
Canad. Math. Bull. Vol. 57 (4), 2014 pp. 697–707
http://dx.doi.org/10.4153/CMB-2014-032-4
c©Canadian Mathematical Society 2014

On the Monodromy of Milnor Fibers of
Hyperplane Arrangements

Pauline Bailet

Abstract. We describe a general setting where the monodromy action on the first cohomology group
of the Milnor fiber of a hyperplane arrangement is the identity.

1 Introduction

Let A = {H1, . . . ,Hd} ⊂ Cn+1 be a central arrangement of d hyperplanes with
Milnor fiber FA and intersection lattice L(A). For any edge X ∈ L(A), we denote the
corresponding subarrangement by AX := {H ∈ A | X ⊂ H}. We associate with A

the projective arrangement A′ ⊂ Pn
C obtained by associating with a hyperplane H ∈

A, given by `H = 0, the hyperplane H′ ∈ Pn
C defined by the same equation `H = 0.

We denote by M(A) and M(A′) the complements of A and A′.
Consider the Orlik–Solomon algebra A∗R(A) of A with coefficients in a unitary

commutative ring R and the corresponding Aomoto complex
(

A∗R(A), ω1∧
)

, where
ω1 =

∑
H∈A aH ∈ A1

R(A). Here aH ∈ A1
R(A) denotes the element of A1

R(A) corre-
sponding to the hyperplane H, see [16].

Let λ = exp(2
√
−1π/d). For q ≥ 0, we denote by Hq(FA)λk the λk-eigenspace of

the monodromy operator hq : Hq(FA,C)→ Hq(FA,C), for 0 ≤ k ≤ d − 1. There is
a well-known relation between these eigenspaces and the cohomology of M(A′) with
coefficients in a rank one local system [2, 5]:

(1.1) Hq(FA)λk = Hq
(

M(A′),Lλk

)
,

where Lλk is the rank one local system on M(A′) whose monodromy around any hy-
perplane of A′ is λk. The main result of this note, Theorem 1.1 below, is a vanishing
result describing many situations where Hq(FA)λk = 0 for k 6= 0.

Let us begin by introducing a new combinatorial object associated with a hyper-
plane arrangement A, namely a graph G(A), as follows:

• The vertices of G(A) correspond to the hyperplanes of A.
• Two different vertices H1 and H2 are linked by an edge (we will write H1 − H2) if

and only if AX = {H1,H2}, where X = H1 ∩H2.

We say that such a graph is connected if for any two vertices H1 and H2, we can find
an edge sequence linking H1 and H2.
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Note that graphs have been considered whose vertices are intersection points
(rather than hyperplanes), see for instance [10], [11], and [21].

With the previous notations we have the following main result.

Theorem 1.1 Suppose the following assumptions are verified.

(i) The graph G(A) is connected.
(ii) For every codimension 2 intersection X of hyperplanes in A, we have |AX| ≤ 9.
(iii) We have either 6 - d, or there exists a hyperplane H ∈ A such that if X is an

intersection of hyperplanes of A of codimension 2, X ⊂ H, then |AX| 6= 6.

Then H1(FA,C) = H1(FA)1, i.e., H1(FA)λk = 0 for k 6= 0.

Remark 1.2 (i) We have H1(FA)1 = H1
(

M(A′),Lλ0

)
= H1

(
M(A′),C

)
= Cd−1.

Thus, Theorem 1.1 gives a large number of situations where H1(FA,C) is determined
by the intersection lattice L(A). Indeed, the graph G(A) is constructed with the in-
formation given by L(A). In general, the question whether the cohomology of FA

is determined by L(A) is still open, even if many advances have been made; see for
instance the results of A. Măcinic and S. Papadima [14] for the first Betti number of
graphic arrangements and the results of M. Yoshinaga [22, 23] on real line arrange-
ments. More recently, S. Papadima and A. Suciu [18] gave a positive answer to this
question and an explicit formula for h1 in terms of the cohomology of the Aomoto
complex

