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Thermodynamics

1.1 Generalities

Thermodynamics aims to describe many-particle systems on the macroscale, i.e., on spatial
scales larger than the distances between the particles and temporal scales longer than the
corresponding time intervals. Thermodynamics enunciates general principles governing the
balance of physical quantities characterizing such macroscopic systems. These physical
quantities are the state variables, also called macrovariables, that are defined by observing
the system on the macroscale. The state variables include mechanical variables such as the
energy E and the particle numbers Nk , which are defined in the framework of the underly-
ing microscopic mechanics, as well as the nonmechanical variable called entropy S. This
latter was introduced by Clausius (1865), who established its existence at the macroscale in
addition to the mechanical properties, in particular, using the study of Carnot (1824) on the
behavior of gases in idealized steam engines.

Basically, the system is delimited by a boundary and has a volume V . The system can be
an engine, a device, a machine, a motor, or part of a larger system, such as a volume element
in a continuous medium like a fluid or a solid.

The time evolution of the system may result from internal transformations and also from
exchanges with its environment, as schematically represented in Figure 1.1. During the evo-
lution of any kind (i.e., spontaneous time evolution or evolution under some external drive),
some state variable X changes by some infinitesimal amount dX at every infinitesimal step
of the evolution. Mathematically speaking, dX is the differential ofX. This differential may
have two contributions

dX = deX + diX. (1.1)

The contribution deX is due to the exchanges of X with the exterior of the system (i.e., its
environment) and the contribution diX is caused by the transformations inside the system
(Prigogine, 1967). The symbols deX and diX denote contributions that are not given by the
differential of some function. The notation �dX is also often used for such nondifferential
contributions. If there is no environment, we have that deX = 0 for any quantity X and the
system is said to be isolated.
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2 Thermodynamics
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Figure 1.1 Schematic representation of a system in contact with its environment. Changes
of the macrovariable X with the exterior of the system are denoted by deX and diX denotes
those occurring within its interior.

Thermodynamics is formulated as follows with three laws, specifically concerning
energy and entropy.

1.2 Energy and Other Conserved Quantities

The first law of thermodynamics is a principle of conservation.

First law: There exists a state variable called the energy E that is conserved in every
internal transformation of the system, i.e.,

dE = deE + diE with diE = 0. (1.2)

Energy is measured in joules (SI unit), calories, or electron-Volts (eV), depending on
the context. The first law of thermodynamics expresses the conservation of energy in any
form. The energy is the sum of all the forms of energy: kinetic, potential, electric, magnetic,
thermal, chemical, nuclear, gravitational, etc. The first law is justified in all the mechanical
theories of physics as resulting from the symmetry of the equations of motion under time
translations,1 which implies the conservation of a quantity identified as energy by the theo-
rem of Noether (1918). We note that the first law defines energy up to a constant value that
remains arbitrary.

Beside energy, there exist other quantities that are also conserved as the result of funda-
mental symmetries:

• linear momentum (by symmetry under spatial translations1);
• angular momentum (by symmetry under rotations1);
• electric charge (by local gauge symmetry2);
• leptonic number (by global symmetry3);
• baryonic number (by global symmetry3);

1 These fundamental symmetries of Minkowski’s spacetime belong to the Poincaré group, also called the inhomogeneous
Lorentz group. This group reduces to the Galilean group in the nonrelativistic limit (Weinberg, 1995).

2 This fundamental symmetry holds at every spacetime point for the quantum fields associated with electrically charged
particles (Weinberg, 1996).

3 This other fundamental symmetry is independent of spacetime and holds for the quantum fields associated with leptonic or
baryonic particles (Weinberg, 1996).
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1.2 Energy and Other Conserved Quantities 3

according to experimental observations (Weinberg, 1995, 1996). Every one of these quan-
tities obeys equation (1.1) with diX = 0, as expressed for energy by the first law.

Among the state variables, we also have the numbers Nk of the particles of different
species k = 1,2, . . . , c. The particles are supposed to be identical objects that should be
considered in the description of the system, such as photons, leptons, baryons, nuclei, atoms,
molecules, and supramolecular entities. If some particles undergo reactions, their numbers
are not conserved so that

dNk = deNk + diNk (1.3)

with diNk �= 0, depending on the reaction rates and the stoichiometric coefficients of the
species k in the reactions. However, if there is no reaction and the species k is conserved,
we again have that diNk = 0 and the particle number Nk goes along the other conserved
quantities.

It is also possible that the particle numbers {Nk}ck=1 are not conserved, but that some
linear combination of them,Lj =

∑c
k=1 ljkNk , is nevertheless conserved, so that diLj = 0,

which defines an effective conservation law. The existence of the conserved quantities Lj
depends on the energy scale of the reactions taking place inside the system. For low collision
energies, in the absence of chemical reactions the molecules are preserved so that diNk = 0,
where k denotes a molecular species. At higher collision energies, though still below the
energy of the strongest chemical bonds, some parts of molecules called moieties (Nelson
and Cox, 2017) may be preserved by the reactions, in which case the numbers Lj of these
moieties are conserved. At collision energies higher than the energy of the chemical bonds,
the molecules break up into atoms so that only the numbers Aj of atoms are conserved. If
ionization occurs, the numbers of electrons and ions become the relevant state variables,
as in electrolytes or plasmas. Moreover, different isotopes may be distinguished by their
massmj . The numbers of isotopes are conserved as long as there is no radioactivity. Within
the nonrelativistic description, the law of mass conservation holds, which is expressed as
dM = deM + diM with diM = 0, where M = ∑j mjAj is the total mass of the system.
For still higher energies at the scale of MeV or higher, radioactivity and nuclear reactions
break the conservation laws of the mass and the numbers of atomic nuclei, so that systems
should be described in terms of nucleons and possibly other particles such as photons,
electrons, positrons, and neutrinos. At energies above about 100 MeV, further particles
should be included in the description (Weinberg, 1995, 1996).

We note that entities much larger than atoms or molecules may also be counted, such as
atomic or molecular clusters, colloidal particles, crystalline particles, or biological entities
such as viruses, organelles, or cells. In every case, an issue is to assess the relevance of the
thermodynamic description adopted.

A system is said to be closed if only energy is exchanged with its environment, i.e., if
deE �= 0 but deNk = 0. A system is said to be open if energy and matter are exchanged
with its environment, i.e., if deE �= 0 and deNk �= 0.

The environment is often supposed to be much larger than the system, in which case it
plays the role of energy or particle reservoir. The environment may also be composed of
several such reservoirs in contact with the system.
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4 Thermodynamics

1.3 Entropy

In addition to the mechanical state variables, there is a nonmechanical variable that obeys the

Second law: There exists a state variable called entropy S such that

dS = deS + diS with diS ≥ 0. (1.4)

The entropy production diS is thus always nonnegative. The evolution or transformation
undergone by the system is said to be reversible if diS = 0 and irreversible if diS > 0.
The system remains at thermodynamic equilibrium if diS = 0 and it is out of equilibrium if
diS > 0. In this latter case, there is a time asymmetry in the macroscopic description of the
system. We note that deS may be positive, negative, or zero, depending on the exchanges
between the system and its environment.

1.3.1 Equilibrium Macrostates

If the system is at equilibrium, i.e., if diS/dt = 0, its (absolute) temperature is defined by
differentiating the energy with respect to the entropy,

T ≡
(
∂E

∂S

)
V,{Nk}ck=1

, (1.5)

where all the other variables remain constant. The SI unit of temperature is the kelvin (K),
which is related to the SI unit of energy by Boltzmann’s constant kB = 1.380649 ×
10−23 J/K. Accordingly, the entropy has the units of joule per kelvin (J/K). At equilibrium
again, the (hydrostatic) pressure is defined as

p ≡ −
(
∂E

∂V

)
S,{Nk}ck=1

, (1.6)

and the chemical potential of species k as

μk ≡
(
∂E

∂Nk

)
V,S,{Nj }cj (�=k)=1

. (1.7)

As a consequence, the energy of an equilibrium macrostate varies according to the Gibbs
relation

dE = T dS − p dV +
c∑
k=1

μk dNk, (1.8)

when changing its entropy, its volume, and particle numbers. In equation (1.8), �dQ = T dS
corresponds to the change of heat under the transformation. We note that other contributions
may be included for instance from electromagnetism

dE
∣∣
em =

ˆ
V

(E · dD +H · dB) d3r, (1.9)

where E is the electric field, D the electric displacement, H the magnetizing field, B the
magnetic field, and d3r the volume element (Landau and Lifshitz, 1984); or from the inter-
face between two bulk phases
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1.3 Entropy 5

dE
∣∣
surf = γ d�, (1.10)

where γ is the surface tension and d� some change of the interfacial surface area �.
Between three bulk phases, a further contribution from line tension should be added
(Rowlinson and Widom, 1989).

Since energy, entropy, and particle numbers are extensive variables proportional to the
volume, the thermodynamically conjugated variables, which are temperature, pressure, and
chemical potentials, are intensive variables independent of the volume at the macroscale.
Further intensive variables can be defined by dividing the extensive variables, for instance,
with the volume to get the densities.

An important consequence of the second law is that the entropy should be maximal at
equilibrium. In turn, the Gibbs relation (1.8) implies that the temperature, the pressure,
and the chemical potentials must be uniform across an equilibrium system, as shown in
Appendix A. This fundamental property of equilibrium macrostates does not preclude the
existence of equilibrium spatial structures since thermodynamically conjugated variables,
i.e., the entropy, mass, and particle densities, are left unconstrained. In particular, crystals
are equilibrium spatially periodic structures classified by the 230 space groups in three
dimensions (Ashcroft and Mermin, 1976). Vortex lattices in type-II superconductivity are
other examples of equilibrium spatial structures. In any case, equilibrium macrostates are
stationary at the macroscale (although dynamical at the microscale).

Since the second law is formulated in terms of a differential, the entropy is only defined
up to a constant, as in the case of energy. Nevertheless, the constant of entropy can be
determined with the

Third law: If the system has a unique microstate of minimal energy, the entropy vanishes
at absolute zero temperature:

lim
T→0

S = 0. (1.11)

Accordingly, the absolute value of the entropy can be defined with the third law on the
basis of an assumption about the microstates of minimal energy (Pauling, 1970).

Another consequence of the Gibbs relation (1.8) is that the energy E is a state variable
that depends on the entropy S, the volume V , and the particle numbers {Nk}ck=1. The energy
therefore plays the role of thermodynamic potential E(S,V ,{Nk}ck=1) for a system with
independently fixed values of these variables. However, another set of independent variables
may be required if the entropy, the volume, and the particle numbers are not fixed in the
system of interest. We are thus led to define other thermodynamic potentials by performing
Legendre transforms, substituting one variable by the thermodynamically conjugated vari-
able that is fixed, as explained in Appendix A. This leads to the definition of the enthalpy
describing systems where the pressure is fixed instead of volume, the Helmholtz free energy
for systems where the temperature is fixed instead of entropy, the Gibbs free energy (or free
enthalpy) if the temperature and the pressure are fixed instead of entropy and volume, or
the grand thermodynamic potential if the temperature and the chemical potentials are fixed
instead of entropy and particle numbers. Various thermodynamic potentials can thus be
introduced depending on the experimental conditions imposed on the system of interest.
Moreover, inverting equation (1.8), we obtain an expression for the change of entropy
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6 Thermodynamics

dS = 1

T
dE + p

T
dV −

c∑
k=1

μk

T
dNk, (1.12)

showing that the entropy can also play the role of thermodynamic potential given by the
function S(E,V,{Nk}ck=1).

