
Canad. Math. Bull. Vol. 29 (4), 1986 

THE MEET OPERATOR IN THE LATTICE OF 
GROUP TOPOLOGIES 

BY 

BRADD CLARK and VICTOR SCHNEIDER 

ABSTRACT. It is well known that the lattice of topologies on a set forms 
a complete complemented lattice. The set of topologies which make G into 
a topological group form a complete lattice L(G) which is not a sublattice 
of the lattice of all topologies on G. 

Let G be an infinite abelian group. No nontrivial Hausdorff topology in 
L(G) has a complement in L(G). If Tt and T2 are locally compact topologies 
then T,AT2 is also a locally compact group topology. The situation when G 
is nonabelian is also considered. 

1. Introduction. It is well known that the lattice of topologies on a set is a com
plete complemented lattice. The first proof of this was done by Steiner [5]. Shorter 
versions of this result are due to Van Rooij [6] and Schnare [3]. In [1], Berri studied 
the complements of certain topological groups in the lattice of all topologies on the 
group. 

One might wish to study the class of all topologies on a group G which make G into 
a topological group. We shall call such a topology a group topology. As is pointed out 
in [2], the intersection of two group topologies need not be a group topology. Thus the 
collection of group topologies on G is not a sublattice of the lattice of all topologies on 
G. However, if {Ta}aGA is any family of group topologies for G, then the join topology 
V«GA Ta created using UaGA Ta as a subbasis will also be a group topology. We note 
that the indiscrete topology is a group topology. Thus for any collection of group 
topologies {Ta}aeA we can find a nonempty collection of group topologies A such that 
T E A if and only if T C Ta for every a E A. We define Aa e A Ta = VT e A T. Hence the 
collection of all group topologies on G can be made into a complete lattice L(G). 

Obviously the meet operator in the lattice of group topologies is far from tract
able. The purpose of this is paper to develop a better method of defining the meet 
operator in special situations and to study the structure of L(G). In particular we shall 
show that if G is abelian then no nontrivial Hausdorff topology in L(G) has a com
plement in L(G). In the last section of this paper we shall consider the situation when 
G is nonabelian. 
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Following the notation of [5] we shall let 0 denote the indiscrete topology on G and 
1 denote the discrete topology on G. We shall assume as an additional hypothesis that 
G is both abelian and of infinite order. In section 4 we shall assume that G is nonabelian 
and of infinite order. 

2. The Meet Operator. Let t, be a group topology for G with G, a copy of G 
endowed with the topology f, for / E f̂ J. If we place the box topology on © / G N G, we 
have endowed ©,G^G/ with a group topology. Given an co-tuple x contained in 
©i e N Gj, one can find annGN such that the &-th coordinate of x is the identity element 
e of G whenever k > n. We define m: © / GN GJ -* G by m(jc) = g, -g2'"gn. Obvi
ously m is well defined and since G is abelian, m is a homomorphism. Let Tm be the 
quotient topology generated on G by m. 

THEOREM 1. 7W = A tt. 

PROOF: Let e E U and U E Tm. We can find a basis element W containing the 
identity element of ©/GN G, and such that m(W) C U. Let Ut = TTJ(W f! Yf) where Yt 

is the i-th axis of ©/G ̂  G, and TT, is the projection map onto the i-th factor G/. Certainly 
Ut E f,- and m(W H Yf) = U, C U. Therefore Tm C /,. 

Now suppose that T is a group topology for G with the property that T Q tt for all 
/ E N . Suppose that e E U and U E T. We can find a sequence V,, V2, V3,. . . of 
neighborhoods of e in T such that V, = U and V,2+ , Ç V,- for all i £ N . Since V, E ^ 
for all i Ê N we have that (xieN V,-) D (©/G^j G,) = Ĥ  is an open set in the box 
topology on ©/EN G,-. If x E W, a simple induction will show that m(x) E U and thus 
m(H0 Ç £/. Hence 7 Ç T,w. 

One might hope to remove the restriction of having a countable index set in Theorem 
1. Certainly if A is an uncountable index set and ta is a group topology for every a E A, 
then ©aGA^a is a topological group when endowed with the box topology and the 
associated group topology Tm C ta for every a E A. However, in general 
Tm ^ A a G A / a . To demonstrate this, let t be any connected topology for G and let 
t — ta for every a E A. Obviously, AaGA ta = t. But Tm = 0. 

The differences between the lattice of group topologies and the usual lattice of 
topologies are considerable. For example, any two Hausdorff topologies on a set 
contain the finite complement topology in their intersection. But if tp is the /7-adic 
topology on Z and tq is the g-adic topology on Z with p ± q then tp A tq = 0. 

3. Structure Theorems. The very nature of the meet operator in L(G) yields our 
first structure theorem. Certainly if f, and t2 are locally compact topologies on G, then 
t\At2 is also locally compact. On the other hand suppose that G — K1 and that t\ is the 
usual topology for W. Let t2 be the group topology on U] generated using 
{rQ|r E IR1} as a basis. Clearly both t\ and t2 are locally compact topologies and 
t\ V h is n o t locally compact. Therefore the strongest result we can state concerning 
the locally compact topologies of L(G) is the following: 
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THEOREM 2. The set of locally compact topologies forms a subsemilattice ofL(G). 

