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Abstract

Let L = −∆ + V be a Schrödinger operator on Rn where V is a nonnegative function in the space L1
loc(Rn)

of locally integrable functions on Rn. In this paper we provide an atomic decomposition for the Hardy
space H1

L(Rn) associated to L in terms of the maximal function characterization. We then adapt our
argument to give an atomic decomposition for the Hardy space H1

L(Rn × Rn) on product domains.
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1. Introduction

Let V be a locally integrable nonnegative function on Rn (where n ≥ 1), which is not
identically zero. We define the form Q by

Q(u, v) :=
∫
Rn
∇u∇v dx +

∫
Rn

Vuv dx

with domain

D(Q) :=
{
u ∈W1,2(Rn)

∣∣∣∣∣ ∫
Rn

V |u|2 dx <∞
}
.

The space W1,2(Rn) which appears in the formula above is the Sobolev space consisting
of those L2 functions onRn whose gradients are also square integrable. It is well known
that this symmetric form is closed. We recall that it was shown by Simon [25] that this
form coincides with the minimal closure of the form given by the same expression but
defined on C∞0 (Rn), the space of C∞ functions with compact support.
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Let L denote the self-adjoint operator associated with Q. The domain of L, written
D(L), is defined to be the set of all u ∈ D(Q) for which there exists v ∈ L2 such that

Q(u, ϕ) =

∫
Rn

vϕ̄ dx ∀ϕ ∈ D(Q).

Formally, we write L = −∆ + V as a Schrödinger operator with potential V . Since V
is a locally integrable nonnegative function on Rn, the Feynman–Kac formula implies
that the kernel pt(x, y) of the semigroup e−tL satisfies the estimate

0 ≤ pt(x, y) ≤ (4πt)−n/2e−|x−y|2/(4t) (1.1)

for all t > 0 and x, y ∈ Rn (see [24, p. 195]).
Given a function f ∈ L2(Rn), we consider the following nontangential maximal

function associated with the Poisson semigroup generated by the operator L:

f ∗L (x) := sup
|y−x|<t

|e−t
√

L f ( y)| ∀x ∈ Rn.

The space H1
L(Rn) is defined to be the completion of L2(Rn) in the norm given by the

L1 norm of this maximal function, that is,

‖ f ‖H1
L(Rn) := ‖ f ∗L‖L1(Rn).

See, for example, [1–3, 12, 17, 18] for the properties of H1
L(Rn).

Note that if L = −∆, then the space H1
L(Rn) is the classical Hardy space H1(Rn)

which is a natural substitute for L1(Rn). Recall that the development of the theory
of the classical Hardy spaces in Rn was initiated by Stein and Weiss [26] and was
originally tied closely to the theory of harmonic functions. Real variable methods
were introduced into this subject in the seminal paper of Fefferman and Stein [15], the
evolution of whose ideas led eventually to a characterization of Hardy spaces via the
so-called ‘atomic decomposition’ obtained by Coifman [7] when n = 1 and in higher
dimensions by Latter [21].

An atomic decomposition for H1
L(Rn) was given in [17] by combining the

area S -function and the finite speed propagation property for the wave equation.
Following [17], a function a ∈ L2(Rn) is called a (1, 2)-atom associated to the operator
L if there exists a function b ∈ D(L), the domain of an operator L and a ball B of Rn

such that

a = Lb;

supp Lkb ⊆ B;

‖(r2
BL)kb‖L2(Rn) ≤ r2

B|B|
−1/2,

where k = 0, 1 and rB denotes the radius of the ball B.
The aim of this paper is to get an atomic decomposition directly from the fact that

f ∗L ∈ L1(Rn) and then to provide a new proof of the atomic decomposition for H1
L(Rn).

Our first main result is the following theorem.

https://doi.org/10.1017/S1446788711001376 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001376


[3] An atomic decomposition for Hardy spaces 127

T 1.1. Let L = −∆ + V where V ∈ L1
loc(Rn) is a nonnegative function on Rn. Let

f ∈ H1
L(Rn). Then there exist (1, 2)-atoms a j and real numbers λ j for j = 1, 2, 3, . . .

such that

f =

∞∑
j=1

λ ja j (1.2)

in H1
L(Rn). Furthermore, matters can be arranged so that the sequence λ j satisfies the

inequality
∞∑
j=1

|λ j| ≤C‖ f ‖H1
L(Rn)

for some positive constant C, which may depend on n.
Conversely, any function f which is written in the form of (1.2), where the a j are

(1, 2)-atoms, satisfies the inequality

‖ f ‖H1
L(Rn) ≤C

∞∑
j=1

|λ j|.

We mention that the localized version of the atomic decomposition for H1
L(Rn) when

L = −∆ + V was given in [13], by using the properties of local Hardy spaces (see [16]),
under the assumption that V was a fixed nonnegative function on Rn belonging to the
reverse Hölder class Bq for some q > 1. That is, there exists a positive constant C,
possibly depending on q and V , such that the reverse Hölder inequality( 1

|B|

∫
B

Vq dx
)1/q

≤C
( 1
|B|

∫
B

V dx
)

holds for every ball B in Rn.
Let us now turn to the Hardy space on product domains. We note that the

usual space H1(Rn × Rn) on the product domain is now well understood (see, for
instance, [4, 5, 14]). In this paper we shall be concerned with the space H1

L(Rn × Rn)
associated to the Schrödinger operator L (see [11] for more properties).

For any (x1, x2) ∈ Rn × Rn and f ∈ L2(Rn × Rn), define

f ∗L (x1, x2) = sup
|y1−x1 |<t1
|y2−x2 |<t2

|e−t1
√

L ⊗ e−t2
√

L f ( y1, y2)|

where

e−t1
√

L ⊗ e−t2
√

L f ( y1, y2) :=
"
Rn×Rn

pt1 ( y1, z1)pt2 ( y2, z2) f (z1, z2) dz1 dz2.