The thermodynamic properties of chemical substances have been measured experimen-
tally and they are known, in particular, under standard conditions (T 0 = 298.15 K, p0 =
100 kPa). The values of the standard molar enthalpy and the Gibbs free energy of formation,
as well as the standard molar entropy, are tabulated for many chemical substances (Lide,
2000). Since the values of the state variables do not depend on the pathway followed to reach
some equilibrium macrostate, the thermodynamic properties can be determined in mixtures
on the basis of their composition.

1.3.2 Nonequilibrium Macrostates

The system is out of equilibrium if entropy is produced inside the system, i.e., if diS/dt > 0.

Isolated Systems

If the system is isolated, there is no environment, which implies that deS/dt = 0. In this
case, the time derivative of the entropy is only determined by the entropy production rate
according to

dS

dt
= diS

dt
≥ 0. (1.13)

Therefore, the entropy increases in the system up to its maximal value corresponding to
the equilibrium macrostate, as shown in Figure 1.2(a).4 The second law thus conveys the

time

(a)S

S0

Seq

time

(b)S

S0

S
∞

S0'

Figure 1.2 Possible time evolutions of the entropy towards an asymptotic stationary value
in (a) an isolated system and (b) a nonisolated system.

4 Clausius (1865) expressed the first and second laws for the universe. If the entropy state variable was known everywhere in the
universe, the entropy of the universe could be decomposed as Suniv = Ssys + Senv, i.e., into the entropies of the system and its
environment shown in Figure 1.1. Since the universe contains everything, it is isolated, so that dSuniv/dt = diSuniv/dt ≥ 0 by
equation (1.13), which is the statement of Clausius (1865). Neither the system nor its environment being isolated, the second
law (1.4) gives dSsys/dt = deSsys/dt + diSsys/dt and dSenv/dt = deSenv/dt + diSenv/dt . Moreover, the amounts of entropy
exchanged between the system and its environment and vice versa are opposite to each other: deSsys/dt = −deSenv/dt .
Therefore, the sum of the entropies produced inside the system and its environment is equal to the one produced in the
universe: diSuniv/dt = diSsys/dt + diSenv/dt ≥ 0. We note that the system of interest is often significantly smaller than the
universe, in which case diSuniv/dt � diSsys/dt ≥ 0.
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1.3 Entropy 7

observation that, during some nonequilibrium transients, an isolated macroscopic system
undergoes a relaxation towards the macrostate of thermodynamic equilibrium and that
energy is dissipated in the sense that the macroscopic movements in the system come to
rest when the equilibrium macrostate is reached. This time asymmetry is a characteristic
feature of nonequilibrium systems at the macroscale.

Systems in Contact with One Reservoir

If the system is not isolated, its environment may form an energy or particle reservoir.
Now, the system is closed or open due to the exchanges of energy or particles with the
environment, so that

dS

dt
= deS

dt
+ diS

dt
(1.14)

with some entropy exchange rate deS/dt . If these conditions hold, the system will undergo
a relaxation towards a macrostate of global equilibrium with its environment. In the long-
time limit, the entropy of the system will reach a stationary value, as schematically
represented in Figure 1.2(b) with limt→∞ S = S∞. Since equilibrium is global in this
stationary macrostate, there is no entropy exchange between the system and its environ-
ment, limt→∞ deS/dt = 0. Therefore, the entropy production rate also vanishes in this
limit, limt→∞ diS/dt = 0, and the stationary macrostate reached after the nonequilibrium
transients is the equilibrium macrostate corresponding to the temperature, pressure, and
chemical potentials of the environment. Since the system is not isolated, the entropy does
not have to increase with time and the initial value of the entropy may be smaller or larger
than its asymptotic value, as shown in Figure 1.2(b). For instance, the system may initially
be hotter than its environment, in which case there will be a heat flux outgoing the system
during the nonequilibrium transients, the system will thus cool, and its entropy will decrease
from S′0 to S∞ = Seq.

Systems in Contact with Several Reservoirs

If the environment is composed of several energy or particle reservoirs at different fixed
values of their temperature, pressure, and chemical potentials, the system in contact with
these reservoirs cannot reach an equilibrium macrostate as long as these differences persist.
Since arbitrarily large reservoirs keep their temperature, pressure, and chemical potentials,
the system can be maintained in macrostates with persistent exchanges of energy or particles
between the system and the different reservoirs. Remarkably, several types of macrostates
are possible under nonequilibrium conditions. After some possible transitory relaxation,
stationarity can be reached in the system. Again, since the system is not isolated, the initial
value of the entropy may be smaller or larger than its asymptotic value S∞, as depicted in
Figure 1.2(b). In such a stationary macrostate, the entropy of the system remains stationary
so that dS/dt = 0. Therefore, the second law and equation (1.14) imply that

diS

dt
= −deS

dt
> 0 (1.15)

in the stationary macrostate. Consequently, the entropy produced inside the system is evac-
uated to the environment, thus keeping invariant the system entropy. Such macrostates are
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8 Thermodynamics

called nonequilibrium steady states. Since entropy is continuously produced, energy should
be supplied in order to compensate energy dissipation and maintain these steady states.

In addition, there also exist macrostates that are nonstationary even after transients. Such
macrostates may be oscillatory with periodic, quasiperiodic, or chaotic dynamical behav-
ior. The latter is nonperiodic, manifesting sensitivity to initial conditions and dynamical
randomness over long timescales, as in turbulence. In these regimes, the macrostates evolve
with time towards attractors in the space of macrovariables because of dissipation. These
attractors are limit cycles, tori, or fractals, whether the dynamical behavior is periodic,
quasiperiodic, or chaotic (Bergé et al., 1984; Eckmann and Ruelle, 1985; Strogatz, 1994;
Nicolis, 1995).

Systems with Time-Dependent Driving

Systems may also be driven out of equilibrium by time-dependent external forces. Examples
are systems heated by electromagnetic waves or driven by the periodic motion of pistons. In
such circumstances, the system cannot reach a stationary macrostate and its state variables
remain time dependent.

1.4 Thermodynamics in Continuous Media

1.4.1 Balance Equations

In continuous media, the principles of thermodynamics are applied to every volume element
d3r of the macrosystem, which is here assumed to be nonrelativistic. This latter is described
in terms of densities associated with the slowest observable quantities, which include the
locally conserved quantities such as mass, energy, linear momentum, and possibly other
variables such as particle numbers or order parameters. The set of these quantities depends
on the continuous medium whether it is a fluid with one or several compounds, a liquid
crystal, a crystal, a superfluid, a plasma, or something else. Since these systems differ by
their compositions, the relevant variables will be different, but the breaking of continuous
symmetries, for instance in liquid crystal, crystals, and superfluids, may introduce order
parameters and extra slow modes called the Nambu–Goldstone modes that arise from the
fast kinetic modes of normal fluids at phase transitions (Forster, 1975).

A continuous medium is described in terms of fields x(r,t) defined at any position r ∈ R
3

inside the system and any time t ∈ R. The time evolution of some density x is ruled by the
balance equation

∂t x +∇ · jx = σx, (1.16)

where jx is the associated current density and σx the corresponding production rate density.
The current density has the units of the density xmultiplied by a velocity or, equivalently, the
units of the transported quantityX per unit surface and unit time.5 Integrating the density x

5 Current densities are also called flows (Balescu, 1975; de Groot and Mazur, 1984).
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1.4 Thermodynamics in Continuous Media 9

over some volume V that is assumed to be fixed in space, we obtain the amount of this
quantity in this volume

X ≡
ˆ
V

x d3r . (1.17)

Carrying out the same integration for the balance equation (1.16), we get the time derivative
of this quantity as

dX

dt
= deX

dt
+ diX

dt
, (1.18)

where

deX

dt
= −

ˆ
∂V

jx · d� (1.19)

is the contribution due to the exchanges of the quantityX at the boundary ∂V of the system
with the exterior (d� being the vector surface element) and where

diX

dt
=
ˆ
V

σx d
3r (1.20)

is the production rate of X inside the system. We thus recover the global form (1.1) at the
basis of the formulation of thermodynamics.

If the quantity x is locally conserved, the production rate density is equal to zero, i.e.,
σx = 0.

In normal fluids, the fluid elements are advected by the motion of the fluid described by
the velocity field v. In every element of the fluid, the velocity is defined as the velocity of the
center of mass of the element. Denoting dP to be the linear momentum in the fluid element
of volume d3r and mass dM , the velocity is thus defined as v ≡ dP/dM . Introducing the
mass density ρ ≡ dM/d3r and the linear momentum density g ≡ dP/d3r , the velocity is
thus given by v = g/ρ. The advection contributes to the current density jx associated with
the density x according to

jx = xv+JJJ x, (1.21)

where JJJ x is the rest of the current density due to the flow of x with respect to the center of
mass of the fluid element, which is either identical or related to the corresponding diffusive
or dissipative current density J x .

Table 1.1 gives the different quantities that are relevant in normal fluids with chemical
reactions (Prigogine, 1967; de Groot and Mazur, 1984). Every quantity with σx = 0 is
locally conserved. This is the case in particular for mass, which thus obeys the well-known
continuity equation. The local conservation of mass results from the balance equations of
the different molecular species k because the diffusive current densities are defined with
respect to the center of mass of every fluid element, so that

∑
k mkJ k = 0, and because

every chemical reaction conserves mass,
∑
k mkνkr = 0, where mk is the mass of the

molecules of species k and νkr the stoichiometric coefficient of species k in the reaction r of
rate density wr . We note that the local conservation of angular momentum implies that the
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10 Thermodynamics

Table 1.1. Normal fluids with chemical reactions: The relevant quantities, their density x,
the rest JJJ x of the current density, and production rate density σx . Here, nk ≡ dNk/d3r

denotes of the density of species k (also called concentration), J k the corresponding
diffusive current density, νkr the stoichiometric coefficient of species k in the reaction r of
rate density wr , ρ the mass density, mk the mass of the particles of species k, g the linear
momentum density, v the fluid velocity field, P the pressure tensor, ε the total energy
density, e the internal energy density, J q the heat current density, s the entropy density,
and J s the diffusive current density of entropy. The pressure tensor is composed of the
hydrostatic pressure p multiplied by the 3× 3 identity matrix 1, and its viscous part
� ≡ J g.

Quantity x JJJ x ≡ jx − xv σx

Number of particles k nk J k

∑
r νkrwr

Mass ρ =∑k mknk 0 0
Momentum g = ρv P = p 1+� 0
Energy ε = ρ

2 v2 + e P · v+Jq 0
Entropy s J s σs ≥ 0

pressure tensor is symmetric P = PT, where the superscript T denotes the transpose.6 In
the presence of external force fields, the balance equations of linear momentum and energy
have nonvanishing source terms σx describing the force and work exerted by the resulting
external force on the fluid element (de Groot and Mazur, 1984).

At every time t , the macrostate of a normal fluid with c components is determined by
their densities {nk(r,t)}ck=1, the velocity field v(r,t), and the temperature field T (r,t), at
every point r of the system. An alternative set of fields is given by the mass density ρ(r,t),
the fluid velocity, the temperature, and the mass fractions of the solute species because the
mass fraction of the solvent can be deduced from them and the mass density. Since the
temperature determines the internal energy, the time evolution of the fluid macrostate is
ruled by c + 4 partial differential equations given by the balance equations for the particle
densities, the linear momentum, and the energy. However, these balance equations do not yet
form a closed set of partial differential equations because knowledge of the fluid properties
is still missing.