(
A∗R(A), ω1∧

)
with coefficients in R = Z3 = Z/3Z when every codimen-

sion 2 intersection X of hyperplanes in A satisfies |AX| ≤ 3.
(ii) By taking a generic 3-dimensional subspace E ⊂ Cn+1 and replacing A′ by the

corresponding line arrangement in P(E) = P2
C, we can consider from the beginning

that n = 2. This follows from the Zariski Theorem of Lefschetz type due to Hamm,
Hamm–Lê and Goresky–MacPherson, see for instance [4, p. 25] for the simplest ver-
sion. Moreover, in the case of a line arrangement, the action of h1 determines all the
actions h∗ in view of the usual formula for the zeta-function of the monodromy of the
Milnor fiber of a homogeneous polynomial, see for instance [4, p. 107]. Alternatively,
one may use the equality of Euler characteristics E

(
M(A′),Lλk

)
= E

(
M(A′),C

)
,

see for instance [5, p. 49].
(iii) The case where every two distinct lines H,H′ of A are linked by an edge

corresponds to the case where A is generic, and then Theorem 1.1 follows from [2,
Theorem 3.2].

The proof of Theorem 1.1 uses a deep result of Papadima and Suciu [17] on res-
onance varieties with coefficients in a finite field and a vanishing result of D. Cohen,
A. Dimca and P. Orlik [3], obtained via perverse sheaves as explained in detail in [5].
As a corollary, we apply Theorem 1.1 to the braid arrangement to recover the results
of S. Settepanella, A. Măcinic and S. Papadima in this particular case.

2 Demonstration of Theorem 1.1

The first result explains the role played by the graph G(A) in this story.

https://doi.org/10.4153/CMB-2014-032-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-032-4


On the Monodromy of Milnor Fibers of Hyperplane Arrangements 699

Lemma 2.1 Suppose the graph G(A) is connected. Then H1
(

A∗R(A), ω1∧
)

= 0 for
any unitary commutative ring R.

Proof We show that ker{A1
R

ω1∧
−−→ A2

R} = R·ω1. Let b =
∑

H∈A bHaH be an element
of A1

R(A). For all X ∈ L(A), we let ω1X =
∑

H|X⊂H aH , and bX =
∑

H|X⊂H bHaH . We

have that A2
R(A) =

⊕
X∈L2(A) A2

R(AX), with L2(A) = {X ∈ L(A) | codim X = 2},
by the Brieskorn decomposition theorem [16]. Hence we have

ω1 ∧ b = 0R ⇔ ω1X ∧ bX = 0R, ∀X ∈ L2(A).

So, suppose ω1 ∧ b = 0R, and let us show that bH = bH′ , for all H 6= H′ ∈ A.
Let H,H′ be two distinct hyperplanes of A. Then X = H ∩ H′ ∈ L2(A), and one

of the following holds:
• H and H′ are linked with an edge and AX = {H,H′}. In this case we have
ω1X ∧ bX = 0R ⇒ (aH + aH′) ∧ (bHaH + bH′aH′) = 0R ⇒ bH = bH′ .

• H and H′ are not directly linked by an edge but there exist hyperplanes Hi1 , . . . ,Him

of A such that H and Hi1 , Hi1 and Hi2 , . . . ,Him and H′ are linked. With the same
considerations as in the first case, we have that bH = bHi1

, bHi1
= bHi2

, . . . , bHim
=

bH′ , so bH = bH′ .

Hence b and ω1 are proportional and H1(A∗R, ω1∧) = 0.

A shorter proof of Lemma 2.1 can be obtained using the connectivity of G(A) and
[13, Lemma 3.3], or [14, Lemma 4.9] if R = Zp with p prime.

Remark 2.2 In fact, a more general version of Lemma 2.1 holds. If, for all H ∈ A,
ω =

∑
H∈A ωHaH satisfies ωH ∈ R× and the graph G(A) is connected, then we

have H1
(

A∗R(A), ω∧
)

= 0 for any unitary commutative ring R. Indeed, suppose
ω ∧ b = 0R. If H and H′ are linked by an edge, then

(ωHaH + ωH′aH′) ∧ (bHaH + bH′aH′) = 0R ⇒ ωHbH′ − ωH′bH = 0R

⇒ ∃t ∈ R such that

{
bH = tωH ,

bH′ = tωH′ .