The space H1
L(Rn × Rn) is defined to be the completion of L2(Rn × Rn) in the norm

given by
‖ f ‖H1

L(Rn×Rn) := ‖ f ∗L‖L1(Rn×Rn).

For our purposes, a product (1, 2)-atom is a function a on R2n, together with an
associated open set Ω of finite measure satisfying the following two properties.
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First, the function a can be further decomposed into the form a =
∑

R∈m(Ω) aR where
for each R ∈ m(Ω) there exists a function bR such that aR = (L ⊗ L)bR and

supp(Li ⊗ L j)bR ⊆ 10R, i, j = 0, 1,

where 10R denotes the rectangle with the same center as R and 10 times the side
lengths.

Second,
‖a‖L2(Rn×Rn) ≤ |Ω|

−1/2

and ∑
R∈m(Ω)

1∑
i, j=0

`(I)4i−4`(J)4 j−4‖(Li ⊗ L j)bR‖
2
L2(Rn×Rn) ≤ |Ω|

−1

where R = I × J denotes the dyadic rectangle of Rn × Rn whose side lengths are `(I)
and `(J), 10R denotes the set {10x | x ∈ R} and m(Ω) denotes the set of maximal dyadic
subrectangles of Ω (see Section 4 below).

The second main result of this paper is the following theorem.

T 1.2. Let L = −∆ + V where V ∈ L1
loc(Rn) is a nonnegative function on Rn. Let

f ∈ H1
L(Rn × Rn). Then there exist product (1, 2)-atoms a j and numbers λ j, where

j = 0, 1, 2, . . . , such that

f =

∞∑
j=1

λ ja j (1.3)

in H1
L(Rn × Rn), and the sequence λ j satisfies the condition that

∞∑
j=1

|λ j| ≤C‖ f ‖H1
L(Rn×Rn).

Conversely, for any decomposition of f of the form in (1.3),

‖ f ‖H1
L(Rn×Rn) ≤C

∞∑
j=1

|λ j|.

The organisation of this paper is as follows. In Section 2 we introduce some
notation and preliminary lemmas. Our main results, Theorems 1.1 and 1.2, are
proved in Sections 3 and 4. The main contribution of this paper is to combine the
Calderón reproducing formula, the finite propagation speed property and the methods
of Wilson [27] to obtain an atomic decomposition of Hardy spaces and then to verify
the required L2 norm estimates of the atoms by using square function estimates.

Throughout this paper, the letters C and c denote (possibly different) constants that
are independent of the essential variables.

2. Preliminaries

Recall that if L is a nonnegative, self-adjoint operator on L2(Rn) and EL(λ)
denotes a spectral decomposition associated with L, then for every bounded Borel
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function F : [0,∞)→ C one defines the operator

F(L) : L2(Rn)→ L2(Rn)

by the formula

F(L) :=
∫ ∞

0
F(λ) dEL(λ). (2.1)

In particular, the operator cos(t
√

L) is well defined on L2(Rn). Moreover, it follows
from [9, Theorem 3] (see also [6]) that the integral kernel Kcos(t

√
L) of cos(t

√
L) satisfies

supp Kcos(t
√

L) ⊆ {(x, y) ∈ Rn × Rn | |x − y| ≤ t}. (2.2)

By the Fourier inversion formula, whenever F is an even bounded Borel function with
Fourier transform F̂ in L1(R), we can write F(

√
L) in terms of cos(t

√
L). Specifically,

using (2.1), we have

F(
√

L) = (2π)−1
∫ ∞

−∞

F̂(t) cos(t
√

L) dt

which, when combined with (2.2), gives us that

KF(
√

L) = (2π)−1
∫
|t|≥|x−y|

F̂(t)Kcos(t
√

L) dt.

L 2.1. Let ϕ ∈C∞0 (R) be an even function such that supp ϕ ⊆ [−1, 1]. Let Φ

denote the Fourier transform of ϕ. Then for every κ = 0, 1, 2, . . . and for every t > 0
the kernel K(t2L)κΦ(t

√
L) of (t2L)κΦ(t

√
L) satisfies the condition

supp K(t2L)κΦ(t
√

L) ⊆ {(x, y) ∈ Rn × Rn | |x − y| ≤ t}.

P. We refer the reader to [17, Lemma 3.5] for the proof. �

In this paper we use Rn+1
+ to denote the upper half space of Rn+1. In the following

lemma we shall assume that ϕ ∈C1
0(Rn) is nonnegative, radial and nonincreasing.

We also assume that ϕ = 1 on B(0, 1/2), supp ϕ ⊆ B(0, 1) and
∫
ϕ(x) dx = 1. We

sometimes use capital letters to denote points of Rn+1
+ (for example, X = (x, t)), and

set

u(x, t) = e−t
√

L f (x),

∇Xu(X) = (∇xu, ∂tu)

|∇Xu|2 = |∇xu|2 + |∂tu|
2.

L 2.2. For every f , g ∈ L2(Rn),"
Rn+1

+

|t∇Xu(x, t)|2|ϕt ∗ g(x)|2
dx dt

t

≤

∫
Rn
| f (x)|2|g(x)|2 dx +

"
Rn+1

+

|u(x, t)|2|ψt ∗ g(x)|2
dx dt

t

(2.3)

where ψ is a vector-valued function with the same support as ϕ and mean value 0.
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P. The proof of Lemma 2.2 can be obtained by making minor modifications to
the proof of [23, Lemma 3.1] in the case where L = −∆ is the Laplace operator on Rn.
For the sake of completeness and for the reader’s convenience we give a brief sketch
of the proof of this lemma.

