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Abstract

The Möbius inversion formula for a locally finite partially ordered set is realized as a Lagrange inversion
formula. Schauder bases are introduced to interpret Möbius inversion.
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1. Introduction

In combinatorics, there are various inversion formulas including Lagrange inversion,
inverse relations and Möbius inversion. Some theorems are in fact also inversions,
for instance: MacMahon’s master theorem [12]; Saalschütz’s theorem [1, p. 9]; (a
terminating form of) Dixon’s theorem [1, p. 13]; and Jacobi’s formula [10]. An
inversion formula is regarded as a phenomenon of change of ‘coordinate systems’. It
is shown that Lagrange inversion [5], MacMahon’s master theorem [4, Example 1],
Saalschütz’s theorem [6, Identity 11] and Dixon’s theorem [6, Identity 12] are
phenomena of changes of variables; an inverse relation is a phenomenon of a change of
Schauder bases [7]; Jacobi’s formula is a phenomenon of a change of parameters [9].
The purpose of this article is to show that Möbius inversion for a locally finite partially
ordered set is within the same view.

Throughout the article, κ is a field and X is a partially ordered set, which is
locally finite (that is, there are only finitely many elements between any x, y ∈ X).
Let χn : X × X→ κ be the function such that χn(x, y) is the number of distinct chains
x = x0 < x1 < · · · < xn = y. Since X is locally finite, there is an integer n for each pair
(x, y) such that χi(x, y) = 0 for i > n, so we can define the Möbius function of X as

µ := χ0 − χ1 + χ2 − χ3 + · · · .

For x ∈ X, we call the set {y ∈ X : y ≥ x} the principal filter on X generated by x.
Let f : X→ κ be a function. If all principal filters on X are finite, we can define a
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[2] Möbius inversion 69

function g(x) :=
∑

y≥x f (y); the Möbius inversion formula asserts that

f (x) =
∑
y≥x

g(y)µ(x, y). (1.1)

Dually, we call the set {y ∈ X : y ≤ x} the principal ideal on X generated by x. If all
principal ideals on X are finite, we can define a function g(x) :=

∑
y≤x f (y); the dual

version of the Möbius inversion formula asserts that

f (x) =
∑
y≤x

g(y)µ(y, x). (1.2)

Möbius inversion first occurred in number theory. Its significance in combinatorics
is shown by Rota [15] by introducing the incidence algebra of a locally finite partially
ordered set. In terms of the incidence algebra, the function χn is indeed the nth
power of χ1; the Möbius function µ is the inverse of the zeta function χ0 + χ1.
Observed by Stanley [17], a locally finite partially ordered set can be recovered by
its incidence algebra over a field. Incidence algebras are a subject of much research.
See the textbook [16]. This article provides alternative views on Möbius inversion by
enhancing the method of generating functions with differentials. See [8] for a review
on such a method.

Our approach to Möbius inversion as well as to other inversion formulas is
supported by convenient operational tools: local cohomology residues are available
for changes of variables and certain Schauder bases; for changes of parameters, we
can employ logarithmic residues. In Section 2, we briefly recall the notion of local
cohomology residues, which is used in this article.

For a fixed x, there are only finitely many y involved in the formulas (1.1) and (1.2).
Hence we may assume that X is finite for Möbius inversion and its dual version. For
the power series over κ with the elements of X as variables, we can construct other sets
of variables using the order on X (Lemma 3.1). The Möbius function can be computed
by residues (equation (3.2) in the proof of Theorem 3.2). As a type of Lagrange
inversion, we recover the Möbius inversion formula in Section 3 as the interplay of the
representations of a homogeneous polynomial of degree one by these sets of variables.
Regarding Lagrange inversion and incidence algebras, another viewpoint is provided
by Haiman and Schmitt [2].

Without assuming that X is finite, the set of functions from X to κ can be uniquely
represented by a Schauder basis (Definition 4.1). For X with finite principal filters
or with finite principal ideals, we can define other Schauder bases using the order on
X (Propositions 4.2 and 4.3). Section 4 concludes that Möbius inversion is in fact a
phenomenon of a change of Schauder bases.

In Section 5, certain computational aspects of our approaches to Möbius functions
are presented, including a determinant formula of Lindström and Wilf [11, 18] and
another of Redheffer and Wilf [14, 19].