1.4.2 Local Thermodynamic Equilibrium and Consequences

In order to determine the still missing properties in accordance with the second law, the
hypothesis of local thermodynamic equilibrium is supposed to hold in every fluid ele-
ment. Using the entropy density as thermodynamic potential, its variations satisfy the Gibbs
relation

6 Because of the local conservation of linear momentum ∂tg+∇ · jg = 0, the angular momentum density � = r× g obeys the
balance equation ∂t �+∇ · j� = σ� with the angular momentum current density j� = r× jg and the source density with
components (σ�)i = −

∑
jk εijkPjk expressed in terms of the Levi-Civita totally antisymmetric tensor such that

εijk = εjki = −εikj and εxyz = +1. Accordingly, the source density is equal to zero if the pressure tensor is symmetric,
Pjk = Pkj . The assumption here is that there is no intrinsic angular momentum (spin), which should otherwise be included in
the balance equation, leading to a possible antisymmetric part for the pressure tensor (de Groot and Mazur, 1984).
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Table 1.2. The irreversible processes in normal fluids, their affinity Aα , their associated
diffusive current density J α , their space character, and the time-reversal parity of their
affinity (Prigogine, 1967; Nicolis, 1979; de Groot and Mazur, 1984). The symmetrized

gradient of the velocity field is denoted by (∇v)S = (∇v+∇vT)/2 and
◦
� = �−�1

denotes the traceless part of the viscous pressure tensor � = P− p 1 with � = (tr�)/3,
T the temperature, μk the chemical potential of the species k, and νkr the stoichiometric
coefficient of the species k in the reaction r of rate wr .

Irreversible Process Aα J α Space Time

Shear viscosity
◦
Ag= −

[
(∇v)S − 1

3 (∇ · v)1
] /
T

◦
Jg=

◦
� Tensor Odd

Dilational viscosity Ag = −(∇ · v)/T J g = � Scalar Odd

Reaction r Ar = −
∑
k μk νkr/T J r = wr Scalar Even

Heat conductivity Aq = ∇(1/T ) J q Vector Even

Diffusion of species k Ak = ∇(−μk/T ) J k Vector Even

ds = 1

T
de −

c∑
k=1

μk

T
dnk, (1.22)

as shown in Appendix A. Accordingly, the entropy density is given by the equilibrium
function s = s(e,{nk}ck=1) locally defined at every point and every time in the fluid. There-
fore, the hypothesis of local thermodynamic equilibrium assumes that the entropy density
depends on the densities of the quantities relevant to the continuous medium, s({x}). How-
ever, this hypothesis may have to be extended to include the gradients of some densities, e.g.,
taking s({x},{∇x}), for inhomogeneous fluids (Penrose and Fife, 1990; Wang et al., 1993),
or some systems with chemical reactions (Mátyás and Gaspard, 2005). The inclusion of
gradients leads in particular to the Ginzburg–Landau theory of the free-energy functional
density (Landau and Lifshitz, 1980a,b; Evans, 1979).

According to equation (1.22), which is based on the hypothesis of local thermodynamic
equilibrium in normal fluids, the balance equations (1.16) for the particle and energy
densities allow us to deduce the balance equation for the entropy density, as shown in
Appendix A. This equation has the form of equation (1.16) with x = s, with the diffusive
current density of entropy given by

J s = 1

T
J q −

c∑
k=1

μk

T
J k (1.23)

in terms of the heat current density and the diffusive current densities of the particles, and
the entropy production rate density

σs =
∑
α

Aα J α ≥ 0 (1.24)

expressed with the affinitiesAα and current densitiesJ α of the irreversible processes taking
place in the system. These latter quantities are given in Table 1.2 for normal fluids. The
entropy production rate density (1.24) should always be nonnegative in accordance with
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12 Thermodynamics

the second law. Integrating the balance equation of the entropy density s recovers the global
balance equation (1.14) with the entropy exchange and production rates given by equations
(1.19) and (1.20) for X = S and x = s. Entropy is conserved if the irreversible processes
are negligible.

We note that the diffusive current densities of particle species should satisfy the mass
conservation condition

∑c
k=1mkJ k = 0. Consequently, one of these current densities can

be related to the other ones:

J c = −
c−1∑
k=1

mk

mc
J k . (1.25)

The species c is often taken as the solvent and the other ones as the solutes. The total
contribution of diffusion to the entropy production rate density (1.24) can thus be expressed
in terms of the mutual diffusion of the solute species in the solvent as

c∑
k=1

Ak J k =
c−1∑
k=1

A ′
k J k, (1.26)

by redefining the affinities according to

A ′
k ≡ ∇

(
−μ

′
k

T

)
with μ′k ≡ μk −

mk

mc
μc. (1.27)

These affinities are the thermodynamic forces of mutual diffusion of the solute species k
with respect to the solvent c. Since these redefinitions are linear, they can be performed
every time the constraint of mass conservation is met.

1.4.3 Equilibrium and Nonequilibrium Constitutive Relations

Closing the partial differential equations of the fluid first requires the knowledge of two
equilibrium equations of state, one for the pressure p(T ,{nk}ck=1) and another one for the
internal energy e(T ,{nk}ck=1). These equations of state are the equilibrium properties for the
material composing the system.

Besides this, we also need the nonequilibrium properties given by some relations between
the affinities and the current densities in Table 1.2. These nonequilibrium constitutive rela-
tions should satisfy the symmetries of the continuous medium. For this purpose, we use the
Curie symmetry principle (Curie, 1894; Prigogine, 1967). Since normal fluids are isotropic,
their properties are symmetric under continuous spatial rotations, so that the tensorial char-
acter of the affinities Aα and current densities J α should be respected. In crystals, the
space group of the lattice should determine the relations between the affinities and the
current densities. Moreover, the underlying microscopic mechanics is symmetric under time
reversal according to electrodynamics. Therefore, the relations between the affinities and
the current densities should also satisfy the consequences of this discrete symmetry called
microreversibility.

The nonequilibrium constitutive relations may be linear or nonlinear.
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1.4 Thermodynamics in Continuous Media 13

Linear Relations

Typically, the relations are linear if the gradients of the macrofields extend over distances
‖(∇x)/x‖−1 larger than the mean free path of the particles in the fluid. This is usually the
case for transport properties such as viscosity, heat conduction, and particle diffusion. Under
such circumstances, the current densities are linearly related to the affinities as

J α =
∑
β

Lα,β Aβ (1.28)

with some linear response coefficients Lα,β characterizing the nonequilibrium properties
of the fluid. In order to satisfy the Curie symmetry principle, such relations may only exist
between current densities and affinities of the same tensorial character.

Since there is only one quantity given by a tensor, the traceless part of the viscous pressure

is related to the corresponding affinity by
◦
�=

◦
Lg,g

◦
Ag where the linear response coeffi-

cient is proportional to the coefficient η of shear viscosity by
◦
Lg,g = 2T η. Among the

scalar quantities, the direct linear relation � = Lg,gAg holds in the absence of chemical
reactions, which defines the dilational or bulk viscosity ζ ≡ Lg,g/T . Consequently, the
viscous part of the pressure tensor is given by

� = −η
(

∇v+∇vT − 2

3
∇ · v 1

)
− ζ ∇ · v 1. (1.29)

For the vectorial quantities, the direct relations J q = Lq,qAq and J k = Lk,kAk give,
respectively,

Fourier’s law: J q = −κ ∇T (1.30)

with the coefficient of heat conductivity κ ≡ Lq,q/T 2, and

Fick’s law: J k = −Dk∇nk (1.31)

with the coefficient of diffusion Dk ≡ (Lk,k/T )(∂μk/∂nk)T .
Beyond the direct effects described by the coefficients Lα,α , there also exists the pos-

sibility of thermodiffusive coupling between heat conduction and particle transport with
the Soret effect relating J k to Aq and the reciprocal Dufour effect relating J q to Ak ,
as well as possible cross-diffusion expressed by linear relations between J k and A l with
k �= l (de Groot and Mazur, 1984; Haase, 1969). These effects are described by the coeffi-
cients Lα,β with α �= β, coupling together the affinity and the current density of different
processes. These couplings often play essential roles because they make possible the driv-
ing of a process by the thermodynamic force of another process, as in thermoelectric and
mechanochemical effects. They may thus induce energy transduction of different kinds.
For such couplings between different transport processes, microreversibility leads to the
Onsager–Casimir reciprocal relations, as discussed in the following chapters.
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14 Thermodynamics

With the linear relations (1.28), the entropy production rate density (1.24) is given by the
quadratic form

σs =
∑
αβ

LS
α,β Aα Aβ ≥ 0, where LS

α,β ≡
1

2
(Lα,β + Lβ,α) (1.32)

forms the symmetrized matrix of linear response coefficients. According to the second law,
this matrix should be nonnegative, i.e.,

(
LS
α,β

) ≥ 0. Therefore, the transport coefficients
such as the shear and dilational viscosities, the heat conductivity, and the diffusion coeffi-
cients should be nonnegative: η ≥ 0, ζ ≥ 0, κ ≥ 0, and Dk ≥ 0. In the case of coupling
between two processes α,β = 1,2, the symmetrized linear response coefficients should
satisfy the condition LS

1,1LS
2,2 ≥

(
LS

1,2

)2 in order for the entropy production to be always
nonnegative.

Nonlinear Relations

However, if the macrofields rapidly vary over distances comparable to or smaller than
the mean free path of the particles, the constitutive relations are nonlinear and of the
general form

J α =
∑
β

Lα,β Aβ + 1

2

∑
βγ

Mα,βγ Aβ Aγ + 1

6

∑
βγ δ

Nα,βγ δ Aβ Aγ Aδ + · · · (1.33)

with nonlinear response coefficients Mα,βγ , Nα,βγ δ , . . . This is the case, in particular,
for chemical reactions because their reactants and products are separated by molecular dis-
tances corresponding to the rearrangement of atoms in the reaction. Therefore, the relations
between the reaction rates wr and the associated affinities Ar are typically nonlinear. In
dilute solutions, the rates of elementary chemical reactions7 are proportional to the densities
of all the species incoming the reactive events, which is the basis of the so-called mass action
law (Pauling, 1970; Moore, 1972; Berry et al., 1980; Kondepudi and Prigogine, 1998).
Accordingly, the elementary chemical reaction

c∑
k=1

ν
(+)
kr Xk

k+r�
k−r

c∑
k=1

ν
(−)
kr Xk (1.34)

between the molecular species {Xk}ck=1 has the net rate density

wr = w+r − w−r = k+r
c∏
k=1

(nk
n0

)ν(+)
kr − k−r

c∏
k=1

(nk
n0

)ν(−)
kr

(1.35)

expressed in terms of the rate constants k±r and the numbers ν(±)
kr of molecules of species k

respectively incoming the forward and reverse reactions, as well as the standard density n0

7 An elementary reaction is associated with a single barrier or transition state separating reactants from products, as opposed to a
reaction that goes through several barriers or transition states. Every barrier or transition state forms a bottleneck where the
process is slowed down and the transition rate is lower than the pace of dynamics in the potential wells of reactants and
products. The crossing of the barrier may result from thermal activation or quantum tunneling. An overall reaction or reaction
network should be decomposed into elementary reactions before evaluating the entropy production.
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1.4 Thermodynamics in Continuous Media 15

equal to one mole per liter. We note that the stoichiometric coefficient of the species k in
the reaction (1.34) is given by νkr = ν(−)

kr − ν(+)
kr . Since the chemical potential of a solute

in a dilute solution is given by

μk = μ0
k + kBT ln

nk

n0
, (1.36)

where kB is Boltzmann’s constant, the net rate density depends on the affinity
Ar = kB ln(w+r/w−r ) of the reaction according to the nonlinear relations

wr = w+r
(

1− e−A r /kB
)
= w−r

(
eA r /kB − 1

)
. (1.37)

The contribution of the elementary reaction r to the entropy production rate density is
given by

σs,r = Ar wr = kB (w+r − w−r ) ln
w+r
w−r

≥ 0, (1.38)

which is always nonnegative since the rate constants k±r and the rate densities w±r are
nonnegative. At chemical equilibrium, the rate vanishes together with the affinity because
there is detailed balance for every reaction r , resulting in equality between the rates of
the forward and reversed reactions, w+r = w−r (Wegscheider, 1901; Fowler, 1929). As
a consequence, the net reaction rate (1.35) is equal to zero at equilibrium, which implies
that the equilibrium densities of the reacting species should satisfy the Guldberg–Waage
condition

c∏
k=1

(nk
n0

)νkr
eq
= Kr (1.39)

with the equilibrium constant Kr ≡ k+r/k−r (Guldberg and Waage, 1879; Moore, 1972).
Since the affinity of the reaction is equal to zero at equilibrium Ar = 0, the equilibrium
values of the chemical potentials should obey the identity

∑c
k=1 μk,eqνkr = 0. We note that,

close to chemical equilibrium, the reaction rate is approximately proportional to the affinity,
wr � Lr,rAr , which defines the linear response coefficient Lr,r = w+r/kB. Beyond, i.e.,
for larger values of the affinity, we should include nonlinear terms, obtained with the Taylor
expansion (1.33) for equation (1.37). Similar nonlinear relations also exist in diodes and
transistors where electron and hole densities sharply vary across the junctions at the core of
these nonlinear electric devices. We also note that, in virtue of Curie’s symmetry principle,
the divergence of the velocity field may contribute to the reaction rates and, reciprocally, the
chemical reactions may contribute to the scalar component of the viscous pressure tensor
(de Groot and Mazur, 1984; Haase, 1969).