Write ∇2
X = ∇X∇X . Since u = e−t

√
L f , we have

∇2
Xu2 = (∂2

t + ∆)u2 = 2|∇Xu|2 + 2Vu2.

This, together with the condition that V ≥ 0, gives

2
"
Rn+1

+

|t∇Xu|2|ϕt ∗ g|2
dx dt

t

=

"
Rn+1

+

∇2
Xu2|ϕt ∗ g|2t dx dt − 2

"
Rn+1

+

Vu2|ϕt ∗ g|2t dx dt

≤

"
Rn+1

+

∇2
Xu2|ϕt ∗ g|2t dx dt.

After an integration by parts we obtain"
Rn+1

+

∇2
Xu2|ϕt ∗ g|2t dx dt

= −

"
Rn+1

+

∇Xu2∇X(t(ϕt ∗ g)2) dx dt

= −2
"
Rn+1

+

(2u∇Xu(ϕt ∗ g)t∇X(ϕt ∗ g) + u∂tu|ϕt ∗ g|2) dx dt.

(2.4)

Note that the conditions u(x, 0) ∈ L2(Rn) or f ∈ L2(Rn) are sufficient to ensure that the
boundary terms ‘at ∞’ for this integration by parts vanish, as does the boundary term
for t = 0.

We use a further integration by parts to obtain

2
"
Rn+1

+

u∂tu(ϕt ∗ g)2 dx dt

= −lim
t→0

∫ n

R

u2(ϕt ∗ g)2 dx dt − 2
"
Rn+1

+

u2(ϕt ∗ g)(∂t(ϕt ∗ g)) dx dt

= −

∫ n

R

f 2g2 dx − 2
"
Rn+1

+

u2(ϕt ∗ g)(∂t(ϕt ∗ g)) dx dt.

When combined with (2.4), integration by parts and the Cauchy–Schwarz inequality,
this gives (2.3) provided that

|ψt ∗ f |2 = 9|(t∇xϕt) ∗ g)|2 + 9|~ρt ∗ g|2.

Here ~ρ = (x1ϕ, . . . , xnϕ). For the details, we refer the reader to [23, (3.8)]. This
completes our proof. �
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Finally for s > 0 we define the set of measurable functions

F(s) :=
{
ψ : C→ C

∣∣∣∣ |ψ(z)| ≤C
|z|s

(1 + |z|2s)

}
.

Then for any nonzero function ψ ∈ F(s),{∫ ∞

0
|ψ(t)|2 dt/t

}1/2

<∞.

We write ψt(z) = ψ(tz). It follows from spectral theory (see [10]) that, if f ∈ L2(Rn),
then {∫ ∞

0
‖ψ(t
√

L) f ‖2L2(Rn)

dt
t

}1/2

=

{∫ ∞

0
〈ψ̄(t
√

L)ψ(t
√

L) f , f 〉
dt
t

}1/2

=

{〈∫ ∞

0
|ψ|2(t

√
L)

dt
t

f , f
〉}1/2

= κ‖ f ‖L2(Rn),

(2.5)

where κ = {
∫ ∞

0
|ψ(t)|2 dt/t}1/2.

3. Proof of Theorem 1.1

We shall useM to denote the Hardy–Littlewood maximal function with respect to
the balls of Rn. We use the notation

Γ(x) = {( y, t) ∈ Rn+1
+ | |x − y| < t}

to denote the standard cone (of aperture 1) with vertex x ∈ Rn.
For any closed subset F of Rn, we denote by R(F) the union of all cones with

vertices in F, that is,
R(F) =

⋃
x∈F

Γ(x).

If O is an open subset of Rn, then the ‘tent’ over O, denoted by Ô, is defined to be

Ô = c[R(cO)].

P  T 1.1. Let f ∈ H1
L(Rn) ∩ L2(Rn). We shall prove that f has an atomic

decomposition as in (1.2). We start with a suitable version of the Calderón reproducing
formula.

Let ϕ and Φ be as in Lemma 2.1 and set Ψ(x) := x4Φ(x) for all x ∈ R. By the L2-
functional calculus (see [22]) for every f ∈ L2(Rn) we can write

f = cΨ

∫ ∞

0
Ψ(t
√

L)t
√

Le−t
√

L f
dt
t

= lim
N→∞

cΨ

∫ N

1/N
Ψ(t
√

L)t
√

Le−t
√

L f
dt
t

(3.1)

with the integral converging in L2(Rn).
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For i ∈ Z we define the sets

Oi := {x ∈ Rn | f ∗L (x) > 2i}

and consider
O∗i = {x ∈ Rn | M(χOi )(x) > 2−(n+1)}.

Then Oi ⊆ O∗i and |O∗i | ≤C|Oi| for every i ∈ Z.
Now let {Q j

i } j be a Whitney decomposition of O∗i and let Ô∗i be a tent region, that is,

Ô∗i := {(x, t) ∈ Rn × (0,∞) | dist(x, cO∗i ) ≥ t}.

For every i, j ∈ Z we define

T j
i = (Q j

i × (0, +∞)) ∩ Ô∗i \ Ô∗i+1,

and λ j
i = 2i|Q j

i |. Using formula (3.1), we write

f =
∑
j,i∈Z

cΨ

∫ ∞

0
Ψ(t
√

L)(χT j
i
t
√

Le−t
√

L) f
dt
t

=:
∑
j,i∈Z

λ
j
i a

j
i

where a j
i = Lb j

i and

b j
i = (λ j

i )
−1cΨ

∫ ∞

0
t4LΦ(t

√
L)(χT j

i
t
√

Le−t
√

L) f
dt
t
.

We claim that, up to normalization by a multiplicative constant, the a j
i are (1, 2)-atoms.