If there exist hyperplanes Hi1 , . . . ,Him of A such that H and Hi1 , Hi1 and Hi2 , . . . ,Him

and H′ are linked by an edge, then with the same considerations we have that there
exist scalars t, t1, . . . , tm in R such that{

bH = tωH ,
bHi1

= tωHi1
,

{
bHi1

= t1ωHi1
,

bHi2
= t1ωHi2

,
. . . ,

{
bHim

= tmωHim
,

bH′ = tmωH′ .

By identification we find that t = t1 = · · · = tm. Hence b and ω are proportional.
Let (kH)H∈A be a collection of integers with g.c.d. equal to 1 and define the corre-

sponding multi-arrangement Ã : Q̃ =
∏

H∈A `
kH
H = 0, see [20]. Let F̃ : Q̃ = 1 be the

corresponding Milnor fiber, and let h̃ be the corresponding monodromy x 7→ ux
with u ∈ C∗ a primitive root of the unity of order N =

∑
kH = deg Q̃. Let

ρk : π1

(
M(A)

)
→ C∗ be the representation such that ρk(γH) = uk·kH , where γH

is the meridian around the hyperplane H, and let Luk be the associated rank one lo-
cal system on M(A′). Then the analog of the formula (1.1) holds, and the interested
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reader may try to reformulate the main results of our note for the case of multi-
arrangements. One must however add an extra condition, namely that kH 6= 0Zp for
all H ∈ A, in order to apply the above extension of Lemma 2.1 when R = Zp.

The second result is rather general, and we include it here for the reader’s sake, as
we were not able to find a proper reference.

Lemma 2.3 Let ω1 ∈ A∗R(A) be as above, and assume that ∂ω1 = d = 0 in R. Then
H1
(

A∗R(A), ω1∧
)

= H1
(

A∗R(A′), ω1∧
)

.

Proof Because A∗R(A′) = ker{A∗R(A)
∂
−→ A∗R(A)} ⊂ A∗R(A), it is clear that

H1
(

A∗R(A′), ω1∧
)
⊂ H1

(
A∗R(A), ω1∧).

Let b ∈ ker{A1
R(A)

ω1∧
−−→ A2

R(A)}. We have that ∂(ω1∧b) = d·b−ω1·∂b = −ω1·∂b =

0 ⇒ ∂b = 0 in R. Hence b ∈ ker{A1
R(A)

∂
−→ A0

R(A)} = A1
R(A′), and we have that

ker{A1
R(A)

ω1∧
−−→ A2

R(A)} ⊂ ker{A1
R(A′)

ω1∧
−−→ A2

R(A′)}, and H1
(

A∗R(A), ω1∧
)
⊂

H1
(

A∗R(A′), ω1∧
)

.

Remark 2.4 If we take H′d to be the hyperplane at infinity, we can define A∗R(A′) as
the Orlik–Solomon algebra of the affine arrangement A′ = {H′1, . . . ,H′d−1} ⊂ Cn.

Let ω′1 =
∑d−1

i=1 a′Hi
∈ A1

R(A′), where a′Hi
∈ A1

R(A′) denotes the element of A1
R(A′)

corresponding to the hyperplane H′i . Then a′Hi
= aHi − aHd for 1 ≤ i ≤ d − 1.

So if R is a finite field of characteristic p, with p a prime dividing d, then we have

ω′1 =
∑d−1

i=1 (aHi − aHd ) =
∑d−1

i=1 aHi − (d − 1)aHd =
∑d

i=1 aHi = ω1. Hence
H1
(

A∗R(A′), ω′1∧
)

= H1
(

A∗R(A′), ω1∧
)

.