2. Operational tool

The concrete features of local cohomology residues have been used in algebraic
geometry to realize Grothendieck duality. It is first observed in [4] that these algebraic

https://doi.org/10.1017/S0004972711002656 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002656


70 I-C. Huang [3]

residues are a natural tool for taking coefficients of a power series. With elegant
operational rules, local cohomology residues are applied to various combinatorial
problems [6]. In this section, we collect basic notions of local cohomology residues
used in this article. More details can be found in [4, 6, 8]. See also [3] for a treatment
in a more general setting.

A power series ring R over κ can be characterized as a complete regular local ring
with κ as a coefficient field. A regular system of parameters x1, . . . , xn of R serves
as variables. In other words, R can be described as κ[[x1, . . . , xn]]. The module
Ω̃R/κ of finite differentials of R over κ is free of rank n. It comes with a κ-derivation
d : R→ Ω̃R/κ, with which Ω̃R/κ = R dx1 + · · · + R dxn. The exterior power ∧nΩ̃R/κ is
free of rank one. Indeed, ∧nΩ̃R/κ = R dx1 ∧ · · · ∧ dxn.

The nth local cohomology module of ∧nΩ̃R/κ supported at the maximal ideal of R
consists of generalized fractions [

ϕ
f1, . . . , fn

]
,

where the numerator ϕ ∈ ∧nΩ̃R/κ and the denominators f1, . . . , fn form a system
of parameters of R. Generalized fractions are linear in numerators (linearity law).
A change of denominators is compensated by a determinant in the numerator
(transformation law). A generalized fraction vanishes if and only if the ideal generated
by denominators contains the power series, which represents the numerator in terms
of the basis dx1 ∧ · · · ∧ dxn (vanishing law).

Taking residues of a generalized fraction is a κ-linear map determined by

res
[
dx1 ∧ · · · ∧ dxn

xi1
1 , . . . , xin

n

]
=

1 if i1 = · · · = in = 1,

0 otherwise.

Residue maps are transitive in variables (transitivity law). The most important
property of residue maps is that they are invariant under changes of regular systems
of parameters (invariance law). We look at an example to see how the invariance
law appears explicitly. Consider the power series ring κ[[x]] = κ[[y]], where y =

x + x2 + x3 + · · · . Leibniz’s rule of derivations gives

dy = dx(1 − x)−1 = (1 − x)−2 dx.

Hence

Θ :=
[
dy
yn

]
=

[
(1 − x)n−2 dx

xn

]
by the transformation law. For n = 1, linearity and vanishing laws give

Θ =

[
(1 + x + x2 + · · · ) dx

x

]
=

[
dx
x

]
+

[
(x + x2 + · · · ) dx

x

]
=

[
dx
x

]
;

for n ≥ 2, the power series (1 − x)n−2 becomes a polynomial of degree n − 2. Thus the
residue of the generalized fraction Θ computed in terms of the variable y is indeed the
same as that obtained in terms of x.
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3. Möbius function by residues

In this section, we work on a power series ring R = κ[[x1, . . . , xn]], whose variables
x1, . . . , xn form a partially ordered set X. We use the notation

ui :=
∑
x j≤xi

x j and vi :=
∑
x j≥xi

x j (3.1)

for 1 ≤ i ≤ n.

L 3.1. The elements u1, . . . , un (respectively v1, . . . , vn) form a regular system of
parameters of R. In other words,

κ[[x1, . . . , xn]] = κ[[u1, . . . , un]] = κ[[v1, . . . , vn]].

P. We prove the lemma for ui and leave the case for vi to the reader. As
an application of Nakayama’s lemma [13, Theorem 2.3], it suffices to prove that
u1, . . . , un form a basis of the κ-vector space generated by x1, . . . , xn. We proceed
by induction on the number of variables. The case n = 1 is trivial. Assume that the
assertion holds if the number of variables is less than n and, without loss of generality,
assume also that xn is a maximal element. Then u1, . . . , un−1 form a basis of the vector
space generated by x1, . . . , xn−1. The assertion follows since the subspace generated
by u1, . . . , un is also generated by u1, . . . , un−1, xn. �

The above proof shows that the relation between u1, . . . , un (respectively
v1, . . . , vn) and x1, . . . , xn is linear over κ.

T 3.2. For 1 ≤ j ≤ n,

x j =

n∑
i=1

µ(xi, x j)ui =

n∑
i=1

µ(x j, xi)vi.