Using these equilibrium and nonequilibrium constitutive relations, the balance equations
can be closed and the fluid macrofields may be obtained by solving their partial differential
equations with the boundary conditions applied to the system. The balance equation for
linear momentum leads to the Navier–Stokes equations, while the balance equation for
energy leads to the heat equation for the temperature. Several paradigmatic examples will be
presented below. Beyond normal fluids, similar considerations are known for the different
bulk phases of matter (Martin et al., 1972; Fleming and Cohen, 1976), as well as for active
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16 Thermodynamics

matter (Jülicher et al., 2018). Moreover, nonequilibrium thermodynamics can be extended
to systems with two bulk phases separated by an interface, as shown in Section A.9.

1.5 Hydrodynamics and Chemohydrodynamics

1.5.1 Hydrodynamics in One-Component Fluids

In one-component fluids, the local conservation of mass leads to the continuity equation

∂tρ +∇ · (ρv) = 0. (1.40)

According to Tables 1.1 and 1.2, the balance equation (1.16) for linear momentum combined
with the continuity equation (1.40) and the viscous pressure tensor (1.29) gives the Navier–
Stokes equations for fluid mechanics,

ρ (∂tv+ v ·∇v) = −∇p + η∇2v+
(
ζ + η

3

)
∇(∇ · v), (1.41)

assuming that the viscosity coefficients do not depend on the densities so that
∇η = ∇ζ = 0.

If the viscosity coefficients are equal to zero (η = ζ = 0), we recover the Euler equa-
tions of hydrodynamics where fluid entropy is conserved and which thus describe a fluid
without dissipation. If the fluid is incompressible, its mass density is constant in time and
the continuity equation reduces to the constraint ∇ ·v = 0, so that the property of dilational
viscosity ζ does not exist in an incompressible fluid.

Furthermore, the continuity and Navier–Stokes equations should be coupled to the heat
equation for the temperature field (see Appendix A).

1.5.2 Chemohydrodynamics in Multicomponent Fluids

Reactions may occur in multicomponent fluids. If the heat of reactions is negligible, the
fluid may be supposed to be isothermal. Moreover, if the fluid is at rest, the velocity field v
is equal to zero, the Navier–Stokes equations are satisfied, and the continuity equation
implies that the mass density is constant in time. Therefore, the quantities evolving in such
systems are the particle densities or concentrations of the different species reacting in the
system. Since the different particle species {k} composing the system may be transported by
diffusion and transformed by the reactions {r}, the evolution is ruled by diffusion–reaction
equations

∂tnk = Dk∇2nk +
∑
r

νkr wr
({nl}cl=1

)
(1.42)

under the assumptions that the diffusion coefficients have a negligible dependence on the
densities such that ∇Dk = 0 and cross-diffusion can also be neglected.

As an example, we have the following diffusion–reaction equation for the density n = nX

of the species X generated by the autocatalytic reaction
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1.6 Hydrodynamic Modes of Relaxation to Equilibrium 17

X
k+�
k−

2 X: ∂tn = D ∇2n+ k+ n− k− n2, (1.43)

which is nonlinear because of the autocatalytic character of the reaction. This equation
describes the Verhulst model of population dynamics (Nicolis, 1995).

If the reactions are exothermic or endothermic, the diffusion–reaction equations should
be coupled to the heat equation (see Appendix A).

1.6 Hydrodynamic Modes of Relaxation to Equilibrium

1.6.1 Hydrodynamic Modes in One-Component Fluids

As previously mentioned, the second law of thermodynamics predicts the relaxation towards
equilibrium in an isolated system. This system can be considered as a one-component fluid
of infinite extension in space. The equilibrium macrostate corresponds to a fluid at rest with
zero velocity, uniform temperature T , uniform pressure p, and thus uniform mass density ρ.
The hydrodynamic modes are the solutions of the fluid equations of motion corresponding to
small deviations from equilibrium. Linearizing the continuity equation, the Navier–Stokes
equations, and the balance equation of entropy around equilibrium given in Appendix A,
we obtain the following set of partial differential equations for the deviations in the mass
density δρ, the entropy per unit mass δs = δ(s/ρ), and the fluid velocity δv:

∂t δρ = −ρ∇ · δv, (1.44)

∂t δs = κ

ρT
∇2δT , (1.45)

∂t δv = − 1

ρ
∇δp + η

ρ
∇2δv+ 1

ρ

(
ζ + η

3

)
∇(∇ · δv). (1.46)

The hydrodynamic modes of relaxation to equilibrium are spatially periodic solutions
with an exponential dependence on time of the form δρ,δs,δv ∼ exp(ı q · r + zt) with
ı = √−1. The dispersion relations of these modes give the dependence of their expo-
nential rate z on their wave number q = ‖q‖ and they are obtained by solving equations
(1.44)–(1.46) (Balescu, 1975; Résibois and De Leener, 1977). As shown in Appendix A,
the dispersion relations of the hydrodynamic modes are given by

2 shear modes: z = −η
ρ
q2, (1.47)

1 heat mode: z = − κ

ρcp
q2 +O(q3), (1.48)

2 sound modes: z = ∓ı vl q − 1

2ρ

[
ζ + 4

3
η + κ

(
1

cv
− 1

cp

)]
q2 +O(q3), (1.49)

in terms of the sound velocity,

vl ≡
√(

∂p

∂ρ

)
s

, (1.50)
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Im z
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Figure 1.3 (a) Imaginary and real parts of the dispersion relations (1.47)–(1.49) for the five
hydrodynamic modes in a normal fluid with one component. (b) Dispersion relations of the
diffusive and reactive modes (1.54)–(1.55) for the reaction of isomerization A � B taking
place in an isothermal fluid at rest.

the heat capacities per unit mass at constant volume and pressure,

cv ≡ T
(
∂T

∂s

)−1

ρ

and cp ≡ T
(
∂T

∂s

)−1

p

, (1.51)

and the transport coefficients η, ζ , and κ . The shear modes are transverse to the wave
vector q, while the heat and sound modes are longitudinal.8

The dispersion relations of the five modes are shown in Figure 1.3(a). All of them are
vanishing with the wave number q since the five modes are associated with the five con-
served quantities, namely, mass, energy, and the three components of linear momentum.
The two shear modes and the heat mode are diffusive, while the two sound modes are
propagating. They are all damped because the transport properties, i.e., the viscosities and
the heat conductivity, dissipate energy. Consequently, the deviations given by the linear
superpositions of these five modes undergo relaxation towards equilibrium. We note that
this relaxation is here expressed in terms of the transport coefficients. If the latter are equal
to zero, there is no energy dissipation and the fluid flow is isoentropic.

8 These results hold if the wavelength, λ = 2π/q, of the deviations is larger than the mean free path, under which circumstances
the particles are interacting. Nevertheless, the ideal gas law may still be used (after expressing the pressure in terms of the
entropy per unit mass) as long as the mean free path is larger than the range of interaction between the particles. In this regard,
the sound velocity (1.50) is the feature of interacting particles.
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1.6 Hydrodynamic Modes of Relaxation to Equilibrium 19

1.6.2 The Relaxation Modes in Diffusion–Reaction Systems

In fluids with several components but no reaction, there exist extra hydrodynamic modes
associated with the mutual diffusion between the different species. There are as many extra
modes as there are solutes in the solvent. The dispersion relations of these extra modes are
also vanishing with the wave number q because of the conservation of species in the absence
of chemical reactions.

However, this is no longer the case in the presence of reactions, as shown by the following

example. We consider the isothermic reaction of isomerization, A
k+�
k−

B, between two solute

species A and B. The molecules A and B are diffusing in a solvent of inert molecules,
the whole fluid being at rest. This system is a ternary mixture in which we expect five
standard hydrodynamic modes plus two modes of mutual diffusion in the absence of reac-
tion. For simplicity, the fluid is assumed to be at rest with a uniform temperature. If cross-
diffusion is neglected, the system can be modeled by the two coupled diffusion–reaction
equations:

∂tnA = DA∇2nA − k+nA + k−nB, (1.52)

∂tnB = DB∇2nB + k+nA − k−nB. (1.53)

Supposing that the deviations with respect to uniform densities behave as δnA,δnB ∼
exp(ı q · r+ zt), we obtain two dispersion relations:

1 diffusive mode: z = −D q2 +O(q4), (1.54)

1 reactive mode: z = −k+ − k− −Dr q
2 +O(q4), (1.55)

with the diffusion coefficients

D ≡ k+DB + k−DA

k+ + k− and Dr ≡ k+DA + k−DB

k+ + k− . (1.56)

These dispersion relations are depicted in Figure 1.3(b).
The dispersion relation of the diffusive mode is vanishing with the wave number q,

because of the conservation of the total number of molecules A and B. However, the disper-
sion relation of the reactive mode is not vanishing because the reaction breaks the separate
conservations of the molecule numbers of the two species. We notice that the dispersion
relation (1.55) of the reactive mode satisfies z(q = 0) = 0 if the reaction rates vanish, i.e.,
k+ = k− = 0, in which case the ternary mixture has two diffusive modes in addition to
its five standard hydrodynamic modes, as expected. Accordingly, we conclude that some
hydrodynamic diffusive modes become kinetic modes with z(q = 0) �= 0 in reacting sys-
tems. These reactive modes may evolve over timescales ranging from femtoseconds (for the
fastest chemical reactions) to eons.
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system
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. .
 .reservoir 1

T1, { k1}

reservoir 2
T2, { k2}

reservoir 3
T3, { k3}

reservoir r
Tr, { kr}

Figure 1.4 Schematic representation of a system in contact with r reservoirs at fixed
temperatures Tj and chemical potentials {μkj }.

1.7 Nonequilibrium Steady States

1.7.1 From Local to Global Affinities

Let us consider an open system formed by a solution at rest (v = 0) and surrounded by
an environment composed of several heat or particle reservoirs j = 1,2, . . . , r at fixed
temperatures Tj and chemical potentials {μkj }ck=1, as shown in Figure 1.4.

