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SUMMARY

Introducing a new genetic model called the discrete allelic-state model,
the evolutionary change of genetic variation of quantitative characters
within and between populations is studied under the assumption of no
selection. This model allows us to study the effects of mutation and
random genetic drift in detail. It is shown that when the allelic effects
on phenotype are additive, the rate of approach of the genetic variance
within populations to the equilibrium value depends only on the effective
population size. It is also shown that the distribution of genotypic value
often deviates from normality particularly when the effective population
size and the number of loci concerned are small. On the other hand, the
interpopulational variance increases linearly with time, if the intrapopu-
lational variance remains constant. Therefore, the ratio of interpopula-
tional variance to intrapopulational variance can be used for testing the
hypothesis of neutral evolution of quantitative characters.

The dynamics and maintenance of genetic variability of quantitative characters
were first studied by Fisher (1922). Later, Wright (1931, 1937) extended Fisher’s
work to a great extent, considering the joint effect of mutation, selection, and
random genetic drift. In these studies quantitative characters were assumed to be
controlled by many loci with two alleles at each locus. In 1965 Kimura introduced
a new genetic model in which the existence of multiple alleles with varying
phenotypic effects was assumed but no consideration was made about the effect
of genetic drift. In recent years there has been a revival of interest in Kimura’s
model, and a number of authors (e.g. Latter & Novitski, 1969 ; Latter, 1970; Lande,
1975, 1976; Cavalli-Sforza & Feldman, 1976) extended his model in various
directions.

In these studies the main concern was to explain the amount of genetic
variability maintained in a population, and little attention was paid to the genetic
differentiation among populations or species. The exception is the work by Latter
(1970) and Lande (1976), who studied the genetic variation within and between
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populations under the joint effect of centripetal (optimum model) selection,
mutation, and genetic drift. Using the method of Gaussian processes, Lande derived
a simple formula for the interpopulational variance of quantitative characters in
transient states. However, the genetic model he used is not very specific, and it
is not clear what kind of change is really occurring in the gene pool of the
population in his treatment. Furthermore, he made a number of simplifying
assumptions, which would not hold in many situations. Latter’s model was more
realistic than Lande’s but he did not give any general solution and used computer
simulation to solve some special problems.

Generally speaking, it is very difficult to develop a mathematical model for the
evolutionary change of quantitative characters. This is because most quantitative
characters are affected by both genetic and environmental factors, and environ-
mental factors alone can cause a linear temporal change which mimics a genetic
change. A good example is the increase in human stature in the last 100 years in
many industrial countries (Cavalli-Sforza & Bodmer, 1971). The linear temporal
change in the cephalic index of Japanese skulls observed in the last 500 years is
also apparently due to environmental factors (Suzuki, 1960). If this type of change
occurs, it is very difficult to develop a meaningful mathematical model. Another
problem is that the genetic change of quantitative characters is often triggered by
environmental change, and in practice, it is very difficult to know how often such
an environmental change occurred in the past.

In certain characters, however, the effect of environmental factors seems to be
relatively simple. For example, skin pigmentation in man is clearly related to
adaptation to sunlight, so that if we know the sunlight intensity for any given
population we may be able to model the evolutionary change of pigmentation. An
even simpler character in man is dermal ridge count, the variation of which does
not seem to be directly related to fitness except that of chromosomally aberrant
individuals. The heritability of this character has been estimated to be almost
100 %, (Holt, 1961). The variation in sternopleural or abdominal bristle number in
Drosophila also seems to be as trivial as human dermal ridge count and apparently
is not related to fitness except for extreme phenotypes at both ends (Clayton,
Morris & Robertson, 1957; Robertson, 1967).