Now we give the proof of Theorem 1.1. For this we consider two cases.
(1) If 6|d, there exists H ∈ A such that if X ∈ L2(A), X ⊂ H, then |AX| 6= 6.
So the associated projective hyperplane H′ ∈ A′ is such that if X ∈ L2(A′), X ⊂

H′, then |A′X| 6= 6. Let λk 6= 1 be a d-th root of the unity. The only edge of A′

contained in H′ of codimension 1 is H′, and the corresponding monodromy operator
of Lλk is TH′ = λk 6= 1. Let X ∈ L(A′) be a dense edge of A′ of codimension 2
contained in H′. Then the corresponding monodromy operator of Lλk about the
divisor associated to X is

TX = λk·|A′X |,

with |A′X| ∈ {3, 4, 5, 7, 8, 9}, see [5]. By using the vanishing result [5, Remark 2.4.20]
applied to Lλk , we have that

ord(λk) /∈ {2, 3, 4, 5, 7, 8, 9} ⇒ H1(FA)λk = 0.

On the other hand, for a finite field R = Zp, [17, Theorem C] with Lemmas 2.1
and 2.3 and Remark 2.4 show that if ord(λk) = ps, with p prime and s ≥ 1, i.e., if
ord(λk) ∈ {2, 3, 4, 5, 7, 8, 9}, then again H1(FA)λk = 0. Hence we have H1(FA,C) =
H1(FA)1 in all the above subcases.
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(2) Suppose 6 - d, and let X ∈ L(A′) be a dense edge of A′ of codimension 2.
With the same considerations as above, i.e., using [5, Remark 2.4.20], we have

ord(λk) /∈ {2, 3, 4, 5, 6, 7, 8, 9} ⇒ H1(FA)λk = 0.

Because ord(λk)|d, we have ord(λk) 6= 6, so ord(λk) ∈ {2, 3, 4, 5, 7, 8, 9}, and we
conclude as in the previous case, using [17, Theorem C] and Lemma 2.1.

3 Applications and Related Results

We now apply Theorem 1.1 to the braid arrangementAn ⊂ Cn+1 with Milnor fiber Fn.
Recall that An is the collection of the hyperplanes

Hi j : xi − x j = 0, 1 ≤ i < j ≤ n + 1.

Corollary 3.1 We have that H1(Fn,C) = H1(Fn)1, for any n ≥ 4.

Proof Let us show that G(An) is connected for n ≥ 4. There are two types of
intersections X ∈ L2(An).

Type 1: The intersections X = {xi = x j , xk = xl, 1 ≤ i < j < k < l ≤ n + 1}, with
corresponding subarrangement AX = {Hi j ,Hkl}.

Type 2: The intersections X = {xi = x j = xk, 1 ≤ i < j < k ≤ n + 1}, with
corresponding subarrangement AX = {Hi j ,Hik,H jk}.

Let Hi j , Hkl, i < j, k < l, be two distinct hyperplanes, and X = Hi j ∩ Hkl ∈ L2(An).
Suppose i ≤ k.

• If {i, j} ∩ {k, l} = ∅, then X is type 1 and AX = {Hi j ,Hkl}. Hence Hi j and Hkl

are linked by an edge.
• If {i, j} ∩ {k, l} 6= ∅, then three cases are possible:

(a) If j = k, then the set I = {i, j, k, l} has three elements. Because n ≥ 4, the
set {1, 2, . . . , n + 1} has at least five elements and so contains two elements
p < q such that I∩{p, q} = ∅. Hence Hi j ∩Hpq and H jl ∩Hpq are two type 1
intersections and we have that Hi j and Hpq, and Hpq and H jl, are linked by an
edge.

(b) If j = l, with the same considerations we have that there exist two elements
p < q such that Hi j and Hpq, and Hpq and Hk j , are linked by edges.

(c) If i = k, with the same considerations we have that there exist two elements
p < q such that Hi j and Hpq, and Hpq and Hil, are linked by edges.

This shows that G(An) is connected for n ≥ 4.
Moreover, it is clear that An verifies the assumptions of Theorem 1.1 because

|AnX| = 2 or 3, for all X ∈ L2(An).