We suppose that there is no reaction going on in the system and its environment. If the
reservoirs have different temperatures and chemical potentials, the equilibrium conditions
are not satisfied, so the system is out of equilibrium and crossed by fluxes of energy and/or
matter. After some time, the system evolves towards a nonequilibrium steady state where
the macrovariables take invariant values, in particular, ∂tT = 0 and ∂tnk = 0. Accordingly,
the balance equations for energy and particle numbers reduce to ∇ ·J q = 0 and ∇ ·J k = 0
in the nonequilibrium steady state. The entropy production rate is thus given by

diS

dt
=
ˆ
V

(
Aq ·J q +

c∑
k=1

Ak ·J k

)
d3r ≥ 0, (1.57)

in terms of the local affinities Aq = ∇(1/T ) and Ak = ∇(−μk/T ). Substituting these
expressions back into equation (1.57) and integrating by parts, the entropy production rate
becomes

diS

dt
=
ˆ
V

⎡⎢⎣∇ ·
(

1

T
J q

)
− 1

T
∇ ·J q︸ ︷︷ ︸
= 0

−
c∑
k=1

∇ ·
(μk
T

J k

)
+

c∑
k=1

μk

T
∇ ·J k︸ ︷︷ ︸
= 0

⎤⎥⎦ d3r ≥ 0.

(1.58)
Using the conditions of stationarity and the divergence theorem, the volume integral is
reduced to a surface integral over the boundary ∂V of the system

diS

dt
=
ˆ
∂V

(
1

T
J q −

c∑
k=1

μk

T
J k

)
· d� ≥ 0, (1.59)

where d� is a vector surface element pointing towards the exterior of the volume V . Now,
we notice that the boundary is composed of several parts, ∂V = ∪rj=1∂jV , each one in
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contact with one reservoir. On the part ∂jV of the boundary, the temperature and the chem-
ical potentials are, respectively, fixed at the values Tj and {μkj }ck=1 of the corresponding
reservoir. Therefore, equation (1.59) can be written as

diS

dt
=

r∑
j=1

(
− 1

Tj
Jqj +

c∑
k=1

μkj

Tj
Jkj

)
≥ 0 (1.60)

in terms of the surface integrals of the heat and particle current densities that are incoming
the system from the reservoir j :

Jqj ≡ −
ˆ
∂j V

J q · d� and Jkj ≡ −
ˆ
∂j V

J k · d�. (1.61)

These quantities are the current intensities or, more simply, the currents. By conservation
of energy and particle numbers (since there is no reaction), we have that

r∑
j=1

Jqj = 0 and
r∑
j=1

Jkj = 0. (1.62)

Accordingly, the current from one reservoir is determined by the currents from all the other
reservoirs. Taking the reservoir j = r as reference, the expression (1.60) finally becomes

1

kB

diS

dt
=
r−1∑
j=1

(
Aqj Jqj +

c∑
k=1

Akj Jkj

)
≥ 0 (1.63)

in terms of the global affinities respectively defined as

thermal affinity: Aqj ≡ 1

kBTr
− 1

kBTj
, (1.64)

chemical affinity: Akj ≡ μkj

kBTj
− μkr

kBTr
, (1.65)

for the different reservoirs j = 1,2, . . . , r − 1 (except the reference one) and the different
particle species k = 1,2, . . . , c. The global affinities are here introduced by dividing the
entropy production rate with Boltzmann’s constant kB, so that the thermal affinities have
the units of J−1 and the chemical affinities are dimensionless. These global affinities are
the direct control parameters of the nonequilibrium drives because they are fixed in the
reservoirs at the boundaries of the system, where the conditions are supposed to be under
experimental control. If all these global affinities are equal to zero, the temperatures and
chemical potentials are all equal in the reservoirs and the stationary macrostate becomes
the equilibrium macrostate where the currents are equal to zero, together with the entropy
production rate.

We note that similar considerations apply to nonequilibrium systems with fluid flow
where the affinities are determined by the boundary conditions on the velocity field, as in
Couette–Taylor or Poiseuille flows. Mechanical affinities may also be introduced in systems
where external forces or torques perform work driving the system out of equilibrium, as ions
driven by an electric field.
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L0
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Figure 1.5 Schematic representation of a nonequilibrium steady state in the transport
process of diffusion between two reservoirs with particle densities nL and nR and separated
by the distance L.

1.7.2 Diffusion

As an example, let us consider the diffusion of a single solute species in an isothermal
dilute solution in contact with two reservoirs located at x = 0 and x = L and, respectively,
having the densities nL and nR, as schematically depicted in Figure 1.5. The velocity of
the solution is assumed to be equal to zero. This transport process is ruled by Fick’s law
j = J = −D(n)∇n with a diffusion coefficient D(n) a priori depending on the density n.
The diffusion equation is thus given by

∂tn = ∇ · [D(n)∇n] (1.66)

in the three-dimensional physical space (x,y,z). Taking the boundary conditions
n(0,y,z,t) = nL and n(L,y,z,t) = nR for all times, the time evolution of the density will
undergo a relaxation towards a stationary state n(x) obeying

d

dx

[
D(n)

dn

dx

]
= 0. (1.67)

Accordingly, the current density should take the uniform value j = −D(n)dn/dx across
the system, so that the density profile is given by solving the ordinary differential equation
dn/dx = −j/D(n), which can be integrated to obtain the current flowing across the
sectional area � as

J ≡ � j = �

L

ˆ nL

nR

D(n) dn. (1.68)

If the diffusion coefficient is independent of the density, the profile is linear,

n(x) = nL − nL − nR

L
x, (1.69)

and Fick’s law is recovered at the global scale in the form,

J = � D
L
(nL − nR). (1.70)

Otherwise, Fick’s law only holds locally. The global affinity is here given by

A = 1

kBT
(μL − μR) = ln

nL

nR
. (1.71)
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Taking the left or right reservoir as reference, the current (1.70) can be expressed in terms
of the global affinity, respectively, as

J (A) = � D
L
nL
(
1− e−A

)
or J (A) = � D

L
nR
(
eA − 1

)
. (1.72)

In general, the current (1.68) is a function J (A) of the global affinity and the other properties
of the macrostate. The entropy production rate is thus given by

1

kB

diS

dt
= AJ (A) ≥ 0. (1.73)

We note that, although we use a linear local relation between the current density and the
local affinity with Fick’s law, we find a nonlinear relation between the current and the global
affinity for the nonequilibrium steady state driven by boundary conditions on the system.

If both reservoirs have the same density nL = nR, the global affinity together with the
current and the entropy production rate (1.73) are equal to zero.

If we suppose that the reservoirs on the left and right sides of the conductive medium
have finite volumes larger than the volume of the open system, i.e., VL,VR � Vs = �L,
there will be a slow evolution of their particle numbers NL = VLnL and NR = VRnR ruled
by dNL/dt � −J and dNR/dt � +J with the current given by equation (1.68) or (1.70).
In the simple diffusive case (1.70), there will thus be an exponential equilibration of the
particle densities in the reservoirs according to

d

dt
(nL − nR) � −� (nL − nR) with the rate � = D

L2

(
Vs

VL
+ Vs

VR

)
. (1.74)

The equilibration time, tequil = 1/�, should be compared with the relaxation time,
trelax ∼ L2/D, taken to reach the nonequilibrium steady state in the diffusive medium
of length L. We thus find that

trelax

tequil
∼ Vs

VL
+ Vs

VR
� 1, (1.75)

i.e., the relaxation towards the nonequilibrium steady state is faster than the time taken by
the reservoirs to reach a global equilibrium across the whole system if the reservoirs are
much larger than the open system, i.e., VL,VR � Vs. Accordingly, the reservoirs should
be arbitrarily large in order to maintain a nonequilibrium steady state in an open system in
contact with them.

Analoguous considerations apply to heat conduction ruled by Fourier’s law in terms of
the temperature instead of the particle density.

1.7.3 Ohm’s Law for Electric Resistance

If we consider the transport of electric charges in a conductor, we need to include the effects
of the electric field E = −∇�, or, equivalently, the electric potential �. For simplicity, we
consider positive charge carriers moving in a conductor such as a resistor or an electrolytic
solution. The electric charge density is thus given by ρe = e(n − n0) where e = |e| is
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the elementary electric charge, n the density of positively charged particles, and n0 the
uniform and invariant density of negatively charged particles forming a background, which
is called the jellium model. The associated electric current density can be expressed as
j e = ej = eJ in terms of the diffusive current density of the mobile particles

J = −D∇n+ βeDnE = −De−βe�∇ (eβe�n), (1.76)

where D is their diffusion coefficient and β = (kBT )−1 is the inverse temperature, which is
known as the Nernst–Planck equation (Probstein, 2003). Since the electric charge is locally
conserved, the continuity equation

∂tρe +∇ · j e = 0 (1.77)

is satisfied. Moreover, the electric field obeys Gauss’ law

∇ · E = ρe

ε
, (1.78)

where ε is the dielectric coefficient of the material. The coupled equations (1.76), (1.77),
and (1.78) define the so-called Nernst–Planck–Poisson problem.

We consider electric conduction in a piece of length L and cross-sectional area � in
contact with two reservoirs, as shown in Figure 1.5. Here, the reservoirs have fixed values for
the particle density and the electric potential: n(0) = nL with �(0) = �L, and n(L) = nR

with �(L) = �R. In the presence of electric potential, the chemical potential should be
replaced by the electrochemical potential, μ̃ = μ + e�. The global affinity (1.71) is thus
given by A = β(μ̃L − μ̃R) = βeV , where

V = �L −�R + 1

βe
ln
nL

nR
(1.79)

is the applied voltage difference with respect to the Nernst potential with the assumption
that the charge carriers are dilute in the conductor. The voltage (1.79) is equal to zero at
equilibrium.

In the stationary macrostate, the current density j = (j,0,0) is invariant and uniform
because of the continuity equation (1.77) and the stationary condition ∂tn = 0. Moreover,
the electric field E = (E,0,0) is determined by Gauss’ law. Consequently, the stationary
profiles of the particle density and the electric field are obtained by solving the coupled
equations

dn

dx
= βenE − j

D and
dE
dx
= e

ε
(n− n0). (1.80)

These latter admit the uniform solution with n = n0 (electroneutrality) and j = βeDn0E,
corresponding to Ohm’s law, je = σE with the electric conductivity σ = βe2Dn0. In
this case, the uniform charge density requires the boundary conditions nL = nR = n0.
Moreover, integrating the uniform electric field over the lengthL of the conductor, we obtain
the potential difference E = (�L − �R)/L, so that the voltage (1.79) is related to the
electric field by V = EL, as expected. In the stationary state, the electric current is given by
I = eJ = e�j . Therefore, we find Ohm’s law V = RI with the resistance R = L/(σ�).
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For general boundary conditions, there are deviations with respect to electroneutrality
near the contacts with the reservoirs and a uniform electric field. These deviations typically
extend over a distance of the size of Debye’s screening length

�D =
√
εkBT

e2n0
(1.81)

if the electric field is moderate, i.e., |E| � √
kBT n0/ε. Since Debye’s screening length is

usually much smaller than the size of the conductor, �D � L, the assumption of uniform
electric field and electroneutrality is well satisfied.

Otherwise, the x-component of the second expression of the current density in equation
(1.76) gives

d

dx

(
eβe�n

) = − jD eβe�, (1.82)

which can be integrated from x = 0 to x = L to obtain (Andrieux and Gaspard, 2009)

J = � j = �D nL eβe�L − nR eβe�R´ L
0 eβe�(x)dx

. (1.83)

This expression is equal to zero at equilibrium where the applied voltage (1.79) is equal to
zero. Again, if the density is uniform with nL = nR = n0 and the electric field uniform
with �(x) = �L − Ex, the integral in the denominator can be performed and we recover
the current density j = βeDn0E, giving Ohm’s law.