In view of the existence of these simple characters we have initiated a
mathematical study of the evolutionary change of quantitative characters. Qur
model is more specific than Lande’s about the production of mutation and gene
frequency changes. In the absence of selection the mathematical treatment of our
model is relatively simple, and we can make a rigorous theoretical study about the
evolutionary change of quantitative characters. The main purpose of this paper
is to report the results of our study for this simple case. Strictly speaking, of course,
any quantitative character would be subject to some sort of selection, but the
following theory would be applicable to any weakly selected character at least
temporarily. Furthermore, it can be used for testing the effect of natural selection.
In this paper special attention will be paid to the relative' magnitude of genetic
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variation within and between populations when the populations have been
reproductively isolated for a long time. The effect of selection will be studied in
the following paper.

THE MODEL

In the genetic model used in early studies it was generally assumed that only
one pair of alleles exist at each locus and mutation occurs forward and backward
between them (Wright, 1931). This model may be called the two-allele model.
Kimura (1965) introduced a new model, in which there are an infinite number of
allelic states at each locus and the phenotypic effects of these alleles are
continuously distributed. The phenotypic effects of mutant alleles from a given
allelic state are assumed to be normally distributed around the phenotypic effect
of the original allele. Since he considered an infinitely large population, he assumed
that the number of alleles existing in a population is effectively infinite. This model
was apparently motivated by the fact that at the molecular level the number of
possible alleles at a locus is extremely large (Kimura & Crow, 1964). We call this
model the continuous allelic-state model. Lande (1975, 1976) used this model for both
infinite and finite populations.

In finite populations, however, the number of existing alleles in a population can
be very small even if the number of possible alleles is practically infinite. Indeed,
unless population size and mutation rate are extremely large, a substantial
proportion of loci are expected to be monomorphie, and polymorphic loci will have
a relatively small number of alleles (Kimura & Ohta, 1971). Statistical analyses
of biochemical data for structural genes support this view (Fuerst, Chakraborty
& Nei, 1977; Chakraborty, Fuerst & Nei, 1980), though we are not sure whether
these structural genes are really concerned with quantitative characters or not.
Clearly, we need a more realistic model in which the above property is taken into
account. We also note that mutation is a discrete change of gene, so that a discrete
distribution of mutational effects is likely to be more realistic than a continuous
distribution. In view of this situation we propose the following genetic model, which
we call the discrete allelic-state model. This model allows us to study the effects of
mutation and genetic drift more rigorously than the continuous allelic-state model
does.

Consider a character which is controlled by n loci and assume that at each locus
there is an infinite number of possible allelic states. We assume that the phenotypic
effects of the alleles are discrete as given in Figure 1. In this diagram 4, represents
an allele occupying state ¢ and having an allelic effect of ia. We assume that all
allelic effects are additive with no dominance and no epistasis and that once A;
mutates, it changes to allelic state 7+ with the binomial probability

a, =a_,= (yj:nr) 3™ for 0<r<m (la)

a,=0 for r>m. (1b)
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Note that the case of r = 0 does not really represent new mutation, but for the
mathematical convenience we call it mutation and denote the total mutation rate
by v. In the conventional definition the real mutation rate is v' = (1 —a,) v. We
also note that the mean and variance of the above distribution is 0 and m/2,
respectively. Therefore, the increment of the variance of allelic effect by mutation

Allelic state
——— - - v r Y Y T - —
—ma -2a —a 0 a 2 ma

Phenotypic effect

Fig. 1. Discrete allelic-state model used in this paper. In this model allele 4; mutates
to 4,,, with probability a, (= a_,). Allele 4, has a phenotypic effect of a:.

is vma?/2 per generation. Using this genetic model, we shall now study the genetic
variation within and between populations. At the gene level the present model is
an extension of Ohta and Kimura’s (1973) stepwise mutation model for electro-
phoretic variation to the case of m steps. In this paper, however, we are concerned
with the genetic variation of quantitative characters rather than with electro-
phoretic variation.

