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ON TOTALLY UMBILICAL QR-SUBMANIFOLDS OF
QUATERNION KAEHLERIAN MANIFOLDS

AUREL BEJANCU AND HANI REDA FARRAN

We introduce the notion of generalised 3-Sasakian structure on a manifold and show
that a totally umbilical, but not totally geodesic, proper QR-submanifold of a quater-
nion Kaehlerian manifold is an extrinsic sphere and inherits such a structure.

1. INTRODUCTION

As it is well known (see [2]), the tangent bundle TM of a CR-submanifold M of
a Kaehlerian manifold M has the decomposition TM = D @ D+, where D and D* are
invariant and anti-invariant distributions on M with respect to the complex structure J
of M. Equivalently, M is a C R-submanifold of M if and only if its normal bundle TM+
has the decomposition TM* = v @ v, where v and v are invariant and anti-invariant
vector subbundles of M~ with respect to J.

The above equivalence fails in the case of submanifolds of a quaternion Kaehlerian
manifold. Thus we have two concepts: the quaternion CR-submanifold introduced by
Barros, Chen and Urbano [1] where M has TM = D & D*, and the QR-submanifold
introduced by Bejancu [3] where M has TM* = v & v, both decompositions being
considered with respect to the quaternion structure of the ambient manifold. Taking into
account the research done till now, we may conclude that quaternion C R-submanifolds
and @R-submanifolds have very little in common, and that there is much room for new
results on their geometry.

According to a result of Bejancu (see [3, Theorem 3.3]), any totally umbilical proper
@ R-submanifold M of a quaternion Kaehlerian manifold M with dim v} > 1 for any
z € M is totally geodesic. The main purpose of the present paper is to study the
remaining cases. In Section 2 we recall the concepts of QR-submanifold and totally
umbilical submanifold and introduce the new concept of generalised 3-Sasakian structure
on a manifold. The main results are stated in Section 3. First, in the case dimuv} =0
for any £ € M, we prove that M is a totally geodesic quaternionic submanifold of M.
Then we prove Theorems 3.1 and 3.2 which state that when dimv} =1 for any z € M,

Received May 3, 2000
The authors would like to thank the referee for his valuable comments that impoved the paper

considerably.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 $A2.00+0.00.

95

https://doi.org/10.1017/50004972700018517 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700018517

96 A. Bejancu and H.R. Farran 2]

and M is not totally geodesic, then it is an extrinsic sphere that inherits a generalised
3-Sasakian structure.

2. PRELIMINARIES

2.1 QR-SUBMANIFOLDS
Let M be a 4m-dimensional quaternion Kaehlerian manifold with metric tensor g
Then there exists a 3-dimensional vector bundle V of tensors of type (1, 1) on M with
local basis of almost Hermitian structures {.7,,}, a € {1,2,3}, such that
(i) hiok=—JolJ =J,and
(it If U is a coordinate neighbourhood on M and S and X are sections of
vector bundles Vjy and TMIU respectively, then VxS is also a section of
Vv, where V is the Levi-Civita connection on M with respect to g.
It follows (see Ishihara [7]) that (ii) is equivalent to the condition

(i)’ There exist local 1-forms a, on U such that a. + ase = 0 and
(2.1) VixJa = aa(X) s + cae(X) e,
for any cyclic permutation (a, b, ¢) of (1,2, 3).
If U and U’ are two coordinate neighbourhoods such that UNU’ # 0, then on UNU’
we have

3
(2.2) Jo=Y" Auwds,
b=1

where [Ag) is an element of SO(3) and {J!} is a local basis for V on U'.

Next, we consider a real p-dimensional submanifold M of M and denote by TM* its
normal bundle. Then we say that M is a QR-submanifold (quaternionic-real submanifold)
(see Bejancu [3]) if there exists a vector subbundle v of TM* such that

J.w)=v and J,(v*) CTM, Vae{1,2,3},

where vt is the complementary orthogonal vector bundle to v in TM*. If in particular,
v =TM™* or v = {0} we say that M becomes a quaternionic submanifold (see Chen [6])
or an anti-quaternionic submanifold (see Pak [10]). In the case M is a real hypersurface
of M we have §(J,N,N) = 0 for any a € {1,2,3} and normal vector field N. Hence
Jo(TM*) C TM, that is, M is an example of QR-submanifold with v = {0}.