In the presence of an electric field, the entropy production rate is given by (de Groot and
Mazur, 1984)

1

kB

diS

dt
=
ˆ
V

D
n
(∇n− βenE)2 d3r ≥ 0. (1.84)

If the charge and current densities are uniform so that Ohm’s law holds, this entropy
production rate becomes

1

kB

diS

dt
= V I

kBT
= P

kBT
≥ 0, (1.85)

where P = V I = RI 2 is the power dissipated by the electric current flowing in the resistor
according to Joule’s law.

1.7.4 Electric Circuits

Electric components can be wired together to form circuits. Figure 1.6 shows common
examples of such components. Electric generators such as batteries are characterized by
their electromotive force E = V . Capacitors, inductors, and resistors are components with
a linear relation between the voltage V and, respectively, the electric charges ±Q on
the capacitor plates, the time derivative dI/dt of the current I , and the current itself. In
this regard, these components are linear. However, there are also nonlinear components
such as diodes and transistors. For instance, the current–voltage relation of diodes can be
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(e)

I

V = RI

0
(c)

I

0

V = LdI/dt

(d)

I

0

V = MdI/dt

(f)

I

0

V

(a)
0

V

(b)
0

V = Q/C

+Q

−Q

Figure 1.6 Various components of electric circuits: (a) battery of electromotive force
E = V , (b) capacitor of capacitance C, (c) inductor of inductance L, (d) two coupled
inductors with mutual inductanceM , (e) resistor of resistance R, (f) diode.

approximated by the expression I = Is
(
eβeV − 1

)
with the saturation current Is, as will be

further discussed in Section 10.6.2.
Electric circuits are networks with nodes connected by edges. As long as the electro-

magnetic radiation of the circuit is negligible, the electric currents and potentials can be
determined in the circuit using the current–voltage relations characterizing every component
and the laws of Kirchhoff (1847):

1. The sum of electric currents in all the edges arriving at any node in the circuit is zero.
2. The sum of the electric potential differences along any loop in the circuit is zero.

Kirchhoff’s first law, or current law, results from the local conservation of electric charge
and the assumption that conduction is large enough so that electroneutrality is maintained
in the wires connected together at any node. Kirchhoff’s second law, or voltage law, is
the consequence of Faraday’s law of electromagnetism, provided that the magnetic field is
localized inside the inductors (Reitz and Milford, 1967). Accordingly, the circulation of the
electric field around any loop is equal to zero, i.e.,

¸
loop E · dr =∑i→j Vi→j = 0, where

the sum extends over all the oriented edges i → j in the loop and Vi→j = �i−�j in terms
of the electric potentials {�i} at the nodes {i}. In Kirchhoff’s second law, the contribution
of every electromotive element is equal to minus its electromotive force, this latter driving
the circuit out of equilibrium.

Energy is supplied by the electromotive forces of batteries. Capacitors and inductors
conserve energy. Inside capacitors, energy is stored in the electric field between oppositely
charged plates. Inside inductors, energy is stored in the magnetic field generated by the
electric current. Other components dissipate energy and produce entropy, which is the case
for resistors, diodes, and transistors. The entropy production rate in an electric circuit at
temperature T can be evaluated as diS/dt = Pdiss/T ≥ 0 in terms of the power Pdiss that
is dissipated in all the components.

1.8 Reaction Networks

Reaction networks are envisaged in different fields of science. Nuclear reaction net-
works are considered for primordial or stellar nucleosynthesis to explain the abundance
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Figure 1.7 Schematic representation of a continous-flow stirred tank reactor (CSTR). The
open system itself is delimited by the dashed line. Reactants are continuously pumped into
the reactor by several pipes shown on its left-hand side. The outflow of products is carried
out by the large pipe on its right-hand side. The solution inside the reactor is mechanically
stirred by the rotating blades of an impeller.

of isotopes in the universe. Moreover, the chemical elements may combine to form millions
of known chemical compounds (Pauling, 1970). These compounds are transformed in
chemical or biochemical reaction networks (Nelson and Cox, 2017). There exist networks
of different sizes depending on the number of relevant species included in the description.
A famous example is the Belousov–Zhabotinsky reaction, which involves about fourteen
species, but can be described by the Oregonator model with only three variables (Nicolis
and Prigogine, 1977; Bergé et al., 1984; Scott, 1991; Nicolis, 1995; Epstein and Pojman,
1998). Complex reaction networks are considered in astrochemistry, atmospheric chemistry,
petrochemistry, studies in prebiotic chemistry, and combustion theory. Biochemical reaction
networks are also known in enzyme kinetics, metabolic pathways, signal transduction
pathways, cellular rhythms, and gene regulation (Segel, 1975; Hill, 1989; Nicolis and
Prigogine, 1977; Goldbeter, 1996; Qian and Beard, 2005; Michal and Schomburg, 2012;
Wachtel et al., 2018).

Chemical or biochemical reactions can be controlled in reactors of different types. Batch
reactors are closed systems at controlled temperature where reactants are initially poured
in a stirred solution, yielding products until chemical equilibrium is reached. In contrast,
continuous-flow stirred tank reactors are open systems continuously fed by reactants, the
products exiting by an outflow. These reactors are equipped with a stirrer to guarantee the
quasi-uniformity of the reacting mixture.

1.8.1 Flow Reactors

A flow reactor called a continuous-flow stirred tank reactor (CSTR) is schematically repre-
sented in Figure 1.7 with the inflow of reactants and the outflow of the solution in excess,
also containing products (Aris, 1989; Nicolis, 1995; Epstein and Pojman, 1998; Blokhuis
et al., 2018). The stirrer induces hydrodynamic mixing, so that the concentrations of reac-
tants and products are made uniform inside the reactor.

Kinetics

In the flow reactor, the reactant and product densities {nk}ck=1 are ruled by the balance
equations
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∂tnk +∇ · (nkv+J k) =
∑
r

νkrwr, (1.86)

where v is the fluid velocity, J k = −Dk∇nk the diffusive current density, and νkr the
stoichiometric coefficient of species k in the reaction r of rate wr .

The number of the molecules of species k inside the volume V delimited by the dashed
line in Figure 1.7 is defined by Nk =

´
V
nk d

3r . This number evolves in time according to

dNk

dt
= deNk

dt
+ diNk

dt
, (1.87)

which has a form reminiscent of equation (1.3) with the contribution deNk/dt due to the
exchanges of molecules at the boundaries of the volume where inflow and outflow are
controlled, and the internal contribution diNk/dt due to the reactions taking place inside the
system. By the divergence theorem, the exchanges with the exterior contribute according to

deNk

dt
= −

ˆ
∂V

(nkv+J k) · d�, (1.88)

where ∂V is the boundary of the volume V . Since the solution is well stirred by the
mixer, the density nk is practically uniform inside the reactor, so that Nk � V nk and
J k = −Dk∇nk � 0. Moreover, exchanges only happen where the fluid velocity is not
equal to zero in the direction transverse to the boundary ∂V , i.e., at the portions of the
boundary, ∂k,inV and ∂outV , respectively, corresponding to the inflow of species k and the
outflow of the solution in excess. Consequently, we have that

deNk

dt
� −

ˆ
∂k,inV

nkv · d� −
ˆ
∂outV

nkv · d� = φk,in nk,in − φout nk (1.89)

in terms of the density nk,in inside the inlet pipe of species k, the ingoing flux φk,in =
− ´

∂Vk,in
v · d�, and the outgoing flux φout =

´
∂Vout

v · d�. We note that φout =
∑
k φk,in

because of the fluid incompressibility, ∇ ·v = 0. In addition, the reactions inside the system
contribute to

diNk

dt
=
ˆ
V

∑
r

νkrwr d
3r � V

∑
r

νkrwr, (1.90)

since the solution is well stirred and the densities are thus uniform inside the reactor. Sub-
stituting these results back into equation (1.87), we find that the density of species k is
ruled by

dnk

dt
=
∑
r

νkr wr + 1

τ
(nk0 − nk) with nk0 ≡ φk,in

φout
nk,in, (1.91)

where τ ≡ V/φout is the mean residence time of the species inside the reactor. The
macrostate inside the open system is thus determined by the control parameters τ and nk0.
We note that the conservation of the total mass,M = V ∑k mknk , implies that diM/dt = 0,
so that dM/dt = deM/dt = (M0 −M)/τ , andM = M0 in steady regimes.

If the fluxes are equal to zero, the residence time is infinite (τ = ∞), and the system is
closed, corresponding to a batch reactor. However, the system is open and out of equilibrium
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if the residence time is finite and some reactants are injected inside the reactor. In the limit
of a vanishingly small residence time (τ = 0), the densities converge towards their injection
values limt→∞ nk(t) = nk0.

Thermodynamics

The thermodynamics of the reactions can be investigated using the Gibbs free energy as
thermodynamic potential if the temperature and the pressure are supposed to be uniform
inside the system. The Gibbs free energy density is given by

g =
∑
k

μk nk, (1.92)

where μk is the chemical potential of species k. For this quantity, Gibbs’ relation has the
form

dg = −s dT + dp +
∑
k

μk dnk . (1.93)

Under isothermal and isobaric conditions, dT = 0 and dp = 0, the time evolution of the
Gibbs free energy density is thus ruled by the changes of densities according to equation
(1.91), so that

dg

dt
=
∑
k

μk
dnk

dt
=
∑
kr

μkνkrwr + 1

τ

∑
k

μk (nk0 − nk), (1.94)

which can be written in the equivalent form

dg

dt
= −T σs, react + 1

τ
(g0 − g), (1.95)

in terms of g0 =
∑
k μk nk0 and the entropy production rate density σs, react due to the

reactions. If the solution is dilute and the kinetics obeys the mass action law, the chemi-
cal potentials of the reacting solute species are given by equation (1.36) and the entropy
production rate density reads as

σs, react = − 1

T

∑
kr

μkνkrwr = kB

∑
r

(w+r − w−r ) ln
w+r
w−r

≥ 0. (1.96)

If the residence time is infinite (τ = ∞), there is no exchange with the exterior of the
reactor. Therefore, the system is closed and evolves from an initial macrostate with a high
content of Gibbs free energy, towards the equilibrium macrostate where Gibbs free energy is
minimal and the entropy maximal, as required. Accordingly, the solution undergoes relax-
ation towards chemical equilibrium where the conditions of detailed balance are satisfied
for all the reactions, w+r = w−r , corresponding to the minimum of Gibbs free energy in
the reactor. For dilute solutions, the Gibbs free energy (1.92) can be written as

g = geq + kBT

c−1∑
k=1

[
nk ln

nk

nk,eq
− (nk − nk,eq)

]
, (1.97)
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where nk,eq are the equilibrium densities of the solute species in the closed reactor, corre-
sponding to the free energy minimum given the constraints coming from the initial densities
and the reactions. Since g ≥ geq and dg/dt ≤ 0 in a closed reactor, the function (1.97)
plays the role of Lyapunov function, implying that the equilibrium macrostate is the
unique attractor in the closed reactor (Shear, 1967; Horn and Jackson, 1972; Rao and
Esposito, 2016).

However, if the reactor is open the condition dg/dt ≤ 0 is no longer always satisfied
because equation (1.95) has the extra term (g0 − g)/τ due to the exchanges of the reactor
with the exterior. Accordingly, the function (1.97) is no longer a Lyapunov function and
the existence and uniqueness of a stationary macrostate no longer hold. Actually, complex
dynamics with multistability, as well as periodic, or chaotic oscillations become possible
for flow reactors driven far from equilibrium, i.e., beyond some instability threshold for the
stationary macrostate issued from equilibrium by increasing the nonequilibrium constraints
(Bergé et al., 1984; Scott, 1991; Nicolis, 1995; Epstein and Pojman, 1998). In the limit
where the residence time is vanishingly small (τ = 0), the free energy density becomes
equal to its injection value g = g0.