Remark 3.2 For n = 3, the graph G(A3) has three connected components, so is not
connected. It is known that H1(F3,C)6=1 = H1(F3)λ2 ⊕ H1(F3)λ4 is 2-dimensional,
see [14, 19]. Similarly, for n = 2, the graph G(A2) has three connected components
and H1(F2,C)6=1 = H1(F2)λ ⊕H1(F2)λ2 is again 2-dimensional, see [14, 19]. For the
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Ceva arrangement given by

(x3 − y3)(y3 − z3)(x3 − z3) = 0,

the graph G(A) has 9 connected components (there are no edges in this case). It is
known that H1(F,C)6=1 = H1(F)λ3 ⊕H1(F)λ6 is 4-dimensional, see for instance [1].

Moreover, note that if A′ is a line arrangement in P2
C coming from a pencil having

k ≥ 3 completely reducible fibers (see [9]) then the corresponding graph G(A) has
at least k connected components.

Corollary 3.3 Assume that A′ is a line arrangement in P2
C having only double and

triple points. Assume that either

(i) the graph G(A) is connected, or
(ii) there is one line containing exactly one triple point and d is even.

Then H1(FA,C) = H1(FA)1.

Proof The case (i) follows directly from Theorem 1.1.
(ii) Let H ∈ A be the line containing exactly one triple point p. Let H1,H2 ∈ A

such thatAp = {H,H1,H2}. Every Hi /∈ Ap is linked by an edge with H, and we have
that G(A) is not connected if and only if H1 or H2 contains only triple points. For
example, if H1 would contain only triple points, we could count the hyperplanes of
A in the following manner: H1, (Hi1 ,H j1 ), (Hi2 ,H j2 ), . . . , (Hi(d−1)/2

,H j(d−1)/2
), where

the pairs (Hi ,H j) correspond to the points of multiplicity 3 contained in H1. Finally
it would imply that d = 2 · (d− 1)/2 + 1 is odd, which contradicts our assumptions.
Hence G(A) is connected and we conclude directly with Theorem 1.1.

Corollary 3.3 is a direct consequence of Theorem 1.1. The next result (with a
proof similar to the proof of Theorem 1.1) is more general, and can be obtained also
as a consequence of [12, Theorem 1.2] saying that if H1(FA,C) 6= H1(FA)1, then
A′ comes from a pencil, so G(A) is not connected. Indeed, for such a pencil, (ii) of
Proposition 3.4 is not verified except for d = 3.

Proposition 3.4 Assume that A′ is a line arrangement in P2
C having only double and

triple points. Assume that either

(i) the graph G(A) is connected, or
(ii) d = |A′| > 3 and there is one line containing exactly one triple point.

Then H1(FA,C) = H1(FA)1.

Proof The case (i) follows directly from Theorem 1.1.
(ii) Let H′ ∈ A′ be the line containing exactly one triple point p. Let H′1,H

′
2 ∈ A′

be such thatA′p = {H′,H′1,H′2}. Let λk 6= 1 be a d-th root of the unity. The only edge
of A′ of codimension 1 contained in H′ is H′, and the corresponding monodromy
operator of Lλk is TH′ = λk 6= 1. The only dense edge of codimension 2 contained
in H′ is the triple point p, and the monodromy operator of Lλk about the divisor
associated to p is Tp = λ3k. By using the vanishing result [5, Remark 2.4.20] applied
to Lλk , we have that ord(λk) 6= 3⇒ H1(FA)λk = 0.

Now let us show that H1
(

A∗Z3
(A), ω1∧

)
= 0.
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Let b =
∑

H∈A bHaH ∈ ker{ A1
Z3

(A)
ω1∧ // A2

Z3
(A) }. If Hk ∈ A\Ap, then X =

H ∩Hk is such that AX = {H,Hk} and with the same considerations as in the proof
of Lemma 2.1 we have ω1X∧bX = 0⇔ bHk = bH . We will show that bH1 = bH2 = bH .
Let Hk ∈ A\Ap, and X1 = H1∩Hk, X2 = H2∩Hk, be the corresponding intersections
with H1 and H2. We consider several cases.
• If |AX1 | = 2 and |AX2 | = 2, then ω1X1

∧ bX1 = 0 and ω1X2
∧ bX2 = 0 if and only if

bH1 = bHk and bH2 = bHk . As bHk = bH , we obtain bH1 = bH2 = bH .
• If |AX1 | = 3 and |AX2 | = 2, then AX1 = {H1,Hk,H j}, with H j 6= H,H2 (if