GENETIC VARIATION WITHIN POPULATIONS

We first consider the genetic variation within populations. Let z; and z; be the
allelic effects of the genes at the Ith locus in an individual. If we neglect the
environmental effect, the phenotypic value of this individual is given by

n
X=9+l21 (x;+21), (2)
where g is the effect of genetic background. In this paper we assume that there
is no interaction between genotype and environment, and consider only the
genetic variance. If one wants to have the phenotypic variance, he should simply
add the environmental variance to the genetic variance. We also assume that all
loci have the same mutational pressure and are subject to random genetic drift
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in the same fashion and there is no linkage disequilibrium among loci. Then, the
genetic variance of the character in the population is

ValX) = X (Vo) + Viai) ®)

Under our assumption the expectations of V(z;) and V(z]) over the stochastic
process are equal to V/2 for all loci, where V is the expected genetic variance for

one locus. Therefore, BV, (X)] = V(X) = nV. @)

Thus, if we know V, V(X) may be obtained. In the following we denote the effective
population size by N and assume that random mating occurs in every generation.

Let p; be the frequency of allele A; at a locus in the population. Then, the
variance for this locus is ¥, = 2[Zp;(ta)? — (Zp;ia)?] = 2a?[Lp,i® — (Zp;1)?], in which
2 indicates summation over all alleles. Therefore, if we know the distribution of
p;, we will be able to compute the genetic variance of quantitative characters.
However, under the present assumption the distribution of p, never reaches a stable
form but wanders back and forth on the scale of allelic states, as in the case of
the stepwise mutation model of electrophoretic mobility (Ohta & Kimura, 1973).
Yet, it is possible to determine the variance. A simple way to determine the
variance in this case is to consider the difference between the allelic affects of two
randomly chosen genes and compute its variance. Let z and z’ be the allelic effects
of two randomly chosen alleles. Then, the variance of x—«’ is V and thus equal
to the genetic variance at this locus. The variance of x—z’ can be obtained by
using the same technique as that for obtaining the expected homozygosity for the
stepwise mutation model.

Let us first consider the effect of mutation. We assume that the number of
mutations occurring at a locus in a generation follows the Poisson distribution with
mean v and the allelic state of a gene in the initial generation is 0. Then, the
probability [@,(t)] of an allele being in state 7 in the generation ¢ is given by the
following probability generating function (pgf) (see Chakraborty & Nei, 1976):

Q(s)t) = § Q,(t) st = exp [vt{(%f)m— 1}] (5)

f{=—00

This formula is obtained by noting that the pgf for the binomial distribution in
(1) is [(1+ 28+ s%)/4s]™.

Let us now consider the probability that two alleles which had the same allelic
state in generation 0 differ by & steps in allelic state in generation ¢, given that
both alleles have survived up to generation ¢. Since the distribution of mutational
effects is symmetric with respect to state 0, the pgf for this probability is obviously
given by R(s,t) = @*(s,t) (Nei & Chakraborty, 1973; Chakraborty & Nei, 1977). In
practice, however, only 2N gametes are sampled in every generation at the time
of reproduction, and thus some types of alleles may be lost from the population.
Furthermore, the probability that two randomly chosen alleles differ by & steps
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in generation ¢ should be computed by considering the contribution from all
generations in the past as well as the probability distribution of allelic states in
the initial population. If we follow Wehrhahn (1975) and Chakraborty & Nei (1976,
1977), this probability is given by the following generating function.
t
P(st) = J %Ve"/w R(s,r)dr+ P(s,0) e~t/2N R(s,t)

1]

— 1 a(s)t
2Na(s) +[P(8’O) +2Na(s)] e (6)
where a(s) = —A+2v[(1+2s+5%)/4s]™ and A = 2v+2—11\—7.
At equilibrium, i.e. when ¢ = 0, we have
1
P = ——
(5,%0) = ~ 35t ™

Therefore, the genetic variance at a locus in equilibrium is
Vo = 2Nmua?, (8)

since P’(1,00) 4+ [P’'(1,00)]—[P’(1,0)]2 = 2Nmwv. V(X) in (4) is therefore nV_,. Note
that (8) becomes identical with Latter’s (1970) equivalent forumla,
Ve = 4Nv'ma?®/2, when m = oo, as expected. When m is small, the equilibrium
variance is larger than expected from his formula.