Suppose M is a QR-submanifold of M whichis not a quaternionic submanifold. Then
for each z € M, we denote ja(u:l) by De., a € {1,2,3}. It is easy to see that D, Do,
and Dj; are mutually orthogonal subspaces of T M and have the same dimension s as
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the dimension of v}. We note that separately, the subspaces D,,, a € {1,2, 3}, do not
define, in general, distributions on M. However, due to (2.2) the mapping

D' :z — D} = Dy; ® Dy, ® Dsg,
is a 3s-dimensional distribution on M. Also, we have
(2.3) Jo(Daz) = v+ and Jo(Dy;) = Des,

for each z € M, a € {1,2,3}, where (a,b,¢) is a cyclic permutation of (1,2,3). Finally,
we denote by D the complementary orthogonal distribution to D+ in TM. It follows
that D is invariant with respect to the action of {.71, jg, j;}, that is, .Z,(D) = D, for any
a € {1,2,3}. Thus we are entitled to call it the quaternionic distribution on M. Hence
the tangent bundle of a QR-submanifold has the decomposition

(2.4) TM = D@ D+,

where D and D' are the above distributions. If D # {0} and D+ # {0}, we say that M
is a proper Q R-submanifold of M.

We remark that the tangent bundle of a quaternion C R-submanifold has also a de-
composition as in (2.4). But in that case D* is anti-invariant with respect to J,, that is
Jo(DY) € TM* for any a € {1,2,3}. Due to (2.3) we see that D* from the decomposi-
tion of the tangent bundle of a @ R-submanifold is never an anti-invariant distribution.
Actually, this is the main difference between the above two classes of submanifolds.

2.2 ToraLLy UMBILICAL SUBMANIFOLDS
Let M be a p-dimensional submanifold of a Riemannian manifold (M , 7). Denote by
F(M) the algebra of smooth functions on M and by I'(F) the F(M)-module of smooth
sections of a vector bundle £ over M.
Denote by B the second fundamental form of M and by H the mean curvature vector
of M, that is,
1 P

H= EZB(E"’E")’

i=1

where {F;} is an orthonormal basis of I'(TM). Then M is said to be totally umbilical
(see Chen [5, p.50]) if the second fundamental form of M is expressed as

(2.5) B(X,Y)=g(X,Y)H,

where g is the induced Riemannian metric on M. In this case, the Gauss and Weingarten
formulas become

(2.6) VxY = VxY + g(X,Y)H, VX,Y € [(TM),
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and
(2.7) VxN = —G(H,N)X + V%N, VX € T(TM), N € I(TM*),

respectively, where V and V are the Levi-Civita connections on M and M respectively,
and V1 is the normal connection of M. Also, we note that the Codazzi equation becomes

(2.8) 7 (R(X.Y)2,N) = oY, 2)i(V4H,N) - (X, Z)FVHH, N),

for any X,Y,Z € I'(TM) and N € I'(TM*), where R is the curvature tensor field of V.

It is well known that any sphere of a Euclidean space is totally umblical and has
positive constant curvature. Finally, we recall that M is an eztrinsic sphere of M ifit is
totally umbilical and has parallel mean curvature vector H 3 0, that is,

VLH =0, VX € [(TM).

2.3 GENERALISED 3-SASAKIAN MANIFOLDS

In the present subsection we shall define a new structure on manifolds of dimension
4k + 3, which is a generalisation of what is known as a 3-Sasakian structure on a manifold
(see Kuo [8] and Udriste [11}). Consider a (4k + 3)-dimensional Riemannian manifold
(P, g) endowed with a 3-dimensional vector bundle E of tensors of type (1, 1) and a
3-dimensional distribution F'. Suppose that there exist a local basis {¢,} of E and an
orthonormal local basis {£,} of F satisfying the conditions:

(2.9) (‘Pa)2 ==I4+7.0& ; va(l) =0; wal(&) = "‘Pb(fa) =¢&;
N0 Pa=0; Naopy=—10@, =1
a0y =€ @M= —Pp 09, + & QN = e,

where (a, b, ¢) is a cyclic permutation of (1,2, 3) and 5, are local 1-forms given by
(2.10) M(X) = 9(X,&), VX e T(TP).

Moreover, we suppose

(2.11) 9(paX,0aY) = g(X,Y) = na(X)na(Y),

for any a € {1,2,3} and X,Y € I'(TP). Further, the covariant derivative of ¢, with
respect to the Levi-Civita connection V on P is assumed to be expressed as follows:

(2.12) (VX‘Pa)Y = g(X,Y)& — (V)X + aan(X)pp(Y) + (X )pe(Y),

for any X,Y € I'(T'M) and any cyclic permutation {a, b, ¢) of (1,2, 3), where ag,, are local
1-forms on P and o, + as, = 0. Further, we consider two coordinate neighbourhoods U
and U’ on P such that UNU’ # @ and consider the local bases {,} and {¢/} respectively.
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Finally, we suppose that {¢}} and {g,} are related on U N U’ as follows

3
(2.13) 0= Auwps,
b=1

where [A,) is an element of SO(3).

