STABLE HOMEOMORPHISMS OF THE PSEUDO-ARC

WAYNE LEWIS

Noting that certain restrictions are placed on homeomorphisms of the pseudo-arc, since it is hereditarily indecomposable, in $1955[4]$ R. H. Bing asked if the identity is the only stable homeomorphism of the pseudo-arc. In this paper we prove the following theorem.

Theorem. Let U be an open subset of the pseudo-arc P. Let p and q be distinct points of P such that the subcontinuum M irreducible between p and q does not intersect $\mathrm{cl}(U)$. Then there exists a homeomorphism $h: P \rightarrow P$ with $h(p)=q$ and $\left.h\right|_{U}=1_{U}$.

1. Definitions. A chain C is a collection of open sets $C=\{C(i)\}_{\imath \leqq n}$ such that $C(i) \cap C(j) \neq \emptyset$ if and only if $|i-j| \leqq 1, \operatorname{cl}(C(i)) \cap \mathrm{cl}(C(j)) \neq \emptyset$ if and only if $|i-j| \leqq 1, C(0)-C(1) \neq \emptyset$, and $C(n)-C(n-1) \neq \emptyset$. Each $C(i)$ is called a link of C. If H is a collection of open sets, and C is a subcollection of H which forms a chain, we shall by abuse of terminology call C a subchain of H and each element of H a link of H.

If $C=\{C(i)\}_{i \leqq n}$ is a chain, then $\operatorname{mesh}(C)=\max \{\operatorname{diam}(C(i) \mid i \leqq n)\}$.
Chain C_{1} closure refines chain C_{0} if for each i there exists j with $\operatorname{cl}\left(C_{1}(i)\right) \subset C_{0}(j)$.

If chain C_{1} closure refines chain C_{0}, then chain C_{1} is crooked in C_{0} provided that for every p, s, i, j, where $j>i+2, C_{1}(p) \cap C_{0}(i) \neq \emptyset$, and $C_{1}(s) \cap C_{0}(j) \neq \emptyset$, there exist $q, \quad r \quad$ with $\quad \operatorname{cl}\left(C_{1}(q)\right) \subset C_{0}(j-1)$, $\mathrm{cl}\left(C_{1}(r)\right) \subset C_{0}(i+1)$, and either $p<q<r<s$ or $p>q>r>s$.

A pattern is a surjection $f:\{0,1, \ldots, m\} \rightarrow\{0,1, \ldots, n\}$ such that for each $i<m,|f(i+1)-f(i)| \leqq 1$.

Chain C_{1} follows the pattern f in chain C_{0} if $f:\{0,1, \ldots, m\} \rightarrow\{0,1, \ldots, n\}$ where $C_{1}=\left\{C_{1}(i)\right\}_{i \leqq m}, \quad C_{0}=\left\{C_{0}(j)\right\}_{j \leqq n}$ and $\operatorname{cl}\left(C_{1}(i)\right) \subset C_{0}(f(i))$ for each $i \leqq m$. Note that in general there will be several patterns which C_{1} follows in C_{0}.

Chain C_{0} is an amalgamation of chain C_{1} if every link of C_{0} is the union of links of C_{1}.

Chain C_{0} properly covers chain C_{1} if C_{1} closure refines C_{0} and for every $C_{0}(j)$ there exists $C_{1}(k)$ with $\mathrm{cl}\left(C_{1}(k)\right) \subset C_{0}(j)$.

If A is a collection of sets, A^{*} will be used to denote the union of the elements of A.

[^0]Throughout this paper \mathbf{N} will be used to denote the set of non-negative integers.

A homeomorphism $h: X \rightarrow X$ is stable if $h=h_{n} \cdot h_{n-1} \cdots h_{1} \cdot h_{0}$ where for each h_{i} there exists a non-empty open set U_{i} with $\left.h_{i}\right|_{U_{i}}=1_{U_{i}}$. If $n=0$, then h will be called primitively stable. (Brown and Gluck [6] called such a homeomorphism somewhere the identity.)

If C is an open cover of the topological space X, and $x \in X$, then $\operatorname{St}(x, C)$, the star of x in C, is the collection of elements of C containing x.
2. Observations. In trying to construct stable homeomorphisms of the pseudo-arc P, there are a few observations one should make. If $h: P \rightarrow P$ is a homeomorphism of P such that, for the open subset U of $P,\left.h\right|_{U}=1_{U}$, then for each subcontinuum M of P which intersects $\mathrm{cl}(U), h(M)=M$. Note also that for any distinct points p, q with $h(p)=q$, the subcontinuum M of P irreducible between p and q cannot intersect U, nor can M intersect $\mathrm{cl}(U)$ in a point in the same composant of M as either p or q. We do not know the answer to the following question.