H j = H or H2, then X1 = p and Hk ∈ Ap), and AX2 = {H2,Hk}.
By taking {aH1 aHk , aH1 aH j} as a base of A2

Z3
(A), we have that

ω1X1
∧ bX1 = 0⇔ aH1 aHk (2bHk − bH1 − bH j ) + aH1 aH j (2bH j − bH1 − bHk ) = 0

⇔ bH1 + bHk + bH j = 0 (∗),
in Z3. With bHk = bH and bH j = bH , we obtain (∗) ⇔ bH1 = bH . We also have
ω1X2

∧ bX2 = 0⇔ bH2 = bHk . Finally bH1 = bH2 = bH .
• If |AX1 | = 3 and |AX2 | = 3, then AX1 = {H1,Hk,H j}, with H j 6= H,H2, and
AX2 = {H2,Hk,Hl}, with Hl 6= H,H1. With the same considerations as in the
previous case we have

ω1X1
∧ bX1 = 0⇔ bH1 + bHk + bH j = 0 (∗)

and
ω1X2

∧ bX2 = 0⇔ bH2 + bHk + bHl = 0. (∗∗)
With bHk = bH j = bHl = bH , we obtain (∗) ⇔ bH1 = bH , and (∗∗) ⇔ bH2 = bH .
Finally bH1 = bH2 = bH .

Hence b and ω1 are proportional and H1
(

A∗Z3
(A), ω1∧

)
= 0.

On the other hand, [17, Theorem C] with our Lemmas 2.1 and 2.3 and Remark 2.4
for R = Z3 give ord(λk) = 3⇒ H1(FA)λk = 0.

The following examples show the difficulty of the problem in the general case.
First we give an example where G(A) is not connected, showing that the conditions
(ii) and (iii) in Theorem 1.1 are not sufficient.

Example 3.5 Let A′ ⊂ P2
C be the arrangement defined by the homogeneous poly-

nomial Q(x : y :z) = xyz(x4 − y4)(y4 − z4)(x4 − z4). Lines of A′ are

{x = 0}, {y = 0}, {z = 0}, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12,

where d1, d2, d3, d4 are of the form x = αy, d5, d6, d7, d8 are of the form y = αz,
and d9, d10, d11, d12 are of the form x = αz, with α4 = 1. The intersections between
d1, d2, d3, d4 and {z = 0} are double points, and the same is true for d5, d6, d7, d8

with {x = 0}, and for d9, d10, d11, d12 with {y = 0}. The other intersections of
lines in A′ are points of multiplicity 3 or 6. Indeed, if we take i ∈ {1, 2, 3, 4} and
j ∈ {5, 6, 7, 8}, we have di ∩ d j := {x = αi y} ∩ {y = α jz}, with (αiα j)4 = 1. So,
di∩d j = di∩d j∩dk, where dk := {x = αiα jz}, k ∈ {9, 10, 11, 12}. Similarly we have
a point of multiplicity 3 if we take i ∈ {1, 2, 3, 4} and j ∈ {9, 10, 11, 12}, or if we take
i ∈ {5, 6, 7, 8} and j ∈ {9, 10, 11, 12}. Then we have three points of multiplicity 6:
d1 ∩ d2 ∩ d3 ∩ d4 ∩ {x = 0} ∩ {y = 0}, d5 ∩ d6 ∩ d7 ∩ d8 ∩ {y = 0} ∩ {z = 0}, and
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d9∩d10∩d11∩d12∩{x = 0}∩{z = 0}. Hence G(A) has three connected components
and is not connected. It’s clear that A verifies (ii) and (iii) of Theorem 1.1, and we
have that H1(FA,C) 6= H1(FA)1, see [7, Remark 3.4 (iii)].

When the assumptions of Theorem 1.1 are not verified, it is very complicated to
proceed, and we have to use other results.