THEOREM 3. If t is a nontrivial Hausdorff group topology then t has no complement 

in L(G). 

PROOF: Let t\, t2 E L(G) with tx A t2 = 0. Let {Va} be a symmetric basis for the 
topology t2 at e and U E t\. If U =£ 0 and gVa is a typical basis element in t2 with 
Va ± 0, then U-Va = G. Hence we can find au E U and a v £ V a with wv = g. 
Thus u = g-v'] E gVa and hence [/ is dense in t2. (In fact, it is easy to show that 
t\ A t2 — 0 if and only if every nonempty open set in rj is dense in t2.) 

If t2 is a Hausdorff topology and tx A r2 = 0, then every nonempty open set U E f, 
and every nonempty open set V E t2 have infinite intersection. Thus it is impossible 
for f, V t2 = 1. 

Although the most interesting topologies of L(G) fail to have a complement in L(G), 
it is possible for two non-Hausdorff group topologies to be complementary. Let 
G = W. We can use Zorn's lemma to find a maximal subgroup NEW with 
N fl Q — {0}. Let t\ be the group topology generated using {rQ \r E U]} as a basis 
and let t2 be the group topology generated using {rN\ r E 1R1} as a basis. Since every 
nonempty open set in ^ is dense in t2, we have that t]At2 = 0. Obviously, tx \J t2 — 1. 

4. The Nonabelian Case. When G is nonabelian the map m defined in Section 2 
fails to be a homomorphism. Thus a different technique is needed. Let tx and t2 be two 
group topologies and let {£/a}aGA and {Vp}per be bases for these topologies at e 
respectively. Let £, = {£/aVp|a E A and p E V} and B2 = {Vp£/a |a E A and 
P E T } . 

We note that (t/ai H £/„,)• (VPl H Vp2) Ç U^V^ H C/„2VP2. Since we can find a 
£/' E {f/a}aGA with t/' Ç t/a, H t/a2 and a V E {Vp}pe r with V Ç VPl H VP2 we 
have U'V E Bx with f/ 'V E £/aiVPl H f/tt2Vp2. Now suppose a = « v £ f/V."We 
can find a £/' E {f/a}aGA such that w t/'V E C/V. We can also find a (7" E {£/«}a6A 

such that vU"V~x E U'. Thus aU"V~]V E UV. Since v E V we can find a 
V E {Vp}p e r such that v-V C V. Hence aC/wV' E UV. Obviously similar argu
ments hold for B2. Let 7, be the topology generated on G using {g • UaVp \ g E G and 
a E A and P E T } as a basis and T2 the topology generated on G using 
{gV$Ua\g E G and a E A and p E T} as a basis. 

Finally, we note that if g E G, then for any U E {£/a}aeA and for any V E {Vp}per 
we can find a ( / ' G {£/«}«£A and a V E {Vp}per such that gU'g~] E U and 
g f g - 1 E V. HencegÉ/'Vg"1 E (/V and thus B { nearly forms a fundamental system 
of neighborhoods of the identity. Clearly, the same is true of'B2. 

THEOREM 4. The following statements are equivalent: 

(a) r , = T2. 
(b) 7j is a group topology. 
(c) r, = r, Ar 2 . 
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PROOF: (a) implies (b): For any UV G Bx we can find a ( / ' £ {Ua}aeA and a 
V G {Vp}pGr such that (U')2(V)2 Ç UV. Since U'V is open in r 2 , we can find a 
V"t/" G £ 2 such that V"U" C U'V. Thus U'V"U"V G £/V. We can find a 
t/'" C (£/' H U") and a V" Ç (V H V") and hence (£/'"• V'")2 C £/V. So whenever 
[ / V G 5 , w e can find a Ux V, G 5 , with (£/, V,)2 Ç f/V. Now since £/, V, is open in 
r 2 , we can find a V2U2 Q UXVX and thus UXVXV2U2 Q (UXVX)2. As before, we can 
find a U3 Ç Ux PI C/2 and a V3 £ V, H V2. So ^ 3 ^ 3 Q (UxVxf. Since we may 
assume without loss of generality that {£/a}aEA and {Vpjper are collections of sym
metric sets we have (U3V3)(U3V3y

] C UV and that Tx is a group topology. 
(b) implies (c): Clearly Tx C tx A t2. Let X be a neighborhood of e in tx A t2- We 

can find a F G r, A t2 such that y2 Ç X. But y2 G Tx and hence r , = tx A r2. 
(c) implies (a): If Tx = r,Ar2, then (£/V)-1 = VcV is open in Tx since inversion is 

continuous. So T2CTX. Let UV ETX. Then Vf/ = (t/V)"1 G 7, D 72 . Since Vf/is 
open in T, we can find a c/,V, Ç VU. Therefore, (f/,V,)"' = VXUX Ç UV = (VU)'1. 
Hence Tx — T2. 

There are a number of topologies that can be defined on G which must satisfy 
Tx = T2. For example, any topology tx of the type described by Sharma in [4] will 
satisfy Tx = T2no matter what topology we choose for t2. In the same fashion if f, is 
any topology generated using normal subgroups as a fundamental system, then Tx = T2 

no matter what topology we choose for t2. 
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