Once this claim is established, we shall have∑
j,i

|λ
j
i | =

∑
j,i

2i|Q j
i | ≤C

∑
i

2i|O∗i |

≤ C
∑

i

2i|Oi| ≤C‖ f ‖H1
L(Rn),

as desired.
Let us now prove the claim. We shall show that for every j, i ∈ Z, the function C−1a j

i

is a (1, 2)-atom associated with the cube 10
√

nQ j
i for some constant C (independent of

i and j). Observe that if (x, t) ∈ T j
i , then B(x, t) ∈ O∗i . This, together with the fact that

Q j
i is the Whitney cube of O∗i , allows us to deduce that

t ≤ 6
√

n`(Q j
i ).

By Lemma 2.1 the integral kernel KΦt(
√

L) of the operator Φt(
√

L) satisfies the
condition that

supp KΦt(
√

L) ⊆ {(x, y) ∈ Rn × Rn | |x − y| ≤ t}.
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This enables us to deduce that, whenever k = 0, 1,

supp(Lkb j
i ) ⊆ 10

√
nQ j

i .

To continue, for each cube Q j
i we consider some h ∈ L2(Q j

i ) such that ‖h‖L2(Q j
i ) = 1.

Then for k = 0, 1,∣∣∣∣∣λ j
i

∫
Rn

(`(Q j
i )

2L)kb j
i (x)h(x) dx

∣∣∣∣∣
= cΨ

∣∣∣∣∣∫
Rn+1

+

t4(`(Q j
i )

2L)kLΦ(t
√

L)(χT j
i
t
√

Le−t
√

L) f (x)h(x)
dx dt

t

∣∣∣∣∣
≤C`(Q j

i )
2
∫
Rn+1

+

|(χT j
i
t
√

Le−t
√

L) f (x)t2(k+1)Lk+1Φ(t
√

L)(h)(x)|
dx dt

t

≤C`(Q j
i )

2
("

T j
i

|t
√

Le−t
√

L f (x)|2
dx dt

t

)1/2

×

("
Rn+1

+

|(t2L)k+1Φ(t
√

L)(h)(x)|2
dx dt

t

)1/2

≤C`(Q j
i )

2
("

T j
i

|t
√

Le−t
√

L f (x)|2
dx dt

t

)1/2

.

Note that the first inequality is obtained from the fact that 0 < t < 6
√

n`(Q j
i ) and the

third inequality follows from (2.5).
Therefore, in order to prove our claim, it suffices to show that∫

T j
i

|t
√

Le−t
√

L f ( y)|2
dy dt

t
≤C22i|Q j

i |. (3.2)

Let us show that (3.2) is satisfied. Let ϕ ∈C∞0 (Rn) be as in Lemma 2.2 and set

F j
i = 10

√
nQ j

i \ Oi+1.

We first show that, for all ( y, t) ∈ T j
i ,

|ϕt ∗ χF j
i
( y)| ≥C. (3.3)

Indeed, for any ( y, t) ∈ T j
i , we can obtain

B( y, t) ⊆ 10
√

nQ j
i

and
B( y, t) ∩ cO∗i+1 , ∅.

This shows that there exists x0 ∈ B( y, t) ∩ cO∗i+1 such that

M(χOi+1 )(x0) ≤ 2−(n+1).

It then follows that
|B( y, t) ∩ Oi+1| ≤ 2−(n+1)|B( y, t)|.
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This implies that

|B( y, t/2) ∩ F j
i | ≥ |B( y, t/2) ∩ 10

√
nQ j

i | − |B( y, t/2) ∩ Oi+1|

≥ |B( y, t/2)| − 2−(n+1)|B( y, t)|

= 2−(n+1)|B( y, t)|

and then, for any ( y, t) ∈ T j
i ,

|ϕt ∗ χF j
i
( y)| =

∣∣∣∣∣∫ ϕt( y − z)χF j
i
(z) dz

∣∣∣∣∣ ≥ t−n|B( y, t/2) ∩ F j
k | ≥C

which proves estimate (3.3).
By Lemma 2.2, we have∫

T j
i

|t
√

Le−t
√

L f ( y)|2
dy dt

t

≤C
∫
Rn+1

+

|t∇Xe−t
√

L f ( y)|2|ϕt ∗ χF j
i
( y)|2

dy dt
t

≤C
(∫
Rn+1

+

|e−t
√

L f ( y)|2|ψt ∗ χF j
i
( y)|2

dy dt
t

+

∫
Rn
| f (x)|2|χF j

i
(x)|2 dx

)
=: T1 + T2.

Observe that if ψt ∗ χF j
i
( y) , 0, then F j

i ∩ B( y, t) , ∅ and there exists an element

x0 ∈ B( y, t) ∩ (10
√

nQ j
i ) ∩

cOi+1.

This gives us that
|e−t
√

L f ( y)| ≤ f ∗L (x0) ≤ 2i+1.

Hence

T1 ≤C22i+2
∫
Rn+1

+

|ψt ∗ χF j
i
( y)|2

dy dt
t
≤C22i|Q j

i |.