P. We prove the theorem for ui and leave the case for vi to the reader. Since x j is
a κ-linear combination of u1, . . . , un, what we need to prove is that

res
[

x j du1 ∧ · · · ∧ dun

u1, . . . , ui−1, u2
i , ui+1, . . . , un

]
= µ(xi, x j). (3.2)

By switching the indices of the sequence x1, . . . , xn, we only need to prove that

res
[
xn du1 ∧ · · · ∧ dun

u2
1, u2, . . . , un

]
= µ(x1, xn), (3.3)

which clearly holds if xn is a minimal element.
Therefore, we assume that xn is not a minimal element. If X has a minimal element

not equal to x1, say x2, we let u′i = ui − x2 for xi > x2 and let u′i = ui otherwise. Then[
xn du1 ∧ · · · ∧ dun

u2
1, u2, . . . , un

]
=

[
xn du′1 ∧ dx2 ∧ du′3 ∧ · · · ∧ du′n

(u′1)2, x2, u′3, . . . , u′n

]
.
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By the transitivity law of residues, we get

res
[
xn du1 ∧ · · · ∧ dun

u2
1, u2, . . . , un

]
= res

[
xn du′1 ∧ du′3 ∧ · · · ∧ du′n

(u′1)2, u′3, . . . , u′n

]
.

Since µ(x1, xn) is invariant if we take away a minimal element not equal to x1 from X,
to prove (3.3), we may assume furthermore that x1 = inf X.

Now we prove the theorem by induction on n. The case n = 1 is trivial. Assume
the theorem holds for the case that the number of variables is less than n. Consider a
minimal element of X \ {x1}, say x2. The generalized fraction in (3.3) can be written
as [

xn du1 ∧ · · · ∧ dun

u2
1, u2, . . . , un

]
=

[
xn dx1 ∧ (dx1 + dx2) ∧ du3 ∧ · · · ∧ dun

x2
1, x1 + x2, u3, . . . , un

]
=

[
xn(x1 − x2) dx1 ∧ dx2 ∧ du3 ∧ · · · ∧ dun

x2
1, x2

1 − x2
2, u3, . . . , un

]
=

[
xn dx1 ∧ dx2 ∧ du3 ∧ · · · ∧ dun

x2
1, x2, u3, . . . , un

]
−

[
xn dx1 ∧ dx2 ∧ du3 ∧ · · · ∧ dun

x1, x2
2, u3, . . . , un

]
.

Let u′i = ui − x2 for x2 < xi and let u′i = ui otherwise. Let u′′i = ui − x1. Then[
xn du1 ∧ · · · ∧ dun

u2
1, u2, . . . , un

]
=

[
xn dx1 ∧ dx2 ∧ du′3 ∧ · · · ∧ du′n

x2
1, x2, u′3, . . . , u′n

]
−

[
xn dx1 ∧ dx2 ∧ du′′3 ∧ · · · ∧ du′′n

x1, x2
2, u′′3 , . . . , u′′n

]
.

Taking residues, we get

res
[
xn du1 ∧ · · · ∧ dun

u2
1, u2, . . . , un

]
= res

[
xn dx1 ∧ du′3 ∧ · · · ∧ du′n

x2
1, u′3, . . . , u′n

]
− res

[
xn dx2 ∧ du′′3 ∧ · · · ∧ du′′n

x2
2, u′′3 , . . . , u′′n

]
.

Let µ′ be the Möbius function of the partially ordered set X \ {x2} and let µ′′ be the
Möbius function of the partially ordered set X \ {x1}. By the induction hypothesis,

res
[
xn du1 ∧ · · · ∧ dun

u2
1, u2, . . . , un

]
= µ′(x1, xn) − µ′′(x2, xn) = µ(x1, xn).

This concludes the proof. �

C 3.3. If x , z, then
∑

x≤y≤z µ(y, z) =
∑

x≤y≤z µ(x, y) = 0.
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[6] Möbius inversion 73

P. We may assume that X consists of elements x1, . . . , xn with x = x1 = inf X and
z = xn = sup X. Then ∑

x≤y≤z

µ(y, z) =

n∑
j=1

res
[
x j dv1 ∧ · · · ∧ dvn

v1, . . . , vn−1, v2
n

]

= res
[
v1 dv1 ∧ · · · ∧ dvn

v1, . . . , vn−1, v2
n

]
= 0

and ∑
x≤y≤z

µ(x, y) =

n∑
j=1

res
[
x j du1 ∧ · · · ∧ dun

u2
1, u2, . . . , un

]

= res
[
un du1 ∧ · · · ∧ dun

u2
1, u2, . . . , un

]
= 0.