The Riemannian manifold (P, g) endowed with 3-dimensional vector bundles F and
F with local bases {y,} and {£,} respectively, satisfying (2.9)-(2.13), is called a gener-
alised 3-Sasakian manifold. Also we say that (@4, €a, e, 9) is a generalised 3-Sasakian
structure. One of our main results will show that a particular class of Q) R-submanifolds
inherits a generalised 3-Sasakian structure from the quaternion Kaehlerian structure of
the ambient manifold.

3. MAIN RESULTS

Let M be a real p-dimensional submanifold of a 4m-dimensional quaternion Kaehle-
rian manifold M. It was proved by Bejancu (see [3, Theorem 3.3]) that if M is a totally
umbilical proper Q R-submanifold with s = dimv} > 1 for any z € M, then M must be
totally geodesic. Thus it remains to study the cases s = 0 and s = 1. To this end we
first prove the following general lemma.

LEMMA 3.1. Let M be a totally umbilical QR-submanifold of M with D # {0}.
Then the mean curvature vector H of M is a global section of v*.

Proor: Consider a unit vector field X € I'(D). Then using (2.1) and (2.6) and
taking into account that both D and v are invariant with respect to Ja we deduce that

§(79xX, 1iN) =5 (VxJiX - ao(X) X - ons(X) X, TiN)
=3 (vxflx +g (x, .71X) H, .71N) =0, VN eT(v).
On the other hand, Ji is a linear isometry and, using again (2.6), we infer that
] (Jﬁxx, .71N) =7 (€7xx, N) = §(H, N).

Thus for any N € I'(v) we have G(H, N) =0, that is, H € D(v1). 0
In case s = 0, that is, dim v = 0 for any z € M, by Lemma 3.1 we deduce that H
vanishes identically on M. Hence M is a totally geodesic quaternionic submanifold.
In the remaining part of the paper we suppose M is a totally umbilical, but not
totally geodesic, proper @R-submanifold such that s = 1. Since M is not totally geodesic
then there exists a coordinate neighbourhood U* on M such that h = ||H|| is nowhere

vanishing on U*. Thus we may consider on U* the unit vector field
1
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Further, we define on U* the unit vector fields
(3.2) €= Ja€,
and the 1-forms
(3.3) 7.(X) = 9(X, &), VX € T(TMy-).
Denote by @ the projection morphism of TM on D with respect to the decomposition
(2.4). Then for any X € I'(TM)y-) we derive that
3

(3.4) X =QX+) n(X)&.

c=1
Applying :I:, to (3.4) and using (3.2) we obtain
(3.5) JaX = X — na(X)E,
where we set
(3.6) 0aX = JoaQX +m(X)E: ~ 1(X)Es,

(@, b, c) being a cyclic permutation of (1,2,3).
LEMMA 3.2. For any X € I'(T My-) we have

(3.7) VxH = X(h),
and
(3.8) hX = 0a(Vx&s) + hna(X)€a — cap(X)Ee + Qac(X)&s,

where (a, b, ) is a cyclic permutation of (1,2, 3).
Proor: First, replace N by H in (2.7) and obtain

(3.9) VxH = ~h*X + ViH, VX € I(TMy-).

On the other hand, we take the covariant derivative of (3.1) and by using (3.2), (2.1),
(2.6), (3.5) and (3.1) we infer that

(3.10) VxH = X(h)§ - AV x J,&,
= X (h)€§ — h(‘Pa(Vxéa) + hna(X)€a — aap(X)E + aac(X)fb)y

since by (3.3) we have 7,(Vx&,) = 0. Thus (3.7) and (3.8) are obtained by comparing
the normal and tangent components from (3.9) and (3.10). 0
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Further, we recall that the curvature tensor field R of V satisfies (see Besse [4,
p-403-405))

(311)  RX,Y)],Z - J.R(X,Y)Z = ;_’i—z (500X, V)32 - 5(X, Jiv)].2),

forany X,Y,Z € I‘(TM ), where 4mp is the scalar curvature of M and (@, b,¢) is a cyclic
permutation of (1,2,3). Also we have (see Marchiafava [9])

(3.12) G (ﬁ(x, Y)Z, W) =G (E(Lx, ).z, J,,W) ,

forany X,Y,Z, W ¢ I"(TM) and a € {1,2,3}.
We are now in a position to prove the main results of the paper.

THEOREM 3.1: Let M be a totally umbilical, but not totally geodesic, proper
QR-submanifold of the quaternion Kaehlerian manifold M such that dimv} =1 for any
z € M. Then M is an extrinsic sphere of M.