We note that, if the system is closed (as in a batch reactor) and large enough pools
of some species are maintained during long time intervals, these species are practically
chemostatted and their densities can be assumed to remain invariant. During such lapses
of time, the system can be maintained far enough from equilibrium to sustain dynamical
behaviors similar to those observed in flow reactors.

1.8.2 Stoichiometric Analysis of Reaction Networks

The theory of chemical reaction networks has been developed since the 1960s on the basis of
the stoichiometric matrix and in close relation with thermodynamics (Polettini and Esposito,
2014; Rao and Esposito, 2016; Feinberg, 2019).

The densities of all the species in the reaction network are ruled by the closed set of ordi-
nary differential equations (1.91), defining a so-called dynamical system. These equations
can be written in the vectorial form

dn
dt
= ν · w+ 1

τ
(n0 − n), (1.98)

ruling the time evolution for the c-dimensional vector n ∈ R
c of the reactant and product

densities. The control parameters are the components of the invariant vector n0 ∈ R
c and

the residence time τ . The reaction rates form the m-dimensional vector w = (wr )mr=1
and the stoichiometric coefficients the c × m matrix ν = (νkr ) with k = 1,2, . . . , c and
r = 1,2, . . . , m. The time evolution generates trajectories n(t) in the phase space {n ∈ R

c}
of the dynamical system (1.98) (Bergé et al., 1984; Nicolis, 1995).

Closed Reactors

Let us first assume that the reactor is closed (τ = ∞). On the one hand, the left null
eigenvectors l ∈ R

c of the stoichiometric matrix are defined by

lT · ν = 0. (1.99)
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Since the solution is uniform in the volume V of the system because of stirring, we may
introduce the quantities

L ≡ V lT · n (1.100)

that are conserved by the reaction network and are thus constants of motion for the set of
ordinary differential equations, dL/dt = 0. These conserved quantities include, in particu-
lar, the total mass and the moieties that are preserved by the reaction network (Haraldsdóttir
and Fleming, 2016). The number l of these conserved quantities is given by the dimension
of the null space of the transpose of the stoichiometric matrix, also called the cokernel:
l = dim coker ν. On the other hand, the right null eigenvectors e ∈ R

m of the stoichiometric
matrix such that

ν · e = 0 (1.101)

define the so-called stoichiometric cycles of the network,9 forming cyclic reaction pathways
in the network. The number, o, of cycles is given by the dimension of the null space of the
stoichiometric matrix, also called the kernel: o = dim ker ν. A general property of linear
algebra shows that the rank of the stoichiometric matrix is given by

rank ν = c − l = m− o. (1.102)

Open Reactors

Next, the reactor is supposed to be open with a finite residence time (τ <∞). In this case,
the contribution den/dt = (n0 − n)/τ due to the exchanges should be added to the internal
contribution din/dt = ν · w. Consequently, the quantities L are no longer constants of
motion, but instead they obey

dL

dt
= 1

τ
(L0 − L) (1.103)

with L0 ≡ V lT · n0, because of the inflow and outflow generating exchanges with the
exterior. Consequently, the quantities L evolve in time according to

L(t) = L(0) e−t/τ + L0
(
1− e−t/τ

)
. (1.104)

Nevertheless, these quantities reach constant values L0 fixed by the inflow over a timescale
longer than the residence time:L(t) � L0 for t � τ . We notice that in a closed reactor, these
quantities take the constant values L(t) = L(0) fixed by their initial conditions, L(0), that
may differ from the constant values L0 fixed by the inflow in an open reactor. A general
remark is that the quantities L continue to obey conservation laws if the system is open.
Indeed, equation (1.103) can be written in the form dL/dt = deL/dt + diL/dt with
deL/dt = (L0 − L)/τ and diL/dt = 0, showing that these quantities get their time
dependence because of the exchanges with the exterior.

9 The stoichiometric cycles of the network should not be confused with the limit cycles of the dynamical system, which are
periodic trajectories for the dynamics.
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In a flow reactor, the contributions den/dt = (n0 − n)/τ due to transport between the
system and the exterior can be handled in the same way as for reactions, writing equation
(1.98) in the equivalent form

dn
dt
= ν′ · w′ with ν′ = (ν,1), (1.105)

by extending the stoichiometric matrix ν with the c × c identity matrix 1, and the
vector of reaction rates into w′ = (w,w̃)T, where w ∈ R

m is the previous one and
w̃ = (n0 − n)/τ ∈ R

c. The new stoichiometric matrix ν′ thus has dimensions c ×m′ with
m′ = m+ c. Instead of equation (1.102), here we have the relation, rank ν′ = m′ − o′ =
c − l′, with l′ = 0, since there is no longer any constant of motion as a consequence of
equation (1.103). Therefore, the number of cycles is equal to o′ = m′ − c = m in the flow
reactor, instead of o = m − c + l ≤ m in the closed one. There are thus new cycles in
the open reactor due to the exchanges with the exterior, which are called external cycles.
A general cycle can be split as e′ = (e,ẽ)T, such that ν′ · e′ = ν · e + ẽ = 0. Here, a
distinction can be made between the previously identified internal cycles e′γ with ν · eγ = 0
and ẽγ = 0 for γ = 1,2, . . . , o, and the external cycles e′α such that ẽα = −ν · eα �= 0
for α = 1,2, . . . , m − o (Blokhuis et al., 2018). These external cycles have a pathway
involving transport from or to the exterior of the flow reactor.

Thermodynamics in Open Reactors

Noting that Gibbs free energy density can be expressed as g = μT · n in terms of the
c-dimensional vector of chemical potentials μ = {μk}ck=1, equation (1.94) can be written as

dg

dt
= μT · ν′ · w′. (1.106)

In a stationary macrostate, the relation ν′ · w′ = 0 holds, so that the vector of reac-
tion rates can be decomposed in the basis of the right null eigenvectors as
w′ =∑o

γ=1wγ e′γ +
∑m−o
α=1 wαe′α . If these conditions are satisfied, the entropy production

rate density (1.96) simplifies to

σs, react
∣∣
st = −

1

T
μT · ν · w = + 1

T

m−o∑
α=1

wα μ
T · ẽα ≥ 0, (1.107)

because ν · eγ = 0 for internal cycles and ν · eα = −ẽα for external cycles. The entropy
production rate can thus be written in the form

diS

dt

∣∣∣∣
st
= V σs, react

∣∣
st = kB

m−o∑
α=1

Aα Jα ≥ 0 (1.108)

in terms of the global affinities Aα ≡ μT · ẽα/(kBT ) and the currents Jα = Vwα associated
with the external cycles α = 1,2, . . . , m − o.10 The consequence is that, in stationary

10 We note that the currents associated with the reactions are proportional to the volume, although the currents (1.68) or (1.70)
associated with transport between reservoirs are proportional to the surface area of the interfaces with the reservoirs. The
reason is that the reaction currents – also called reaction fluxes – are microscopic, since the bottlenecks of the reactions have
submolecular sizes (Moore, 1972; Berry et al., 1980).
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macrostates, the entropy production is only determined by the external cycles able to drive
the open system away from equilibrium (Blokhuis et al., 2018). The entropy produced inside
the system is evacuated to the exterior by the flow term. At equilibrium where detailed
balance is satisfied, the reaction rates are equal to zero, i.e.,wr = w+r −w−r = 0, together
with the entropy production rate.

If the solution n(t) of equation (1.98) depends on time, we may consider the time average

X ≡ lim
T →∞

1

T

ˆ T

0
X(t) dt (1.109)

for any quantity X of interest. Taking the time average of equation (1.105), we find that w′

is still a right null eigenvector of the stoichiometric matrix introduced in equation (1.105),
ν′ · w′ = 0, which can again be decomposed in the basis of the right null eigenvectors
to give

n = n0 + τ ν · w = n0 − τ
m−o∑
α=1

wα ẽα . (1.110)

Therefore, the deviations of the mean densities with respect to the effective injected densities
n0 are given in terms of the external cycles of the network. The time average can also be
applied to the balance equation (1.95) for the Gibbs free energy. In this way, we obtain the
time average of the entropy production rate

diS

dt
= V σs, react = V

T τ

(
g0 − g

) ≥ 0, (1.111)

giving the mean value of the Gibbs free energy density as

g = g0 − T τ σ s, react ≤ g0. (1.112)

This result shows that the mean value of the Gibbs free energy inside the reactor is always
lower than or equal to its mean injection value g0.

1.9 Dissipative Dynamics and Structures

Systems are driven out of equilibrium by control parameters such as the global affinities
or the reactant inflow rates for reactors. If these control parameters are switched on, some
fluxes of energy or matter are generated inside the system, and the equilibrium macrostate of
the undriven system turns into a nonequilibrium steady state for the driven system. Since the
perturbations with respect to this macrostate are damped by dissipation, the nonequilibrium
steady state is a stationary attractor for the time evolution of the system, as is the case
at equilibrium. When the control parameters are increased, a critical threshold may be
reached where the nonequilibrium steady state becomes unstable and the system undergoes
a transition, called bifurcation, leading to the emergence of new attractors.

These emerging attractors may be stationary or dynamical. In the latter case, they can
manifest periodic, quasiperiodic, or chaotic oscillations (see Appendix B). The attractors of
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periodic oscillations are called limit cycles, in reference to the convergence in the long-time
limit towards a cyclic time evolution. Quasiperiodic oscillations have tori as attractors in the
phase space of macrovariables. The dimension of the attractor is a quantitative characteri-
zation of the effective number of macrovariables that are dynamically active in the system.
Steady states and limit cycles have their dimensions equal to zero and one, respectively.
For tori, the dimension gives the number of incommensurable frequencies in the quasiperi-
odicity they represent. Chaotic oscillations are characterized by the property of sensitivity
to initial conditions, generating aperiodicity over long timescales. The attractors of chaotic
oscillations typically form fractals in the phase space (Bergé et al., 1984; Eckmann and
Ruelle, 1985; Strogatz, 1994; Nicolis, 1995).

In spatially extended systems, the attractor may correspond to stationary patterns or
spatiotemporal structures, referred to as dissipative structures (Prigogine, 1967; Glansdorff
and Prigogine, 1971; Kondepudi and Prigogine, 1998). The formation of these macroscopic
structures is possible because the system is open and the entropy produced by dissipation
inside the system is evacuated to the exterior, allowing self-organization to happen far from
equilibrium at the macroscale (Nicolis and Prigogine, 1977).

These nonequilibrium phenomena manifest themselves in different physicochemical
systems.

In hydrodynamics, the Rayleigh–Bénard instability in a fluid layer subjected to gravity
and a temperature gradient induces the formation of stationary convective rolls (Mareschal
and Kestemont, 1987). This dissipative structure may undergo further instabilities, leading
to turbulence, which is a chaotic behavior of high dimension in the phase space (Bergé et al.,
1984; Nicolis, 1995).

Nonequilibrium phenomena are also a feature of reactions with nonlinear mechanisms
caused by autocatalysis or cross-catalysis (Nicolis and Prigogine, 1977; Scott, 1991; Epstein
and Pojman, 1998). The so-called chemical clocks are periodic oscillations observed in the
Belousov–Zhabotinsky reaction and other reactions. Quasiperiodic and chaotic oscillations
have also been observed in these reactions. Here, the time evolution takes place in the phase
space of the chemical concentrations (i.e., the densities). In spatially extended systems
where the reactions are coupled to the diffusion of the reacting species, stationary dissipative
structures called Turing patterns may emerge, as well as spatiotemporal structures forming
circular or spiral waves, which may become turbulent if the system is driven far enough
from equilibrium.

In addition, similar phenomena are observed in lasers, nonlinear optics, electronics, and
other areas (Haken, 1975; Lugatio and Lefever, 1987; Schöll, 2001).