Also

T2 ≤C22i+2
∫
Rn
|χF j

i
(x)|2 dx ≤C22i|Q j

i |

and the estimate (3.2) follows readily.
We have shown that, up to normalization by a multiplicative constant, the a j

i are
(1, 2)-atoms associated with the ball B(x j

i , c1`(Q
j
i )) for some constant c1 where x j

i is
the center of the cube Q j

i . This proves that f has an atomic decomposition as in (1.2).
To prove the converse we assume that f =

∑
j λ ja j where the a j are (1, 2)-atoms

and
∑

j |λ j| <∞. In this case, it was proved in [17, Theorem 7.4] that f ∈ H1
L(Rn). We

omit the details here. The proof of Theorem 1.1 is now complete. �

4. Proof of Theorem 1.2

In this section we shall work exclusively with the domain Rn+1
+ × Rn+1

+ and its
distinguished boundary Rn × Rn. If x = (x1, x2) ∈ Rn × Rn, then we shall denote

https://doi.org/10.1017/S1446788711001376 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001376


[11] An atomic decomposition for Hardy spaces 135

by Γ(x) the product cone Γ(x) = Γ(x1) × Γ(x2), where

Γ(xi) = {( yi, ti) ∈ Rn+1
+ | |xi − yi| < ti}

for i = 1, 2. If (x, t) := ((x1, t1), (x2, t2)) ∈ Rn+1
+ × Rn+1

+ , then we shall write

Bx,t := B(x1, t1) × B(x2, t2)

for the product ball.
For any open set Ω ⊆ R2n, the tent over Ω, denoted by Ω̂, is the set

{(x, t) ∈ Rn+1
+ × Rn+1

+ | Bx,t ⊆Ω}.

Let m(Ω) denote the set of maximal dyadic subrectangles of Ω. Let m1(Ω) denote
the subset of those dyadic subrectangles R = I × J of Ω that are maximal in the x1

direction. In other words, if S = I′ × J ⊇ R is a dyadic subrectangle of Ω, then I = I′.
Similarly, define m2(Ω) to be the collection of those dyadic subrectangles of Ω that are
maximal in the x2 direction. LetMs denote the strong maximal operator, that is, for
any x ∈ R2n let

Ms f (x) = sup
t1>0,t2>0

1
|Bx,t |

∫
Bx,t

| f ( y1, y2)| dy1 dy2. (4.1)

In order to prove Theorem 1.2 we need some auxiliary results. The first one is Journé’s
covering lemma (see [20]).

L 4.1. Let Ω be an open subset of Rn × Rn and let R = I × J ∈ m2(Ω) where I, J
are dyadic cubes of Rn. Suppose that Î is the biggest dyadic cube of Rn containing I
such that Î × J ⊆Ω∗ where

Ω∗ = {x ∈ R2n | MχΩ(x) > 1/2}.

We set γ1(R) = |Î|/|I| and define γ2 similarly. Then for any δ > 0,∑
R∈m2(Ω)

|R|γ−δ1 (R) ≤ cδ|Ω|

and ∑
R∈m1(Ω)

|R|γ−δ2 (R) ≤ cδ|Ω|

where cδ is a constant depending only on δ and not on Ω.

For every i = 1, 2 we let ∇Xi = (∇xi , ∂ti ). In the following lemma we assume that
ϕ ∈C1

0(Rn) is nonnegative, radial and nonincreasing. We also assume that ϕ = 1 on
B(0, 1/2), supp ϕ ⊆ B(0, 1) and

∫
ϕ(x) dx = 1.

L 4.2. For every f , g ∈ L2(R2n) and i = 1, 2 there exist vector-valued functions
ψ(i) ∈C∞0 (Rn) satisfying the conditions supp ψ(i) ⊆ B(0, 1),

∫
Rn ψ

(i)(x) dx = 0 and
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such that∫
Rn+1

+ ×R
n+1
+

|t1∇X1 e−t1
√

L ⊗ t2∇X2 e−t2
√

L f ( y1, y2)|2|(ϕt1 ⊗ ϕt2 ) ∗ g( y1, y2)|2
dy dt
t1t2

≤

∫
Rn+1

+ ×R
n+1
+

|e−t1
√

L ⊗ e−t2
√

L f ( y1, y2)|2|(ψ(1)
t1 ⊗ ψ

(2)
t2 ) ∗ g( y1, y2)|2

dy dt
t1t2

+

∫
Rn+1

+ ×R
n
|e−t1

√
L f ( y1, x2)|2|ψ(1)

t1 ∗ g( y1, x2)|2
dy1 dt1

t1
dx2

+

∫
Rn×Rn+1

+

|e−t2
√

L f (x1, y2)|2|ψ(2)
t2 ∗ g(x1, y2)|2

dy2 dt2
t2

dx1

+

∫
Rn×Rn

| f (x1, x2)|2|g(x1, x2)|2 dx1 dx2.

P. Repeated applications of Lemma 2.2 can be used to prove Lemma 4.2. �

Finally we state the following lemma whose proof we omit since it is similar to that
of [17, Lemma 4.3].

L 4.3. Suppose that T is a bounded sublinear operator on L2(R2n) and that for
every product (1, 2)-atom a on product domains we have

‖Ta‖L1(R2n) ≤C

where the constant C is independent of a. Then for any decomposition of the form
given in (1.3) of f we have

‖T f ‖L1(R2n) ≤C
∞∑
j=1

|λ j|.

P  T 1.2 By condition (1.1) for every K = 0, 1, . . . there exists a constant
CK such that the kernel pt,K of the operator (t

√
L)2Ke−t

√
L satisfies the condition that

|pt,K(x, y)| ≤CK
t

(t + |x − y|)n+1
∀t > 0 (4.2)

and almost every x, y ∈ Rn (see, for instance, [17, Lemma 7.2]).

Step 1. Let f =
∑

j λ ja j where the a j are product (1, 2)-atoms and
∑∞

j=1 |λ j| <∞.
Recall that the strong maximal operator Ms defined in (4.1) is bounded on L2(R2n)
(see [14]). This, together with condition (1.1), gives us that

‖ f ∗L‖L2(R2n) ≤C‖Ms f ‖L2(R2n) ≤C‖ f ‖L2(R2n).