Question 1. Can there exist a homeomorphism $h: P \rightarrow P$ of the pseudo-arc, with $\left.h\right|_{U}=1_{U}$ for the open set U and $h(p)=q$, where p and q are distinct points of P so that the subcontinuum M irreducible from p to q intersects $\mathrm{cl}(U)$ only in some of the composants of M not containing either p or q ?

For any homeomorphism g of P and any point $p \in P$, the subcontinuum M irreducible between p and $g(p)$ must contain a point $r \in M$ with $g(r)=r$ [8]. So any non-identity stable homeomorphism h of P fixed on the open set U must contain a plethora of fixed points outside of U. However, this does not necessarily exclude the possibility that all other fixed points of h lie in $\mathrm{cl}(U)$, but this seems very unlikely if $h \neq 1_{P}$.

Question 2. Is there a homeomorphism $h: P \rightarrow P$ of the pseudo-arc such that the set of fixed points of h is the closure of an open set U with $\mathrm{cl}(U) \neq P$?

It was observations such as these which led to the question of whether there exist any stable homeomorphisms, other than the identity, of the pseudo-arc. As we shall see in Section 4, there are many.
3. Preliminary theorems. Essentially the only way to define homeomorphisms of the pseudo-arc is by the following theorem, the proof of which is left to the reader.

Theorem 1. Let $\left\{C_{i}\right\}_{i \in \mathbf{N}}$ and $\left\{D_{i}\right\}_{i \in \mathbf{N}}$ be two sequences of chains covering the chainable continuum X such that for each $i \in \mathbf{N}$:

1) C_{i} and D_{i} have the same number of links,
2) $\operatorname{mesh}\left(C_{i}\right)<1 / i$ and mesh $\left(D_{i}\right)<1 / i$ if $i>0$,
3) there exists a pattern f_{i} such that C_{i+1} follows f_{i} in C_{i} and D_{i+1} follows f_{i} in D_{i}. Then there exists a homeomorphism $h: X \rightarrow X$ such that for each $p \in X$, if $\operatorname{St}\left(p, C_{i}\right)^{*} \subset C_{i}(j) \cup C_{i}(j+1)$ then $h(p) \in D_{i}(j) \cup D_{i}(j+1)$.

The theorems in this section are lengthy and technical, but they are often just what is needed. We shall assume that $\left\{C_{i}\right\}_{i \in \mathbf{N}}$ is a collection of chains covering the pseudo-arc P such that for each $i \in \mathbf{N}$:

1) $\operatorname{mesh}\left(C_{i}\right)<1 /(i+1)$
2) C_{i+1} is crooked in C_{i}
3) C_{i} is an amalgamation of C_{i+1}
4) it requires at least 3 links of C_{i+1} to span between two non-adjacent links of C_{i}.
Clearly, starting with any chain C_{0}, we can obtain such a sequence of chains. It should be clear how to make the appropriate modifications for pseudocircles, pseudo-solenoids, etc.

Theorem 2. Let $\left\{C_{0}(j), C_{0}(j+1), \ldots, C_{0}(k)\right\}$ be a subchain of C_{0}. Let A and B be two disjoint closed subsets of $C_{0}(j)-\mathrm{cl}\left(C_{0}(j+1)\right)$. Let H be a collection of links of $C_{i}, i>0$, such that for each $h \in H, \operatorname{cl}(h) \subseteq \cup_{j \leqq l \leqq k} C_{0}(l)$, and any subchain of H which intersects both A and B is properly covered by $\left\{C_{0}(j), C_{0}(j+1), \ldots, C_{0}(k)\right\}$ (and there does exist at least one such subchain). Let $f:\{0,1, \ldots, m\} \rightarrow\{j, j+1, \ldots, k\}$ be a pattern with $f(0)=f(m)=j$. Then there exists $n \geqq i$ and a chain D such that:

1) D is an amalgamation of the links of C_{n} each of whose closure is contained in H^{*},
2) D follows the pattern f in $\left\{C_{0}(j), C_{0}(j+1), \ldots, C_{0}(k)\right\}$,
3) $A \cap H^{*} \subseteq D(0)-\operatorname{cl}(D(1))$ and $B \cap H^{*} \subseteq D(m)-\operatorname{cl}(D(m-1))$.