This concludes the proof. �

Consider the power series ring κ[[x1, . . . , xn]] = κ[[y1, . . . , yn]]. Given a power
series f represented as

f =
∑

ai1···in xi1
1 · · · x

in
n

with ai1···in ∈ κ, Lagrange inversion seeks formulas of bi1···in ∈ κ for a new representation

f =
∑

bi1···in yi1
1 · · · y

in
n

in terms of ai1···in and the coefficients c( j)
i1···in

in

y j =
∑

c( j)
i1···in

xi1
1 · · · x

in
n .

With the partial order on the variables x1, . . . , xn, the Möbius inversion formula is a
Lagrange inversion formula: in the power series ring κ[[x1, . . . , xn]] = κ[[u1, . . . , un]],
consider f :=

∑
a jx j. The elements

bi := res
[

f du1 ∧ · · · ∧ dun

u1, . . . , ui−1, u2
i , ui+1, . . . , un

]
=

∑
a jµ(xi, x j)

give a new representation f =
∑

biui.

4. Schauder bases

The set of functions from X to κ can be identified with the set Ī(X) consisting of
formal sums

∑
x∈X axx with ax ∈ κ. With termwise addition and scalar multiplication,

Ī(X) is a vector space over κ. We remark that Ī(X) can also be identified with the
incidence algebra of X modulo its Jacobson radical [17]. Given f =

∑
axx ∈ Ī(X), the

subset
supp f := {x ∈ X : ax , 0}

of X is called the support of f .
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D 4.1. Elements ui ∈ Ī(X) form a Schauder basis of Ī(X) if the following
conditions hold.
• There are only finitely many ui whose support contains any given x ∈ X. (So we

can define
∑

aiui for any ai ∈ κ.)
• Any element Ī(X) can be written uniquely as

∑
aiui for ai ∈ κ.

If X is finite, the notion of Schauder bases agrees with the notion of bases of a
vector space. If X is the set of monomials in the power series ring κ[[x]] with the
order xi < x j⇔ i < j, then Ī(X) can be identified with κ[[x]] as a vector space. In [7,
Definition 2.1], a slightly different definition of Schauder bases is given for κ[[x]]. One
can show that a Schauder basis of Ī(X) in the sense of this article is countable and can
be listed as a Schauder basis f0, f1, f2, . . . of κ[[x]] in the sense of [7].

P 4.2. Assume that all principal filters on X are finite. The elements
uy :=

∑
x≤y x, where y ∈ X, form a Schauder basis of Ī(X).

P. For any x ∈ X, the set consisting of those y ∈ X such that x ∈ supp uy is exactly
the principal filter generated by x; hence is finite.

We need to represent
∑

z azz ∈ Ī(X) in terms of uy. Recall that Corollary 3.3 asserts
that

∑
x≤y≤z µ(y, z) = 0 for x , z. Together with the fact that µ(z, z) = 1, we have

z =
∑

y≤z µ(y, z)uy. Therefore,∑
y

(∑
y≤z

azµ(y, z)
)
uy =

∑
z

azz.

For the uniqueness of representations, it suffices to show that all bx ∈ κ vanish if∑
x bxux = 0. For y ∈ X, the elements ay :=

∑
y≤z bz have to be zero, since

∑
y ayy =∑

z bzuz = 0. On the other hand,

bx =
∑

x≤y≤z

µ(x, y)bz =
∑
x≤y

µ(x, y)ay = 0.

This concludes the proof. �

Similarly we can show the following.

P 4.3. Assume that all principal ideals on X are finite. The elements
vy :=

∑
x≥y x, where y ∈ X, form a Schauder basis of Ī(X).

Recall that an inverse relation is a pair of identities of the form
bn =

n∑
k=0

cnkak,

an =

n∑
k=0

dnkbk,
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where ai, bi, c ji, d ji ∈ κ. It is shown in [7, Theorem 2.1] that an inverse relation with
the orthogonal property comes from representations of a power series by two Schauder
bases in the sense of [7]. Assume that all principal filters on X are finite. Möbius
inversion consist of the information

bx =
∑
y≥x

µ(x, y)ay,

ax =
∑
y≥x

by,

which comes from two representations of an element
∑

axx =
∑

bxux ∈ Ī(X) by the
Schauder bases {x}x∈X and {ux}x∈X .

5. Computational aspects

In this section, we provide three examples to exhibit how differentials and residues
naturally appear in Möbius functions and their applications.

In the first example, X is the set of integers with the usual order. We identify an
integer i with a variable xi. By Theorem 3.2,

µ(n, n + 1) = res
[
xn+1 dxn ∧ d(xn + xn+1)

x2
n, xn + xn+1

]
.