Example 3.6 Let A′ ⊂ P2
C be the arrangement defined by the homogeneous poly-

nomial Q(x : y :z) = xyz(x2 − y2)(y2 − z2)(x2 − z2). With the same arguments as in
Example 3.5 we can show that G(A) is not connected and that A verifies points (ii)
and (iii) of Theorem 1.1. But here, H1(FA,C) = H1(FA)1, see [2] or [7, Remark 3.4
(ii)].

Example 3.7 Let A′ ⊂ P2
C be the arrangement with defining polynomial

Q(x : y :z) =xy(x + y)(x − y)(x + 2y)(x − 2y)(2x + y + z)(2x + y + 2z)

× (2x + y + 3z)(2x + y − z)(2x + y − 2z)(2x + y − 3z).

Here d = 12 and we have two intersections of multiplicity 6: {x = y = 0}, and
{y = −2x} ∩ {z = 0}. One can easily verify that each hyperplane contains one of
these two intersections and that G(A) is connected. Indeed, any hyperplane in{
{x = 0}, {y = 0}, {x + y = 0}, {x − y = 0}, {x + 2y = 0}, {x − 2y = 0}

}
is linked by an edge with any hyperplane in{

{2x + y + z = 0}, {2x + y + 2z = 0}, {2x + y + 3z = 0},

{2x + y − z = 0}, {2x + y − 2z = 0}, {2x + y − 3z = 0}
}
.

Hence (i) and (ii) of Theorem 1.1 are verified, but not (iii).
The minimal number of lines in A′ containing all the points of multiplicity at

least 3 is 2, so with [15, Theorem 1.1] we have that A′ belongs to the class C2, and
any rank one local system on M(A′) is admissible. Hence if we take λk 6= 1, there
exists

ω =
∑

H∈A′
ωH

d`H

`H
∈ H1

(
M(A′),C

)
such that

dim H1(FA)λk = dim H1
(

M(A′),Lλk

)
= dim H1

(
H∗
(

M(A′),C
)
, ω∧

)
.

Furthermore, it is known that exp(2π
√
−1ωH) = λk, for all H, so ωH 6= 0, ∀H.

Assume dim H1
(

H∗(M(A′),C), ω∧
)
6= 0. Then

ω ∈ R1(A′) =
{
α ∈ H1

(
M(A′),C

) ∣∣ dim H1
(

H∗
(

M(A′),C
)
, α∧

)
≥ 1
}
.

With the description of the irreductible components of the first resonance variety for
a C2 arrangement, see [8, Theorem 4.3], we have a contradiction with the fact that
ωH 6= 0, for all H.

Hence H1
(

H∗(M(A′),C), ω∧
)

= 0 and H1(FA,C) = H1(FA)1.
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Example 3.8 Let A ⊂ C4 be the arrangement defined by the homogeneous poly-
nomial Q(x, y, z, t) = xy(x− y)(x + y)(x−2y)(x + 2y)zt(z− t)(z + t)(z−2t)(z + 2t).
Here d = 12 and we have two intersections in L2(A) of multiplicity 6: {x = y = 0},
and {z = t = 0}. One can easily verify that each hyperplane contains one of these
two intersections and that G(A) is connected. Indeed, any hyperplane in{
{x = 0}, {y = 0}, {x − y = 0}, {x + y = 0}, {x − 2y = 0}, {x + 2y = 0}

}
is linked by an edge with any hyperplane in{

{z = 0}, {t = 0}, {z − t = 0}, {z + t = 0}, {z − 2t = 0}, {z + 2t = 0}
}
.

Hence (i) and (ii) of Theorem 1.1 are verified, but not (iii).
One can decompose A into two arrangements with distinct variables: A = A1 ×

A2, where A1 is defined by Q1(x, y) = xy(x − y)(x + y)(x − 2y)(x + 2y) and A2

is defined by Q2(z, t) = zt(z − t)(z + t)(z − 2t)(z + 2t). Let us take λk 6= 1 and
denote by F1 and F2 the Milnor fibers of the subarrangements A1 and A2 in C2. Then
applying [6, Theorem 1.4 (i)] we have that

H1(FA)λk =
⊕

a+b+c=1
Ha(T,C)⊗Hb(F1)λk ⊗Hc(F2)λk = 0,

so H1(FA,C) = H1(FA)1.