Proof. There are basically three types of steps we will do (though some will be done several times). First we will assume that for each $\alpha<m, f(\alpha) \neq f(\alpha+1)$. Define a bend of f to be an integer $\beta, 0<\beta<m$, such that $f(\beta-1)=f(\beta+1)$. Unless $j=k$ (in which case the theorem is trivial), the number η of bends of f is odd. We shall use induction on η. Step 1 will handle the case where $\eta=1$, while step 2 will handle the general inductive step. Step 3 will then enable us to convert back to the case where there exists $\alpha<m$ with $f(\alpha)=f(\alpha+1)$.

Step 1. Let $\Gamma=\{\gamma \mid \gamma$ is a subchain of H maximal with respect to having no interior link intersect $A \cup B\}$. Γ consists of four disjoint subsets (some of which are possibly empty):
$\Gamma_{1}=\{\gamma \in \Gamma \mid$ no link of γ intersects $A \cup B\}$
$\Gamma_{2}=\{\gamma \in \Gamma \mid$ at least one link of γ intersects A, but no link of γ intersects $B\}$
$\Gamma_{3}=\{\gamma \in \Gamma \mid \gamma$ has links intersecting each of A and $B\}$
$\Gamma_{4}=\{\gamma \in \Gamma \mid$ at least one link of γ intersects B, but no link of γ intersects $A\}$.

By hypothesis $\Gamma_{3} \neq \emptyset$. Each $\gamma \in \Gamma_{3}$ has links γ_{A} intersecting A, γ_{B} intersecting B, and γ_{k} with $\mathrm{cl}\left(\gamma_{k}\right) \subseteq C_{0}(k)$. (If there are several links of γ with this last property, choose one and call it γ_{k}.) The links of a chain D are now formed as follows:

For $i<k-j, D(i)$ is the union of all links of $\Gamma_{1}{ }^{*} \cup \Gamma_{2}{ }^{*} \cup\left\{\delta \in \gamma \in \Gamma_{3} \mid \delta\right.$ is a link in the subchain of γ from γ_{A} to $\left.\gamma_{k}\right\}$ whose closure is a subset of $C_{0}(j+i)$ but not a subset of $C_{0}(k)$.
$D(k-j)$ is the union of all links of H whose closure is a subset of $C_{0}(k)$.
For $k-j<i \leqq 2(k-j), D(i)$ is the union of all links of $\Gamma_{4}{ }^{*} \cup\left\{\zeta \in \gamma \in \Gamma_{3} \mid \zeta\right.$ is a link in the subchain of γ from γ_{k} to $\left.\gamma_{B}\right\}$ whose closure is a subset of $C_{0}(2 k-i-j)$ but not of $C_{0}(k)$.

Step 2. Suppose now that we can form a chain D satisfying the desired conditions whenever f has fewer than η bends $(\eta>1)$. We shall show how to then construct a chain D^{\prime} satisfying the desired conditions whenever f has η bends. If f has more than one bend, we can associate with f a pattern g as follows: Let θ and κ be two distinct bends of $f, \theta<\kappa$, so that $\kappa-\theta$ is less than or equal to the corresponding value for any other pair of bends of f. Define $g:\{0,1, \ldots, m-2(\kappa-\theta)\} \rightarrow\{j, j+1, \ldots, k\}$ by:

$$
\begin{aligned}
& g(\alpha)=f(\alpha) \quad \text { for } \alpha<\theta \\
& g(\alpha)=f(\alpha+2(\kappa-\theta)) \quad \text { for } \alpha \geqq \theta .
\end{aligned}
$$

Note that g has two fewer bends than f. Thus, by the inductive hypothesis we can construct a chain \widetilde{D} satisfying the desired conditions for the pattern g. We shall "split" \widetilde{D} along the subchain $\{\widetilde{D}(2 \theta-\kappa), \ldots, \widetilde{D}(\theta)\}$ to obtain the desired chain D^{\prime}.