Proor: First, by Lemma 3.1 and (3.7) we have
(3.13) | ViH e T(v'), VX € T(TM).
Then we takea=1, Z=Xe€I'(D)and Y =¢§; in (3.11) and obtain
7 (Rx,&)7x,€) =7 (Rien X)X.6)
On the other hand, (2.8) yields
7 (RO &)TX,€) = 961, ZXFVEH, €) — 9(X, RX)G(VEH,€) = 0.
Hence g (fl({l, X)X, {1) = 0 and by linearity we deduce that
(3.14) 5 (R(gl, X)Y, gl) =0, VX,Y € ['(D).

In particular, we take Y = :];X , where X is a unit vector field that lies in the quaternionic
distribution, and by using again (3.11) and (2.8), we infer that

e ~ . 2 ~ ~
0= (R&X) X&) =5 (TiRE, 00X, &) - —L=9(6, 2X)g(6, o X)
=5 (R, X)X.€) =5 (VEH, ).
Therefore, we have

(3.15) ViH el(v), Vace {1,2,3}.
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Next, from (2.8) we deduce that

(316) §(RX, X)TX,€) = (HX, LX)G(V3  H,€)

- gL X, 12 X)5 (V4 H,€) =0,
for any X € I'(D). On the other hand, by using (3.12}, (3.11) and (2.8) we derive
@17 §(REX BX)TX,€) = =3 (HR(X, X)X €)

=5 (R(BX, X)J5X,€) = ~9(X, X)§ (V4 H,€).

As M is supposed to be a proper QR-submanifold, there exists a non-zero vector field
X € I'(D) and hence (3.17) and (3.16) imply

(3.18) ViH e T(v), VX e (D).

Thus from (3.15) and (3.18) we infer that Vx H lies in I'(v) for any X € I'(TM). Then,
taking into account (3.13) we obtain V§H = 0. As V* is a Riemannian connection on
TM+* we deduce that h is a positive constant on U*. By continuity of h and connectedness
of M it follows that h is a positive constant on M. Hence H is nowhere zero on M and
thus M is an extrinsic sphere. 0

THEOREM 3.2. Let M be as in Theorem 3.1. Then there exists a generalised
3-Sasakian structure on M.

ProoFr: First, from (3.2) it follows that {&;, &5, &} is a local orthonormal basis for
the distribution FF = D* on M. Also we have {7, m} given by (3.3). Next, we
consider the local tensor fields {¢.}, a € {1,2,3} given by (3.6). Then it is easy to
check that (@q,&,, 7., g) satisfy (2.9)-(2.11). By using (3.2), (3.3) and (2.2) for any two
neighbourhoods U* and U* on M such that U* NU* # @, we obtain

3
(3.19) m=Y Awm,
b=1

on U* NU*, where [Ag)] is the matrix in (2.2). Then by direct calculations using (3.5),
(2.2) and (3.19), we derive (2.13). Hence we have a 3-dimensional vector bundle F of
tensors of type (1, 1) on M whose local basis is {¢;, 2, ¢s} given by (3.6). Moreover, by
using (3.5), (2.6), (2.7), (3.1) and (2.11) and taking into account that g and £ are parallel
with respect to V and V* respectively, we deduce that

(3.20) VxJ\Y = Vx (Y —m(Y)E)
= VxoY + g(X,1Y)H - X (m(Y))§ + m(Y)g(H,£)X
= {Vxp1Y + (V) X} - {hg(1 X,Y) + m(VxY) + g(Y, Vx&)}E,

https://doi.org/10.1017/50004972700018517 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700018517

{9] Totally umbilical QR-submanifolds 103

for any X,Y € I'(TM). On the other hand, by using (2.1), (2.6), (3.5), (3.1) and (3.2)
we infer that

(3.21) Vxd\Y = {pi(VxY) +hg(X,Y)& + a1a(X)@2Y + a13(X)psY }
~ {m(VxY) + ann(X)m(Y) + ais(X)ns(Y) }€.

Comparing the tangent parts from (3.20) and (3.21) we obtain
(3.22) (Vxe)Y = R{g(X,Y)&1 — m(Y) X} + c12(X)p2Y + o13(X)e5Y-

Finally, we consider the Riemannian metric g* = h%’g on M and choose ¢ = ¢, and
& = (1|h)&, as local bases in I'(E') and ['(F) respectively. Then it follows that 1} = hn,.
In this way, from (3.22) we obtain (2.12) for (¢}, &}, 72, g°). Moreover, as (@q, &4, Mas 9)
satisfy (2.9) - (2.11) and (2.13), it follows that (¢}, &;,n;, g°) satisfy these relations too.
Therefore, (¢}, &5, n;, g*) is a generalised 3-Sasakian structure on M. 0
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