Note that the mean of allelic difference [(P’(1,t)] is always zero. On the other
hand, the expected genetic variance, ¥, for a locus in transient states may be
obtained from equation (6). It becomes

Vt = Voo+ [VO_ Voo] e_t/er (9)

where V, is the genetic variance at time 0. It is obvious that the total genetic
variance in generation ¢ can be written as V,(X) = V(X)) +[Vo(X) — V,(X)]e¥/2V.

One important parameter in population genetics is heterozygosity, i.e. the
expected proportion of heterozygous individuals under random mating. The
expected heterozygosity for the present model may be obtained by H, = 1 — Fy(t),
where F(t) is the probability of two randomly chosen genes having the same allelic
state and given by the coefficient of s® in (6). F(t) is a complicated function of
mutation rate and population size, but the expected heterozygosity at steady state

is given by © ,
R
14+ M 2N\ M) \mr

where M = 4Nv. It is noted that in the case of m = 1, the model becomes identical
with Ohta and Kimura’s stepwise mutation model if we redefine the mutation rate
by v = (1—ay)v = v/2. Indeed, in this case H in (10) becomes 1 —(1+8Nv'),
which isidentical with Ohta and Kimura’s formula obtained by a different method.
When m # 1, the expected heterozygosity increases with increasing m, as expected
(see Table 1).

In the above we have studied the expected variance of quantitative characters.
In practice, however, the genetic variance in a population may vary from time to
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time by genetic drift even in steady state. It is therefore interesting to know the
coefficient of variation of genetic variance. The variance [V{V,(X)}] of genetic
variance in an equilibrium population is given by (A 5) in the Appendix. Therefore,
the coefficient of variation of variance is

c.v. = [V{Vo(XNH/ Vool X)

~[{o+as(3-2)}/ (Nn)]*. (11)

Table 1. Average heterozygosity (H) and the kurtosis (7v,) of genotypic value in an
equilibrium population when a quantitative character is controlled by n loci

n=1 n=2>5 n=10

m=1 m=2 m=5 m=1 m=2 m=5 m=1 m=2 m=5

4Nv = 005
H 0024 0030 0036 0024 0030 0036 0024 0030 0036
Ve 3000 3750 4200 600 7-50 840 300 375 4-20
4Nv = 010
H 0047 0058 0069 0047 0058 0069 0047 0058 0069
Vs 15-00 1875 21-00 3-:00 375 4-20 1-50 1-88 2:10
4Nv = 0-50
H 0-184 0-222 0-261 0-184 0-222 0-261 0-184 0-222 0-261
Vo 3-00 3-75 4-20 060 075 084 030 038 0-42
4Nv = 1-0
H 0-293 0-347 0-400 0-293 0-347 0-400 0-293 0-347 0-400
Vo 1-50 1-88 2:10 0-30 0-38 0-42 015 019 021

This indicates that the variation of variance among independent populations is
rather small aslong as Nissubstantially large. For example, if 4Nv = 0-1, N = 1000,
m =1, and n = 10, c.v. is 0-04.

In theoretical studies of quantitative genetics it is often assumed that the
genotypic value is normally distributed. By using the two-allele model with
mutation, however, Nei & Imaizumi (1966) have shown that the distribution of
genotypic value may deviate substantially from normality unless the population
size and the number of loci are large. In the present model the skewness in an
equilibrium population is always 0, but the kurtosis may vary with the parameters
specified. In a given population the kurtosis of genotypic value is given by

La@)(X)
Yaa)(X) = {,E(X) -3,
where p,,,(X) is the fourth moment of X in a particular population. The
expectation of y,.,,(X) over the stochastic process is
X)
~HaX)
ryxy

(12)
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approximately in a sufficiently large population, where y,(X) is the fourth moment
of X over the stochastic process. This approximation holds, because the coefficient
of variation of variance is small, as shown earlier. At any rate, x,(X) can be
determined by the method given in the Appendix. In an equilibrium population,
therefore, we have {

v2(X) = %3(3m—1)/16va. (13)