Dissipative structures often emerge through symmetry breaking at the macroscale. For
instance, the symmetry under temporal translations is broken at the onset of oscillations,
while the symmetry under spatial translations is broken in the Rayleigh–Bénard instability
or the formation of Turing patterns in reaction–diffusion systems (Prigogine and Nicolis,
1967; Prigogine and Lefever, 1968).

The transitions, called bifurcations, occurring between the different nonequilibrium
regimes have been classified (Strogatz, 1994; Nicolis, 1995). They include the pitchfork
bifurcation shown in Figure 1.8(a), where two new stable steady states emerge from

https://doi.org/10.1017/9781108563055.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108563055.002


1.10 Engines 35
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Figure 1.8 Schematic representation of bifurcations in the phase space of the dynamical
variables versus the control parameter χ : (a) Pitchfork bifurcation with the emergence of
two new stable steady states in the variable x; (b) Hopf bifurcation with the emergence
of a limit cycle in the phase space of the variables (x1,x2). In both cases, the equilibrium
macrostate is located at the value χeq of the control parameter, and the bifurcation happens
at the critical threshold χc. The solid lines depict the stable solutions and the dashed lines
the unstable ones.

the instability of a previously existing steady state, leading to multistability. Another
important nonequilibrium transition is the Hopf bifurcation shown in Figure 1.8(b), where
a limit cycle emerges from the instability of a steady state, leading to rhythmic behavior.
Successive bifurcations may lead to chaotic regimes, such as the cascade of period-doubling
bifurcations.

In time-dependent regimes, the attractor can be characterized by the time average (1.109)
for the different quantities of interest. Indeed, in dissipative dynamical systems, every attrac-
tor is typically surrounded by a basin of attraction where all the time evolutions converge
towards the attractor. Therefore, the time averages (1.109) of any time evolution starting in
the basin of attraction will have values associated with the same attractor (Eckmann and
Ruelle, 1985).

1.10 Engines

Heat engines such as steam engines or internal combustion engines are mechanical devices
that convert heat into work. More generally, engines and motors achieve the transduction of
heat, chemical energy, or electric energy into work, i.e., mechanical energy. Many engines
function in such a way that gases undergo a cycle of transformations, including compres-
sion and expansion, heating and cooling, and/or inflow and outflow. Engines may have an
autonomous periodic motion, which can be represented as the limit cycle of a dissipative
dynamical system. In general, engines should be described as piecewise continuous media in
terms of hydrodynamics and transport theory. Otherwise, the cycle of an engine can be ideal-
ized as the succession of several transformations driven by time-dependent external forcing,
as conceived by Carnot (1824) for heat engines. Moreover, there also exist engines that
function under isothermal conditions using a difference of pressure or chemical potential to
power their motion. Such idealized engines can be directly analyzed in terms of the first and
second laws of thermodynamics in order to determine their efficiencies, as discussed below.
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Figure 1.9 The cycle of the Carnot heat engine in the plane of the entropy S and the
temperature T . The piston is filled with gas and alternately put in contact with the hot heat
reservoir at the temperature Th and the cold heat reservoir at the temperature Tc, or held
isolated from them.

1.10.1 Carnot Heat Engine

This famous engine is composed of a piston containing a dilute gas and two heat reservoirs
at the temperatures Th and Tc. The piston forms a closed system where the number of
molecules does not change.

The cycle of this engine is shown in Figure 1.9. First, the piston is put in contact with
the hot reservoir, which generates the isothermal expansion of the gas and the heat transfer
Qh > 0 from the reservoir to the gas. Next, the piston is isolated from the reservoirs and
the gas is subjected to an adiabatic (i.e., isoentropic) expansion, cooling the gas. When
the temperature Tc is reached, the piston is placed in contact with the cold reservoir. Now,
the isothermal compression of the gas can be carried out, releasing some heat |Qc| (with
Qc = −|Qc|) towards that reservoir. Finally, the piston is again isolated from the reservoirs
and the gas is compressed adiabatically, increasing its temperature back to the one of the
hot reservoir. When this cycle is completed, the state variables of the gas have recovered
their initial values, which is the case, in particular, for the energy E and the entropy S of the
gas. Consequently, the integrals of their changes over the cycle are equal to zero:

¸
dE = 0

and
¸
dS = 0.

Integrating the first law (1.2) over the cycle and using the conservation of molecules in
the closed system (dN = 0), we get

0 =
˛
dE =

˛
deE =

˛
(�dQ− p dV ), (1.113)
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where ˛
�dQ = |Qh| − |Qc| and W ≡

˛
p dV (1.114)

are, respectively, the heat exchanged with the reservoirs during the isothermal transforma-
tions and the work performed by the piston on the exterior during the cycle. Thus, energy
conservation implies that

W = |Qh| − |Qc|. (1.115)

Next, integrating the second law (1.4) over the cycle gives

0 =
˛
dS =

˛
deS +

˛
diS (1.116)

with
¸
diS ≥ 0. Since deS = �dQ/T , we have that

0 ≥
˛
deS =

˛
�dQ
T
= |Qh|

Th
− |Qc|

Tc
. (1.117)

The efficiency is defined as the ratio between the work performed by the engine and the
heat supplied by the hot source. According to the first and second laws, the efficiency is
bounded as

η ≡ W
|Qh| = 1− |Qc|

|Qh| ≤ ηC = 1− Tc

Th
(1.118)

by the Carnot efficiency ηC reached in the absence of entropy production during the cycle,
i.e., if

¸
diS = 0. In any case, the efficiency is equal to zero if both reservoirs are in

equilibrium (i.e., if Th = Tc).
Most often, engines are running at speeds that maximize their power, which has the effect

of reducing efficiency, as compared to arbitrarily slow regimes aiming at the optimization
of efficiency. Using linear relations between currents and global affinities, the efficiency at
maximum power is estimated to reach the value

ηmax power = 1−
√
Tc

Th
, (1.119)

which is thus smaller than the Carnot efficiency of a reversible cycle (Curzon and Ahlborn,
1975; Van den Broeck, 2005; Esposito et al., 2010).

1.10.2 Isothermal Engines Working on Potential Differences

There also exist isothermal engines, which use a difference of pressure or chemical potential
to perform work. An example is the pneumatic engine schematically depicted in Figure 1.10.
This engine is composed of a piston connected with two reservoirs by two valves, which are
successively open or closed, allowing some dilute gas to be transferred from each reservoir
to the piston and vice versa. The piston thus forms an open system, where the number
of molecules changes along the cycle. The gas pressure has the high value ph in the left
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Figure 1.10 The cycle of the isothermal pneumatic engine in the plane of the particle number
N and the chemical potential μ. The piston can be filled with gas or emptied via two valves
opening to the left reservoir at the high pressure ph and the right one at the low pressure pl.
The system is kept isothermal at the temperature T by the heat reservoir in contact with the
piston and both gas reservoirs.

reservoir and the low value pl in the right reservoir. Moreover, there is a heat reservoir
in contact with the piston and the two gas reservoirs, keeping the temperature uniform
at the value T . Since the gas is dilute, its chemical potential is related to its pressure by
μ(p,T ) = μ0(T )+ kBT ln(p/p0), where p0 is the standard pressure.

The cycle of this engine starts when both valves are closed and the gas pressure in the
piston has the high value ph. The pressures in the piston and the high pressure reservoir
being equal, the valve between them can be slowly opened without causing dissipation by
viscosity or friction. The piston can thus move up with an inflow of�N gas molecules at the
high pressure ph. Next, the valve is closed and the gas in the piston undergoes an isothermal
expansion, decreasing the pressure to the low value pl. The valve with the low pressure
reservoir may now be opened and the piston moved down, releasing �N gas molecules
into that reservoir. After closing the valve on the right-hand side, the gas is isothermally
compressed, increasing its pressure back to the high value ph. In this cycle, the number N
of molecules in the piston, the energy E, and the entropy S recover their initial values since
they are state variables, so that

¸
dN = 0,

¸
dE = 0, and

¸
dS = 0.

Here, the first law (1.2) gives

0 =
˛
dE =

˛
deE =

˛
(�dQ− p dV + μdN), (1.120)
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where
¸
�dQ is the heat exchanged with the reservoirs, W ≡ ¸

p dV the work performed
by the piston during the cycle, and

�G ≡
˛
μdN = (μh − μl)�N (1.121)

the free energy used by the engine. Since deS = �dQ/T and the cyclic process is isothermal,
the second law (1.4) implies that

0 ≥
˛
deS =

˛
�dQ
T
= 1

T

(˛
dE︸ ︷︷ ︸
= 0

+
˛
p dV︸ ︷︷ ︸
=W

−
˛
μdN︸ ︷︷ ︸
=�G

)
. (1.122)

Consequently, the work W > 0 performed by the engine satisfies W ≤ �G. Here, we may
introduce the thermodynamic efficiency

ηth ≡ W
�G ≤ 1, (1.123)

which may never exceed the unit value because of the second law. We note that the ther-
modynamic efficiency (1.123) is defined using the net free energy �G > 0 consumed to
drive the engine, while the usual efficiency (1.118) involves the heat |Qh| supplied by one
reservoir, which explains the difference between their upper bounds.

If we consider the reverse process where the work W ≡ −W > 0 is performed by
the exterior onto the system in order to store the free energy �G ≡ −�G > 0 inside the
system, we obtain the so-called Clausius inequality

W ≥ �G. (1.124)

Therefore, the thermodynamic efficiency of free-energy storage should satisfy the following
inequality

η′th ≡
1

ηth
= �G

W
≤ 1, (1.125)

according to the second law. The same results hold for multicomponent mixtures with
�G = ¸ ∑c

k=1 μkdNk = −�G.
Electric motors working with the electric potential difference supplied by a battery obey

similar relations with the high and low electrochemical potentials μh = e�h and μl = e�l,
and the total electric charge e�N transferred during the cycle. If the cycle has the period T ,
the mechanical power of the electric motor is given by Pmech ≡ W/T ≤ �G/T = V I
with the voltage V = �h − �l and the electric current I = e�N/T . The difference
Pdiss = V I − Pmech represents the power dissipated by the irreversible processes.

Isothermal engines working on potential differences constitute an important class of
engines from the macroscale down to the nanoscale, e.g., for molecular motors running
at ambient temperature using chemical energy.
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1.11 Open Issues

This chapter has been devoted to thermodynamics, which provides a general framework
to identify the equilibrium and nonequilibrium properties in relation to the conservation
laws of energy and particle numbers within the macroscopic description of matter. In this
regard, thermodynamics plays a fundamental role in the energetics of various dissipative
phenomena.

As already understood by Maxwell (1871), the domain of validity of thermodynamics is
the macroscopic world. Since the discovery of the atomic structure of matter and the devel-
opment of the molecular kinetic theory of heat, thermodynamics has been confronted with
the microscopic description of matter in terms of atoms and molecules moving according
to the laws of classical or quantum mechanics on the basis of electrodynamics.

At the microscale, the particles undergo collisions that conserve energy and their dynam-
ics are symmetric under time reversal, which is the property of microreversibility. This is in
contrast with the time asymmetry observed at the macroscale in processes dissipating energy
and producing entropy, in particular, during relaxation towards thermodynamic equilibrium.
Such irreversible phenomena manifest a loss of memory of their initial conditions, which
should be understood in terms of the microscopic dynamics of atoms and molecules.

If thermodynamics provides the framework to consistently formulate the equilibrium
and nonequilibrium constitutive relations, these latter remain unknown in theory without
using the microscopic dynamics. Furthermore, microreversibility has consequences for the
coupling between the currents and affinities of different irreversible processes, and thus for
the description of energy transduction down to the nanoscale.

These open issues will be addressed in the following chapters.
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