By Lemma 4.3, it is enough to show that ‖a∗L‖L1(R2n) ≤C for every product (1, 2)-atom
a, for some constant C which is independent of a.
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Suppose that

a =
∑

R∈m(Ω)

aR =
∑

R∈m(Ω)

(L ⊗ L)bR

is a product (1, 2)-atom supported on some open subset Ω of R2n. For any maximal
dyadic subrectangle R = I × J ∈ m(Ω) let `(I), `(J) be the side-lengths of cubes I and
J and let I′ be the longest dyadic interval containing I so that

I′ × J ⊆Ω∗ = {x ∈ R2n | Ms(χΩ)(x) > 1/2}.

Then I′ × J is in m1(Ω∗). Let S be the longest dyadic interval so that S ⊇ J and
I′ × S ⊆Ω∗∗ where

Ω∗∗ = {x ∈ R2n | Ms(χΩ∗)(x) > 1/2}.

Let R̃ be the 10-fold dilate of I′ × S concentric with I′ × S . Clearly, an application
of the strong maximal theorem (see [8, 19] for the proof) shows that∣∣∣∣∣⋃ R̃

∣∣∣∣∣ ≤ c|Ω∗∗| ≤ c|Ω∗| ≤ c|Ω|.

We then have∫
⋃

R̃
a∗L(x) dx ≤ C

∣∣∣∣∣⋃ R̃
∣∣∣∣∣1/2‖a∗L‖L2(R2n) ≤C

∣∣∣∣∣⋃ R̃
∣∣∣∣∣1/2‖Ms(a)‖L2(R2n)

≤ C|Ω|1/2‖a‖L2(R2n) ≤C|Ω|1/2|Ω|−1/2 ≤C.

We now find an estimate for ∫
(
⋃

R̃)c
a∗L(x) dx ≤C.

We can write∫
(
⋃

R̃)c
a∗L(x) dx ≤

∑
R∈m(Ω)

∫
(R̃)c

(aR)∗L(x) dx

≤
∑

R∈m(Ω)

∫
x1<10I′

(aR)∗L(x) dx +
∑

R∈m(Ω)

∫
x2<10S

(aR)∗L(x) dx.

We only need to calculate the estimate for the first term above since the proof of the
estimate for the second term is similar.

Observe that∑
R∈m(Ω)

∫
x1<10I′

(aR)∗L(x) dx =
∑

R∈m(Ω)

(∫
x1<10I′

∫
x2∈10J

+

∫
x1<10I′

∫
x2<10J

)
(aR)∗L(x) dx

=: E1 + E2.
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By Hölder’s inequality, we have

E1 ≤
∑

R∈m(Ω)

|J|1/2
∫

x1<100I′
‖(aR)∗L(x1, ·)‖L2(dx2) dx1

≤ C
∑

R∈m(Ω)

|J|1/2
∫

x1<100I′

{∫
Rn

sup
|x1−y1 |<t1

|e−t1
√

LaR( y1, x2)|2 dx2

}1/2

dx1

≤ C
∑

R∈m(Ω)

|J|1/2
∫

x1<100I′

{∫
Rn

sup
|x1−y1 |<t1

t1<`(I)

|e−t1
√

LaR( y1, x2)|2 dx2

}1/2

dx1

+ C
∑

R∈m(Ω)

|J|1/2
∫

x1<100I′

{∫
Rn

sup
|x1−y1 |<t1

t1≥`(I)

|e−t1
√

LaR( y1, x2)|2 dx2

}1/2

dx1

=: E11 + E12.

We consider the term E11 above. Let xI denote the center of cube I. Note that
x1 < 100I′ and |x1 − y1| < t1 < `(I). It follows from the estimate (4.2) that

|e−t1
√

LaR(·, x2)( y1)| ≤C
∫
Rn

t1
(t1 + |y1 − z1|)n+1

|aR(z1, x2)| dz1

≤C
`(I)

|x1 − xI |
n+1
‖aR(·, x2)‖L1(Rn)

≤C|I|1/2
`(I)

|x1 − xI |
n+1
‖aR(·, x2)‖L2(Rn)

(4.3)

which, in combination with Lemma 4.1, gives us that

E11 ≤ C
∑

R∈m(Ω)

|J|1/2|I|1/2
{∫

x1<100I′

`(I)
|x1 − xI |

n+1
dx1

}
‖aR‖L2(R2n)

≤ C
∑

R∈m(Ω)

|R|1/2‖aR‖L2(R2n)γ1(R)−1

≤ C
( ∑

R∈m(Ω)

‖aR‖
2
L2(R2n)

)1/2( ∑
R∈m(Ω)

|R|γ1(R)−2
)1/2

≤ C.

For the term E12 above, we apply the definition of the product (1, 2)-atom to obtain

|e−t1
√

LaR(·, x2)( y1)|

≤

(
`(I)
t1

)2

|t2
1Le−t1

√
L`(I)−2(L0 ⊗ L1)bR(·, x2)( y1)|

≤C
(
`(I)
t1

)2 ∫
Rn

t1
(t1 + |y1 − z1|)n+1

|`(I)−2(L0 ⊗ L1)bR(·, x2)(z1)| dz1.
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Note that
x1 < 100I′, |x1 − y1| < t1, `(I) ≤ t1, z1 ∈ I.