The above formula indicates that the distribution of genotypic value is
leptokurtic if » and Nv are small, but as these values increase, the distribution
gradually reaches normality. Some numerical values of y{*)(X) are given in Table
1. Itis clear that when 4 Nvis 0-05 with the expected heterozygosity of 0-024, y§*)(X)
is rather large even if n is as large as 10. We note that in many mammalian species
the average heterozygosity for protein loci is of this order of magnitude (Fuerst
etal. 1977). Therefore, if the loci controlling a quantitative character have the same
degree of heterozygosity as that of protein loci, then the normal distribution of
genotypic value may not be guaranteed even if the number of loci concerned is
as large as 10. This is particularly so in a population of small effective population
size. However, if the average heterozygosity is as high as 0-2 and the number of
loci is about 5 or more, the distribution will be approximately normal.

It is somewhat counter-intuitive that in Table 1 v, increases as the number of
mutational steps (m) increases for given values of », N, and v, though the
distribution {a,} tends to be normal with increasing m. This perplexing result is
apparently due to the fact that the distribution {«,} includes the case of no
mutation, i.e. r = 0. It is noted that when m = 1, for example, allele 4, mutates
to only 4;_, and 4,,,, and if we neglect the case of no mutation, the distribution
is actually rectangular rather than binomial, and thus the immediate effect of
mutation on y,(X) is negative. As m increases, however, the value of «, decreases
and the distribution {a,} gradually becomes normal. Consequently, the effect of
mutation on y,(X) increases to 0 as m increases. The effect of finite population size
is to produce a positive value of y,(X). Thus, the total effect will be positiv: and
will increase with m in a finite population.

GENETIC VARIATION BETWEEN POPULATIONS

To study the amount of genetic variation between populations, let us consider
the case where a population splits into a large number of completely isolated
populations of equal size at an evolutionary time and thereafter no migration
occurs among these populations. In this case we may write the genotypic value
of the jth individual in the kth population as follows:

n
Ty =g+ 121 {251 + (15 + 2)}s (14)

neglecting the environmental effect, where g is the effect of overall genetic
background, 2y,, the deviation of the kth population mean from the overall
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population mean for the Ith locus, and x,;, zj; the allelic effects. The variance of
xy; over all populations is then given by

Vizyy) = lé [4V(yi) +{V(xy) + Vizy)}),

wh.ich reduces to Vizyy) = 4nV(yy) +2nV(zy), (15)

in our case. In thisequation 4nV(y,) and 2n V(x;) are the expected interpopulational
variance [ B(X)] and intrapopulational variance [ V(X)], respectively. To obtain the
interpopulational variance, let us consider two randomly chosen alleles one from
each of two different populations. For a particular locus their effects may be

represented by 2y = Yp+7
k= YT

a:nd zk']" = yk’ +le,

neglecting the effect of genetic background and the environment effect. The
variance of the difference between these two alleles is then given by

D= V(ij—zk/j/) = 2V(yk)+2V(xj) (16)
Thus, the interpopulational variance is
B(X) =2n(D-V). (17)
The values (D, and B,) of D and B in the tth generation can be obtained by the
same method as that for obtaining the genetic distance for the stepwise mutation
model (Li, 1976; Chakraborty & Nei, 1977). Let Wy(s) = £Q, s* represent the
probability generating function of the allelic state difference at the time of
population split, and D, (¢) be the probability that in generation ¢ two randomly
chosen alleles, one from each of the two populations, differ from each other by k
states. Then the pgf [D(s,t)] of {D,(t)} is given by
D(s,t) = Wys) R(s.t). (18)
The expectation of the distribution of {D,(t)} is
D' (8,8)]5=1 = Wo(1)+R'(L,2).
In the present case R(s,t) = exp[2vt{((1 +8)?/48)™ —1}], so that R’(1,t) is zero.
The variance of allelic-state difference in generation ¢ is then given by
D'+ D'(1,t)—[D'{1,5)]?
= W)+ W) [1-W(1)]+ R (L) + R (1) [1 - R'(1,0)]
= variance of the distribution {Q,}
+ variance of the distribution {R,(¢)}. (19)