The generalized fraction in the above formula can be simplified as[
xn+1 dxn ∧ d(xn + xn+1)

x2
n, xn + xn+1

]
=

[
xn+1(xn − xn+1) dxn ∧ dxn+1

x2
n, x2

n − x2
n+1

]
=

[
xn+1(xn − xn+1) dxn ∧ dxn+1

x2
n, −x2

n+1

]
=

[
dxn ∧ dxn+1

xn, −xn+1

]
.

By taking the residue,

µ(n, n + 1) = res
[
dxn ∧ dxn+1

xn, −xn+1

]
= −1.

For m > n + 1,

µ(n, m) = res
[
xm dxn ∧ d(xn + xn+1) ∧ · · · ∧ d(xn + · · · + xm)

x2
n, xn + xn+1, . . . , xn + xn+1 + · · · + xm

]
= res

[
xm dxn ∧ d(xn + xn+1) ∧ · · · ∧ d(xn + · · · + xm)
x2

n, xn + xn+1, . . . , xn + xn+1 + · · · + xm−1, xm

]
= 0.

For the rest of this section, we consider a partially ordered finite set X = {x1, . . . , xn}

and use the notation of (3.1) in Section 2.
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In the second example, we revisit a determinant formula obtained independently by
Lindström [11] and Wilf [18]. For a sequence a1, . . . , an ∈ κ, the differential

ωi := d
(∑

x`≥xi

a`u`
)

can be written as

ωi =

n∑
j=1

bi j dx j

for bi j ∈ κ. Indeed, bi j =
∑

x`≥xi,x j
a`. For a maximal element xm of X,

ω1 ∧ · · · ∧ ωn = ω′1 ∧ · · · ∧ ω
′
m−1 ∧ (am dxm) ∧ ω′m−1 ∧ · · · ∧ ω

′
n,

where ω′i := d(
∑

xi≤x`,xm
a`u`). By induction on n,

ω1 ∧ · · · ∧ ωn = (a1 dx1) ∧ · · · ∧ (an dxn).

Hence

det(bi j) = res
[
ω1 ∧ · · · ∧ ωn

x1, . . . , xn

]
= a1 · · · an.

Let bi := bii. In terms of the Möbius function, the above determinant formula can also
be written as

det(bi j) =

n∏
i=1

n∑
j=1

µ(xi, x j)b j.

For our third example, we recall ui =
∑

x j≤xi
x j and x j =

∑n
i=1 µ(xi, x j)ui. The

Möbius function also appears in the identity

dx j ∧ du2 ∧ · · · ∧ dun = µ(x1, x j) du1 ∧ du2 ∧ · · · ∧ dun

of exterior products of differentials. Let R be the matrix whose (i, j) entry is 1 if
xi ≤ x j or j = 1, and otherwise is 0. The determinant considered by Redheffer [14] and
Wilf [19] can be written as

det R = res
[
d(x1 + · · · + xn) ∧ du2 ∧ · · · ∧ dun

x1, . . . , xn

]
. (5.1)

To compute the residue, we use the relation
u1
...

un

 =


(χ0 + χ1)(x1, x1) · · · (χ0 + χ1)(xn, x1)

...
. . .

...
(χ0 + χ1)(x1, xn) · · · (χ0 + χ1)(xn, xn)



x1
...

xn


of matrices to change the denominators of the generalized fraction in (5.1) from
x1, . . . , xn to u1, . . . , un. Note that det((χ0 + χ1)(xi, x j)) is invariant under any
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permutation of the indices of the sequence x1, . . . , xn. Since there is a permutation
of the indices of x1, . . . , xn such that the matrix ((χ0 + χ1)(xi, x j)) is upper triangular
with ones on the diagonal, we have det((χ0 + χ1)(xi, x j)) = 1. By the transformation
law, d

( n∑
j=1

x j

)
∧ du2 ∧ · · · ∧ dun

x1, . . . , xn

 =

d
( n∑

j=1

x j

)
∧ du2 ∧ · · · ∧ dun

u1, . . . , un

 .
We recover the determinant formula of Redheffer [14] as well as its generalization by
Wilf [19] as follows:

det R = res

d
( n∑

j=1

x j

)
∧ du2 ∧ · · · ∧ dun

u1, . . . , un


=

n∑
j=1

res
[
dx j ∧ du2 ∧ · · · ∧ dun

u1, . . . , un

]
=

n∑
j=1

µ(x1, x j).

We remark that the assumption in [19] that x1 is the smallest element of X is irrelevant
in the above proof.
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