We can obtain the estimate

t1 + |y1 − z1| ≥ |x1 − xI |/2

and deduce that

|e−t1
√

LaR(·, x2)( y1)| ≤C
`(I)

|x1 − xI |
n+1
‖`(I)−2(L0 ⊗ L1)bR(·, x2)‖L1(Rn). (4.4)

It follows from (4.4) and Hölder’s inequality that

E12 ≤ C
∑

R∈m(Ω)

|J|1/2|I|1/2
∫

x1<100I′

`(I)
|x1 − xI |

n+1
dx1

× ‖`(I)−2(L0 ⊗ L1)bR‖L2(R2n)

≤ C
∑

R∈m(Ω)

|R|1/2γ1(R)−1‖`(I)−2(L0 ⊗ L1)bR‖L2(R2n)

≤ C
( ∑

R∈m(Ω)

|R|γ1(R)−2
)1/2( ∑

R∈m(Ω)

`(I)−4‖(L0 ⊗ L1)bR‖
2
L2(R2n)

)
≤ C

which, together with the estimate of E11, gives us that E1 ≤C.
Consider the term E2. We first estimate the maximal function (aR)∗L. Now

(aR)∗L(x) = sup
|y2−x2 |<t2

sup
|y1−x1 |<t1

|e−t1
√

L ⊗ e−t2
√

LaR( y1, y2)|

≤ sup
|y2−x2 |<t2

t2<`(J)

sup
|y1−x1 |<t1

t1<`(I)

|e−t1
√

L ⊗ e−t2
√

LaR( y1, y2)|

+ sup
|y2−x2 |<t2

t2<`(J)

sup
|y1−x1 |<t1

t1≥`(I)

|e−t1
√

L ⊗ e−t2
√

LaR( y1, y2)|

+ sup
|y2−x2 |<t2

t2≥`(J)

sup
|y1−x1 |<t1

t1<`(I)

|e−t1
√

L ⊗ e−t2
√

LaR( y1, y2)|

+ sup
|y2−x2 |<t2

t2≥`(J)

sup
|y1−x1 |<t1

t1≥`(I)

|e−t1
√

L ⊗ e−t2
√

LaR( y1, y2)|

=: E21 + E22 + E23 + E24.

We only need to estimate the term E22 since the estimates of the remaining terms are
similar.
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Applying (4.4) with aR(·, x2) replaced by e−t2
√

LaR(·, y2), we obtain

E22 ≤ C sup
|y2−x2 |<t2

t2<`(J)

`(I)
|x1 − xI |

n+1
‖`(I)−2(L0 ⊗ e−t2

√
LL1)bR(·, y2)‖L1(Rn)

≤ C
`(I)

|x1 − xI |
n+1

∥∥∥∥∥ sup
|y2−x2 |<t2

t2<`(J)

|(`(I)−2L0 ⊗ e−t2
√

LL1)bR(·, y2)|
∥∥∥∥∥

L1(Rn)
.

Applying (4.3) with aR(·, x2) replaced by (`(I)−2L0 ⊗ L1)bR(x1, ·), together with
Hölder’s inequality, we obtain

E22 ≤ C
`(I)

|x1 − xI |
n+1

`(J)
|x2 − xJ |

n+1
‖(`(I)−2L0 ⊗ L1)bR‖L1(Rn×Rn)

≤ C
`(I)

|x1 − xI |
n+1

`(J)
|x2 − xJ |

n+1
|R|1/2‖(`(I)−2L0 ⊗ L1)bR‖L2(Rn×Rn).

A similar argument to that given for E22 shows that

(aR)∗L(x) ≤ C
`(J)

|x2 − xJ |
n+1

`(I)
|x1 − xI |

n+1
|R|1/2

×

1∑
i, j=0

`(I)2i−2`(J)2 j−2‖(Li ⊗ L j)bR‖L2(Rn×Rn).

Hence

E2 =
∑

R∈m(Ω)

∫
x1<10I′

∫
x2<10J

(aR)∗L(x) dx

≤
∑

R∈m(Ω)

`(I)/`(I′)|R|1/2
1∑

i, j=0

`(I)2i−2`(J)2 j−2‖(Li ⊗ L j)bR‖L2(Rn×Rn)

≤ C
∑

R∈m(Ω)

|R|1/2γ1(R)−1
1∑

i, j=0

`(I)2i−2`(J)2 j−2‖(Li ⊗ L j)bR‖L2(Rn×Rn).

Applying Lemma 4.1 and the definition of product (1, 2)-atom, together with Hölder’s
inequality, we obtain the estimate E2 ≤C. We thus obtain the required estimate
‖a∗L‖L1(R2n) ≤C and can deduce that f ∈ H1

L(Rn × Rn).

Step 2. Let
f ∈ H1

L(Rn × Rn) ∩ L2(Rn × Rn).

We begin with a version of the Calderón reproducing formula. Let Ψ(x) = x4Φ(x) be
the function in Lemma 2.1. Since f ∈ L2(Rn × Rn), applying the L2-functional calculus
gives us that

f = cΨ

∫ ∞

0

∫ ∞

0
Ψt1 (
√

L)t1
√

Le−t1
√

L ⊗ Ψt2 (
√

L)t2
√

Le−t2
√

L f
dt

t1t2
. (4.5)
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For k = 0, ±1, . . . we set

Ek = {x | f ∗L (x) > 2k},

E∗k = {x | MsχEk (x) > 2−(2n+1)}

and
E∗∗k = {x | MsχE∗k

(x) > (4n)−n}.

Then
Ek ⊆ E∗k ⊆ E∗∗k and |E∗∗k | ≤C|E∗k | ≤C′|Ek|.

We define Tk := Ê∗k \ Ê∗k+1 and apply formula (4.5) to write

f =
∑
k∈Z

λkak

where λk = 2k|E∗k | and

ak = λ−1
k cΨ

∫ ∞

0

∫ ∞

0
Ψt1 (
√

L)Ψt2 (
√

L)(χTk t1
√

Le−t1
√

L ⊗ t2
√

Le−t2
√

L) f
dt

t1t2
.

It is clear that ∑
k

|λk| ≤C
∑

k

2k|E∗k | ≤C‖ f ∗L‖L1(R2n).