The distribution of R, (t) has a variance equal to mvt. Thus, if we denote by V, the
intrapopulational variance in generation 0, D, is given by

D, = Vo + mva®t.
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Therefore, the intrapopulational variance is
By(X) =2n(D,— V)
= 2n[mva’t+(V,— V) (1 —e t/2V)]

= Vo (X)t/ N+ (V(X) — Voo (X)] (1 —€7H/2X). (20)
If the initial population is monomorphic,.i.e. V; = 0. B, is given by

B,(X) = 2na*[mut-2Nmv(1 —e~/2N)], (20a)
whereas if o = Voo p X} = 9mmwatt = ¥, (X)/N. (20b)

Formula (20b) is equivalent to the formula obtained by Lande (1976) with the
method of Gaussian process.

RATIO OF INTERPOPULATIONAL VARIANCE TO INTRA-
POPULATIONAL VARIANCE

With proper experimental designs it is possible to estimate the interpopulational
genetic variance as well as the intrapopulational variance. Under certain circum-
stances, comparison of these variance components will provide some information
about the evolutionary forces of the character under investigation. We have seen
that when Vy(X) = V_(X) the interpopulational variance increases linearly, i.e.
By(X) =V (X)t/N and V,(X) = Vy(X). Therefore, we have

By(X)/Vi(X) = t/N. (21)

This property can be used for testing the hypothesis of neutral evolution. In
practice, the intrapopulational variance includes the environmental variance, and
it is not always easy to separate this component from the genetic variance.
However, even if the environmental variance is included, the B,(X)/V,(X) ratio
still remains proportional to ¢.

When Vy(X) is not equal to V_(X), this property does not hold even under
neutral evolution. The general expression of the B,(X)/V,(X) ratio is somewhat
complicated. However, if ¢ € 2V, the ratio may be written as

B(X)_ _ [Va(X)+Va(X)]t
VX))~ 2VoX) N+ [Vl X) = VoK1

approximately. Therefore, if 2Vy(X) N > [V (X)— Vo(X)]}¢, the ratio again in-
creases linearly but the coefficient is no longer 1/N. In the evolutionary process
new populations are often started from a small number of individuals. In this
case V,(X) may be close to 0. If V,(X) = 0, the B,(X)/V,(X) ratio remains 1 as
long as t € 2N.

(22)
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APPENDIX

We intend to compute the fourth moment and the variance of variance of
n ’
X= g+lz (xl+ml)
-1

given in (2). We know that the observed variance of X is the sum of variances,
V., over n loci, and thus E{V,(X)] = »V where V is the expected variance of x +z’
atalocusasgivenin (4). The variance of variance of Xisgiven by V[V, ()] = nV(V,),
since the 7 loci are assumed to be independent. Following Kendall (1947, pp.
206-207), the variance of variance at a locus is approximately given by

AREI ) A1)

where #, is the expected fourth moment of z+ 2 for a locus.
On the other hand, it can be shown that the expected fourth moment of X is

wao(X) =np,+3n(n—1) V2 (A2)

Thus, if we know g,, the variance of variance of X, V[V,(X)] as well as y,(X) can
be determined. In the following we assume that the distribution of X (and 2’) is
symmetric, so that the first and third moments of x4+’ are 0. Under this
assumption, g, = E(x+z')* = E(x—x’)*. Therefore, s, can be determined by using
the pgf P(s,t) in (6).

The computation of y, is tedious but straightforward. This moment in generation

DECOmES g0 = ) + [P ) + 6mata*(Vy — V)] Y, (43)
where 1 = Nmva®[12Nmv+3 (3m—1)]. (A4)
On the other hand, the variance of variance of X at steady state is given by
VIV,(X)] = nmva[8Nmo+3 (3m—1)]. (A5)
The expected kurtosis is
TR )

_ npg+3n(n—1) V2_3

- ntV? ‘

A )

- n(W 3

_1 3(3m—1)}

- n{ 16Nmv ) (46)
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