Suppose \tilde{D} is an amalgamation of C_{t}, where mesh $\left(C_{t}\right)<\operatorname{dist}\left(A \cup B, C_{0}(j+1)\right)$. Let $\Sigma=\left\{\sigma \mid \sigma\right.$ is a subchain of C_{t+2} maximal with respect to σ^{*} being a subset of $\widetilde{D}(2 \theta-\kappa) \cup \ldots \cup \widetilde{D}(\theta)$, and every interior link of σ having its closure in $\widetilde{D}(2 \theta-\kappa) \cup \ldots \cup \widetilde{D}(\theta)\} . \Sigma$ consists of three disjoint subsets:
$\Sigma_{1}=\{\sigma \in \Sigma \mid$ both end links of σ are in $\widetilde{D}(2 \theta-\kappa)\}$
$\Sigma_{2}=\{\sigma \in \Sigma \mid \sigma$ has an end link in each of $\widetilde{D}(2 \theta-\kappa)$ and $\widetilde{D}(\theta)\}$
$\Sigma_{3}=\{\sigma \in \Sigma \mid$ both end links of σ are in $\widetilde{D}(\theta)\}$.
Note that Σ_{2} is nonempty and by crookedness each $\sigma \in \Sigma_{2}$ consists of three subchains, $\sigma_{1}, \sigma_{2}, \sigma_{3}$ so that σ_{1} contains the end link of σ in $\widetilde{D}(2 \theta-\kappa)$ and has its other end link in $\widetilde{D}(\theta)-\widetilde{D}(\theta-1) ; \sigma_{2}$ has one end link in $\widetilde{D}(\theta)-\widetilde{D}(\theta-1)$ and the other end link in $\widetilde{D}(2 \theta-\kappa)-\widetilde{D}(2 \theta-\kappa+1) ; \sigma_{3}$ has one end link in $\widetilde{D}(2 \theta-\kappa)-\widetilde{D}(2 \theta-\kappa+1)$ and contains the end link of σ in $\widetilde{D}(\theta) ; \sigma_{1}$ and σ_{2} have one link in common; σ_{2} and σ_{3} have one link in common; and $\sigma_{1}{ }^{*}$ and $\sigma_{3}{ }^{*}$ are disjoint. We may also choose $\sigma_{1}, \sigma_{2}, \sigma_{3}$ so that if $2 \theta-\kappa=0$ then $\left(\sigma_{2}{ }^{*} \cup \sigma_{3}{ }^{*}\right) \cap A=\emptyset$, and if $\theta=m-2(\kappa-\theta)$ then $\left(\sigma_{1}{ }^{*} \cup \sigma_{2}{ }^{*}\right) \cap B=\emptyset$.
D^{\prime} is now defined as follows:
For $p<2 \theta-\kappa, D^{\prime}(p)$ is the union of all links of C_{t+2} whose closure is a subset of $\widetilde{D}(p)$ and which are not contained in $\Sigma_{3}{ }^{*} \cup\left\{\sigma_{2}, \sigma_{3} \mid \sigma \in \Sigma_{2}\right\}^{*}$.

For $2 \theta-\kappa \leqq p<\theta, D^{\prime}(p)$ is the union of all links of $\Sigma_{1}{ }^{*} \cup\left\{\sigma_{1} \mid \sigma \in \Sigma_{2}\right\}^{*}$ whose closure is a subset of $\widetilde{D}(p)$.
$D^{\prime}(\theta)$ is the union of all links of $\Sigma_{1}{ }^{*} \cup\left\{\sigma_{1}, \sigma_{2} \mid \sigma \in \Sigma_{2}\right\}^{*}$ whose closure is a subset of $\widetilde{D}(\theta)$.

For $\theta<p<\kappa, D^{\prime}(p)$ is the union of all links of $\left\{\sigma_{2} \mid \sigma \in \Sigma_{2}\right\}^{*}$ whose closure is a subset of $\widetilde{D}(2 \theta-p)$.
$D^{\prime}(\kappa)$ is the union of all links of $\left\{\sigma_{2}, \sigma_{3} \mid \sigma \in \Sigma_{2}\right\}^{*} \cup \Sigma_{3}{ }^{*}$ whose closure is a subset of $\widetilde{D}(2 \theta-\kappa)$.

For $\kappa<p \leqq 2 \kappa-\theta, D^{\prime}(p)$ is the union of all links of $\left\{\sigma_{3} \mid \sigma \in \Sigma_{2}\right\} * \cup \Sigma_{3}{ }^{*}$ whose closure is a subset of $\widetilde{D}(p-2(\theta-\kappa))$. For $p>2 \kappa-\theta, D^{\prime}(p)$ is the union of all links of C_{t+2} whose closure is a subset of $\tilde{D}(p-2(\theta-\kappa))$ and which are not contained in $\Sigma_{1}{ }^{*} \cup\left\{\sigma_{1}, \sigma_{2} \mid \sigma \in \Sigma_{2}\right\}^{*}$.

