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THE MEET OPERATOR IN THE LATTICE OF
GROUP TOPOLOGIES

BY
BRADD CLARK and VICTOR SCHNEIDER

ABSTRACT. It is well known that the lattice of topologies on a set forms
a complete complemented lattice. The set of topologies which make G into
a topological group form a complete lattice L(G) which is not a sublattice
of the lattice of all topologies on G.

Let G be an infinite abelian group. No nontrivial Hausdorff topology in
L(G) has a complement in L(G). If 7, and 7, are locally compact topologies
then 7,/\1, is also a locally compact group topology. The situation when G
is nonabelian is also considered.

1. Introduction. It is well known that the lattice of topologies on a set is a com-
plete complemented lattice. The first proof of this was done by Steiner [5]. Shorter
versions of this result are due to Van Rooij [6] and Schnare [3]. In [1], Berri studied
the complements of certain topological groups in the lattice of all topologies on the
group.

One might wish to study the class of all topologies on a group G which make G into
a topological group. We shall call such a topology a group topology. As is pointed out
in [2], the intersection of two group topologies need not be a group topology. Thus the
collection of group topologies on G is not a sublattice of the lattice of all topologies on
G. However, if {7}, c s is any family of group topologies for G, then the join topology
VVaea To created using U, e T, as a subbasis will also be a group topology. We note
that the indiscrete topology is a group topology. Thus for any collection of group
topologies {7, }.ca We can find a nonempty collection of group topologies A such that
T € Aifand only if 1 C 7, forevery a € A. We define \,ea T. = \/se4 7. Hence the
collection of all group topologies on G can be made into a complete lattice L(G).

Obviously the meet operator in the lattice of group topologies is far from tract-
able. The purpose of this is paper to develop a better method of defining the meet
operator in special situations and to study the structure of L(G). In particular we shall
show that if G is abelian then no nontrivial Hausdorff topology in L(G) has a com-
plement in L(G). In the last section of this paper we shall consider the situation when
G is nonabelian.
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Following the notation of [5] we shall let O denote the indiscrete topology on G and
1 denote the discrete topology on G. We shall assume as an additional hypothesis that
G is both abelian and of infinite order. In section 4 we shall assume that G is nonabelian
and of infinite order.

2. The Meet Operator. Let 7, be a group topology for G with G, a copy of G
endowed with the topology ¢; for i € N. If we place the box topology on B;cn G; we
have endowed @,cn G; with a group topology. Given an w-tuple x contained in
®,en G, one can find an n € N such that the k-th coordinate of x is the identity element
e of G whenever k > n. We define m: @,y G, = G by m(x) = g,- g, g,. Obvi-
ously m is well defined and since G is abelian, m is a homomorphism. Let T,, be the
quotient topology generated on G by m.

THEOREM |. T, = é}\' t;.
t

PrOOF: Let e € U and U € T,,. We can find a basis element W containing the
identity element of ;e G, and such that m(W) C U. Let U; = w,(W N Y,) where Y,
is the i-th axis of @, cn G, and m; is the projection map onto the i-th factor G;. Certainly
U €tiand mWNY,)=U;,CU. Therefore T,, C t,.

Now suppose that T is a group topology for G with the property that T C ¢; for all
i € N. Suppose that e € U and U € T. We can find a sequence V,,V,,V;,... of
neighborhoods of e in T such that V| = U and V:,, C Viforalli € N. Since V, € 1,
for all i € N we have that (X;en V;) N (Bien G;) = W is an open set in the box
topology on @,cn G;. If x € W, a simple induction will show that m(x) € U and thus
m(W)CU.HenceTCT,,.

One might hope to remove the restriction of having a countable index set in Theorem
1. Certainly if A is an uncountable index set and 7, is a group topology forevery a € A,
then @, G, is a topological group when endowed with the box topology and the
associated group topology T, Ct, for every a € A. However, in general
T, # Neeaty. To demonstrate this, let 7 be any connected topology for G and let
t = t, for every a € A. Obviously, N\yepty = ¢. But T,, = 0.

The differences between the lattice of group topologies and the usual lattice of
topologies are considerable. For example, any two Hausdorff topologies on a set
contain the finite complement topology in their intersection. But if ¢, is the p-adic
topology on Z and ¢, is the g-adic topology on Z with p # g thenz, \ t, = 0.

3. Structure Theorems. The very nature of the meet operator in L(G) yields our
first structure theorem. Certainly if ¢, and ¢, are locally compact topologies on G, then
t,/\t, is also locally compact. On the other hand suppose that G = R' and that ¢, is the
usual topology for R'. Let ¢, be the group topology on R' generated using
{rQ|r € R'} as a basis. Clearly both , and ¢, are locally compact topologies and
t, \/ t, is not locally compact. Therefore the strongest result we can state concerning
the locally compact topologies of L(G) is the following:
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THEOREM 2. The set of locally compact topologies forms a subsemilattice of L(G).