We claim that for each k ∈ Z the term ak is a product (1, 2)-atom associated with the
open set E∗∗k for some constant C.

Let us prove the claim. First, it follows by Lemma 2.1 that the integral kernel
KΨt(

√
L) of the operator Ψt(

√
L) has its support contained in

{(x, y) ∈ Rn × Rn | |x1 − y1| ≤ t1, |x2 − y2| ≤ t2}.

This, together with the definition of Tk, shows that supp ak ⊆ E∗∗k . Second, for any
dyadic rectangle R = I × J of Rn × Rn, we define

R+ =

{
( y1, y2, t1, t2) | y1 ∈ I, y2 ∈ J,

`(I)
2

< t1 ≤ `(I),
`(J)

2
< t1 ≤ `(J)

}
.

It can be verified that if Tk ∩ R+ , ∅, then R ⊆ E∗∗k . Applying the definition of R+, we
obtain Tk =

⋃
R(Tk ∩ R+) where the R are all dyadic rectangles of Rn × Rn. We can

further decompose ak as follows:

ak =
∑

R̄∈m(E∗∗k )

∑
R⊆R̄

λ−1
k

×

∫ ∞

0

∫ ∞

0
Ψt1 (
√

L)Ψt2 (
√

L)(χTk t1
√

Le−t1
√

L ⊗ t2
√

Le−t2
√

L) f
dt

t1t2

=:
∑

R̄∈m(E∗∗k )

ak,R̄ =:
∑

R̄∈m(E∗∗k )

(L ⊗ L)bk,R̄

where m(E∗∗k ) denotes the set of all maximal dyadic rectangles of E∗∗k .
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By Lemma 2.1, if i, j = 0, 1, then

supp((Li ⊗ L j)bk,R̄) ⊆ 2R̄.

To continue, for each R̄ we consider some h ∈ L2(R̄) such that ‖h‖L2(R̄) = 1. Then for
every k ∈ Z, we have

‖ak,R̄‖L2 = sup
‖h‖L2≤1

|〈ak,R̄, h〉|

≤ C2−k|E∗k |
−1 ×

(∑
R⊆R̄

∫
Tk∩R+

|t1∇X1 e−t1
√

L ⊗ t2∇X2 e−t2
√

L f ( y1, y2)|2
dy dt
t1t2

)1/2

.

In order to verify that ∑
R̄∈m(E∗∗k )

‖ak,R̄‖
2
2 ≤C|E∗∗k |

−1,

it is enough to prove that∫
Tk

|t1∇X1 e−t1
√

L ⊗ t2∇X2 e−t2
√

L f ( y1, y2)|2
dy dt
t1t2

≤C22k|E∗k |. (4.6)

We now prove inequality (4.6). Let ϕ ∈C∞0 be the function in Lemma 4.2 and set
Fk = E∗k \ Ek+1. The argument given to prove formula (3.3) shows that

|(ϕt1 ⊗ ϕt2 ) ∗ χF( y)| ≥C

for all ( y, t) ∈ Tk. This, together with Lemma 4.2, gives us that∫
Tk

|t1∇X1 e−t1
√

L ⊗ t2∇X2 e−t2
√

L f ( y1, y2)|2
dy dt
t1t2

≤

∫
Rn+1

+ ×R
n+1
+

|t1∇X1 e−t1
√

L ⊗ t2∇X2 e−t2
√

L f ( y1, y2)|2|(ϕt1 ⊗ ϕt2 ) ∗ χFk ( y)|2
dy dt
t1t2

≤

∫
Rn+1

+ ×R
n+1
+

|e−t1
√

L ⊗ e−t2
√

L f ( y1, y2)|2|(ψ(1)
t1 ⊗ ψ

(2)
t2 ) ∗ χFk ( y1, y2)|2

dy dt
t1t2

+

∫
Rn+1

+ ×R
n
|e−t1

√
L f ( y1, x2)|2|ψ(1)

t1 ∗ χFk ( y1, x2)|2
dy1 dt1

t1
dx2

+

∫
Rn×Rn+1

+

|e−t2
√

L f (x1, y2)|2|ψ(2)
t2 ∗ χFk (x1, y2)|2

dy2 dt2
t2

dx1

+

∫
Rn×Rn

| f (x1, x2)|2|χFk (x1, x2)|2 dx1 dx2

=: I1 + I2 + I3 + I4.

In order to estimate the term I1, we note that if

(ψ(1)
t1 ⊗ ψ

(2)
t2 ) ∗ χFk ( y1, y2) , 0,
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then Fk ∩ By,t , ∅. Moreover, there exists

x0 = (x0
1, x0

2) ∈ By,t ∩ E∗k ∩
cEk+1

and we have
|e−t1

√
L ⊗ e−t2

√
L f ( y1, y2)| ≤ f ∗L (x0) ≤ 2k+1

which gives us that I1 ≤C22k|E∗k |. We similarly have

I2 + I3 ≤C22k|E∗k |.

We now obtain an estimate for the term I4. It follows from the inequality f (x1, x2) ≤
f ∗L (x1, x2) that

I4 ≤C22k|E∗k |.

The desired estimate (4.6) follows easily and then∑
R̄∈m(E∗∗k )

‖ak,R̄‖
2
L2(R2n) ≤C|E∗∗k |

−1.

A similar argument to the one given above shows that

∑
R̄∈m(E∗∗k )

1∑
i, j=0

`(I)4i−4`(J)4 j−4‖(Li ⊗ L j)bk,R̄‖
2
L2(R2n) ≤C|E∗∗k |

−1.

We have shown that for every k ∈ Z the expression C−1ak is a product (1, 2)-atom
associated with the open set E∗∗k for some constant C. This shows that f has an
decomposition of the form given in (1.3). The proof of Theorem 1.2 is complete. �
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