In fact, a more general version of Corollary 3.1 holds. Let Γ be a simple graph (that
is to say it contains no loop and no double edge) and let AΓ be the corresponding
graphic arrangement, see for instance [14]. In other words, AΓ is a subarrangement
of the braid arrangement. Such a graph Γ is composed of edges (i j), i < j, and the
corresponding arrangement AΓ is composed of the hyperplanes Hi j : xi − x j = 0,
(i j) ∈ Γ. We will denote by |Γ| the number of vertices of Γ. We say that Γ is
connected if we can link any two different vertices with an edge sequence. Let ω1 =∑

(i j)∈Γ ai j ∈ A1
R(AΓ).

We have the following result.

Lemma 3.9 Suppose Γ is connected and |Γ| ≥ 5, then H1
(

A∗R(AΓ), ω1∧
)

= 0 for
any unitary commutative ring R.

Proof Let b =
∑

(i j)∈Γ bi jai j ∈ A1
R(AΓ) be such that ω1 ∧ b = 0. Let us show that

b and ω1 are proportional. With [13, Lemma 3.3] or [14, Lemma 4.9] we have the
following:

(i) For all intersections of type 1: Hi j ∩Hkl, i < j < k < l, we have bi j = bkl.
(ii) For all intersections of type 2: Hi j ∩ Hik ∩ H jk, i < j < k, we have either

bi j = bik = b jk if 3 6= 0R, or bi j + bik + b jk = 0 if 3 = 0R.

So let us suppose that 3 = 0R, and let us take an intersection of type 2: Hi j ∩Hik∩
H jk, i < j < k. We will show that bi j = bik = b jk.

Because |AΓ| ≥ 5, there exist two additional vertices s and m, so there exist two
additional edges. Because Γ is connected, these two edges are linked either

(1) with one of the vertices of the triangle i jk,
(2) or with two different vertices of the triangle i jk,
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(3) or one of these edges is linked with a vertex of the triangle i jk, and the other is
linked with the new vertex of the first one.

By symmetry, we can assume that we are in one of the following cases (here we have
chosen i < j < k < s < m, but of course the order does not matter).

(1) If (is), (im) ∈ Γ, then one has the following.

(a) If ( js), (km) /∈ Γ, then Hi j −His −H jk −Him −Hik, and bi j = bik = b jk.
(b) If ( js), (km) ∈ Γ, then Hi j − Hkm − H js − Hik − H js − Him − H jk, and

bi j = bik = b jk.
(c) If ( js) ∈ Γ, (km) /∈ Γ, then Hik −Him −H jk, and bik = b jk. With bi j + bik +

b jk = 0, we have bi j = −2bik = bik in R.
(d) If ( js) /∈ Γ, (km) ∈ Γ, it is the symmetric case of the previous one.

(2) If (is), ( jm) ∈ Γ, then Hik−H jm−His−H jk, and bik = b jk. With bi j+bik+b jk = 0,
we have bi j = bik.

(3) If (is), (sm) ∈ Γ, then Hi j ,Hik and H jk are linked by an edge with Hsm in G(AΓ)
and we can conclude directly.

Remark 3.10 (i) We have that Γ is connected and |Γ| ≥ 5 does not imply G(AΓ) is
connected; the graphic arrangement AΓ = {H12,H13,H14,H15,H23,H34,H35} veri-
fies Γ is connected and |Γ| ≥ 5, but G(AΓ) is not connected (H13 is linked with no
hyperplane of AΓ) and we cannot apply Lemma 2.1.

(ii) If Γ is connected and |Γ| ≥ 5, then we recover Măcinic and Papadima’s re-
sults for graphic arrangements [14]. Indeed, with similar considerations as in the
proof of Theorem 1.1 and by using Lemma 3.9 instead of Lemma 2.1, we have that
H1(FAΓ

,C) = H1(FAΓ
)1.

If the graph Γ is not connected, but each of its connected components Γi satisfies
|Γi | ≥ 5, then AΓ is a product of arrangements AΓi and we can conclude using
[6, Theorem 1.4(i)].
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