THEOREM 3. If't is a nontrivial Hausdorff group topology then t has no complement
in L(G).

PROOF: Let t,, t, € L(G) with ¢, /\ t, = 0. Let {V,,} be a symmetric basis for the
topology 7, at e and U € ¢t,. If U # 0 and gV, is a typical basis element in ¢, with
Ve # 0, then UV, =G. Hence we can findau € Uandav € V, withu-v = g.
Thus u = g-v™' € gV, and hence U is dense in 7,. (In fact, it is easy to show that
t; /\ t, = 0 if and only if every nonempty open set in 7, is dense in #,.)

If ¢, is a Hausdorff topology and ¢, /\ ¢, = 0, then every nonempty open set U € 1,
and every nonempty open set V € ¢, have infinite intersection. Thus it is impossible
fore,\/ t, = 1.

Although the most interesting topologies of L(G) fail to have a complement in L(G),
it is possible for two non-Hausdorff group topologies to be complementary. Let
G = R'. We can use Zorn’s lemma to find a maximal subgroup N C R' with
N N Q = {0}. Let ¢, be the group topology generated using {r@|r € R'} as a basis
and let ¢, be the group topology generated using {rN|r € R'} as a basis. Since every
nonempty open set in ¢, is dense in #,, we have that ¢, /\t, = 0. Obviously, ,\/ 1, = 1.

4. The Nonabelian Case. When G is nonabelian the map m defined in Section 2
fails to be a homomorphism. Thus a different technique is needed. Let ¢, and ¢, be two
group topologies and let {U,}.cs and {Vg}zer be bases for these topologies at e
respectively. Let B, = {U,Vg|a € A and B €T} and B, = {VyU,|a € A and
BeTr}.

We note that (U,, N Uy,,) (Vg N Vg,) C U, Vg, N U,,Vg,. Since we can find a
U' €E{U}ueca WithU' C U, NU, and a V' € {Vylger with V! C Vg NV we
have UV’ € B, with U'V' C U, Vs, N U, Vy,. Now suppose a = uv € UV. We
canfinda U’ € {U,}sea suchthat u-U'V C UV. We can also find a U" € {U, }eea
such that vU"V' C U’. Thus aU"V'V C UV. Since v E V we can find a
V' € {Vgs}ger such that v-V' C V. Hence aU"V' C UV. Obviously similar argu-
ments hold for B,. Let T, be the topology generated on G using {g*U,Vs|g € G and
a €A and BET} as a basis and T, the topology generated on G using
{gVeU.|g € Gand « € A and B € I'} as a basis.

Finally, we note that if ¢ € G, then for any U € {U,}sca and forany V € {Va}ser
we can find a U’ € {U,}aca and a V' € {Vg}ger such that gU'g™' C U and
gV'g ' C V.Hence gU'V'g™' C UV and thus B nearly forms a fundamental system
of neighborhoods of the identity. Clearly, the same is true of'B,.

THEOREM 4. The following statements are equivalent:

(a) T| = T2 .
(b) T, is a group topology.
(C) T| =1 AN 1.
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PROOF: (a) implies (b): For any UV € B, we can find a U’ € {U,},eca and a
V' € {Vg}ger such that (U')*(V')* C UV. Since U'V' is open in T,, we can find a
V"U" € B, such that V'U" C U'V'. Thus U'V"U"V' € UV. We can find a
U C W' NU"and aV"” C (V' N V") and hence (U”-V")* C UV. So whenever
UV € B, we can find a U,V, € B, with (U,V,)*> C UV. Now since U,V, is open in
T,, we can find a V,U, C U,V, and thus U,V,V,U, C (U,V,)>. As before, we can
findaU; CU NU,andaV; CV, NV, So U3V§U3 C (U,V,). Since we may
assume without loss of generality that {U,},es and {Vg}ger are collections of sym-
metric sets we have (U;V3)(U;V3)™' C UV and that T, is a group topology.

(b) implies (c): Clearly T, C t, /\ t,. Let X be a neighborhood of e in ¢, /\ t,. We
can find a Y € ¢, /\ t, such that Y> C X. But Yf € T,and hence T, = t, \ t,.

(c) implies (a): If T, = 1,/\t,, then (UV)™' = VU is open in T, since inversion is
continuous. SoT, C T,. Let UV € T,. Then VU = (UV)"' € T, N T,. Since VU is
openinT, wecanfindaU,V, C VU. Therefore, (U,V,)"' =V, U, CUV = (VU)".
Hence T, = T,.

There are a number of topologies that can be defined on G which must satisfy
T, = T,. For example, any topology ¢, of the type described by Sharma in [4] will
satisfy T, = T, no matter what topology we choose for ¢,. In the same fashion if 7, is
any topology generated using normal subgroups as a fundamental system, then T, = T,
no matter what topology we choose for ¢,.
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