + a)/2. 
Let G be the group defined by (3.4), i.e. 

G = {a, b, c I c-1ac = aa, c-1&c = bp, c = b~laba~y), 
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where a > 1, (3 > 1, y ^ 1. Then if we show that G is a finite group, Theorem 1 
will follow. 

4. Finiteness of G. The defining relations are: 

(4.1) <rlac = aa, a > 1, 

(4.2) c~lbc = &*, /3 > 1, 

(4.3) Zr^aô = ca*, 7 > 0. 

We first prove the following result. 

LEMMA. For n > 0 awd m ^ 0 we have 

(4.4) a'W = crbsal 

for suitable integers r, s, and t, each depending on m and n, where t > ym for 
m > 1. 

Proof. Induction on n. For n = 1, (4.3) yields 

(4.5) b~lamb = ^a^
1+«+--+«m"1) for m > 0 

whence am6 = &^a^
1+«+--+«w"1) = ^^u+a+.- .+a™- 1) a n d 

7(1 + a + . . . + am~l) > ym 

for m > 1. Suppose that ambn = cTbsal\ then 

= ^ s fo^ 1 +«+-+« ' - 1 > by (4.5) 

= cr+tb(s+1)Ptayil+a+--+at~1) 

and 7(1 + a + . . . + a ' - 1 ) > ym if / > ym. 
NOWT from (4.3) we have 

(4.6) c = b'^abar* = b-*aaWarta 

which with (4.4) yields 

(4.7) c = b-^crbsal-ya with t > 7a 

or 

(4.8) cvbaam = 1 

for suitable p, q, and m with m 9^ 0. Conjugation by c yields 

(4.9) am<*-v e {b} 

whereby aw(a_1) commutes with c and (4.1) yields 

(4.10) a™(«-D2 = 1 , m ^ 0. 
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Substitution in (4.5) and (4.2) yields c and b of finite orders whence (4.1), 
(4.2), and (4.3) show that G is a finite group since every element of G may be 
written in the form crbsal for suitable r, s, and t. 

We do not settle the question as to the precise order of each Gt(a, (3, y). 
However, if p is a prime which divides the order of Gu then p divides either 
alyl — 1, /3ITI — 1 or 7, whereby (1) yields an upper bound on the orders. 

Gt(3, 3, ± 2 ) is a 2-group and G*( — 2, — 2, ± 3 ) a 3-group. 
Some of the Gi(a, /3, 7) are well known as three-generator, four-relation 

groups, for example, for 7 odd we have 

G2(2, 2, 7) = {a, b, c \ ab = ba, c~lac = a2, c~lbc = 62, cy = 1}. 
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