Step 3 . We can now form a chain D^{\prime} satisfying the desired conditions whenever $f(\alpha) \neq f(\alpha+1)$ for each $\alpha<m$. Clearly, with any pattern there is an associated pattern of the same crookedness satisfying this condition. So we now need only split some of the links of the D^{\prime} we have obtained by steps 1 and 2 into series of consecutive links. We will show how to split a link $D^{\prime}(r)$ of D^{\prime} into two consecutive links.

Suppose the chain D^{\prime} is an amalgamation of C_{s} where $\operatorname{mesh}\left(C_{s}\right)<$ $\operatorname{dist}\left(A \cup B, C_{0}(j+1)\right)$. Then, if $r \neq 0$, amalgamate C_{s+1} as follows:

For $q<r, D(g)$ is the union of all links of C_{s+1} whose closure is a subset of $D^{\prime}(q)$.
$D(r)$ is the union of all links μ of C_{s+1} whose closure is a subset of $D^{\prime}(r)$ such that some link adjacent to μ intersects $D^{\prime}(r-1)$.
$D(r+1)$ is the union of all links of C_{s+1} whose closure is a subset of $D^{\prime}(r)$ which are not contained in $D(r)$.

For $q>r+1, D(q)$ is the union of all links of C_{s+1} whose closure is a subset of $D^{\prime}(q-1)$.

If $r=0$, we split $D^{\prime}(0)$ near $D^{\prime}(1)$ instead.
If necessary, we can enlarge some of the links of D so as to satisfy condition 1) of the theorem.

The next two theorems are very similar, and their proof is a slight modification of the above. Therefore we state them without proof.

Theorem 3. Let $\left\{C_{0}(j), C_{0}(j+1), \ldots, C_{0}(k)\right\}, \quad j<k$, be a subchain of C_{0}. Let A be a closed subset of $C_{0}(j)-\operatorname{cl}\left(C_{0}(j+1)\right)$ and B be a closed subset of $C_{0}(k)-\mathrm{cl}\left(C_{0}(k-1)\right)$. Let H be a collection of links of $C_{i}(i>0)$ so that for each $h \in H, \mathrm{cl}(h) \subseteq \cup_{j \leqq l \leqq k} C_{0}(l)$, and some subchain of H intersects both A and B. Let $f:\{0,1, \ldots, m\} \rightarrow\{j, j+1, \ldots, k\}$ be a pattern with $f(0)=j$ and $f(m)=k$. Then there exists $n \geqq i$ and a chain D such that:

1) D is an amalgamation of the links of C_{n} contained in H^{*}.
2) D follows the pattern f in $\left\{C_{0}(j), \ldots, C_{0}(k)\right\}$.
3) $A \cap H^{*} \subseteq D(0)-\operatorname{cl}(D(1))$ and $B \cap H^{*} \subseteq D(m)-\operatorname{cl}(D(m-1))$.

Theorem 4. Let $\left\{C_{0}(j), C_{0}(j+1), \ldots, C_{0}(k)\right\}$ be a subchain of C_{0}. Let A be a closed subset of $C_{0}(j)-\mathrm{cl}\left(C_{0}(j+1)\right)$. Let H be a collection of links of C_{i}, $(i>0)$, such that for each $h \in H, \mathrm{cl}(h) \subseteq \cup_{j \leqq r \leqq k} C_{0}(l)$, and some subchain of H is properly covered by $\left\{C_{0}(j), \ldots, C_{0}(k)\right\}$. Let $f:\{0,1, \ldots, m\} \rightarrow\{j, j+1, \ldots, k\}$ be a pattern with $f(0)=j$. Then there exists $n \geqq i$ and a chain D such that:

1) D is an amalgamation of the links of C_{n} contained in H^{*}.
2) D follows the pattern f in $\left\{C_{0}(j), \ldots, C_{0}(k)\right\}$.
3) $A \cap H^{*} \subseteq D(0)-\operatorname{cl}(D(1))$.

The next theorem shows when we can amalgamate a chain to follow a pattern while including a specific point in a specific link.

Theorem 5. Let $C=\{C(i)\}_{i \leqq n}$ be a chain covering the pseudo-arc P, $f:\{0,1, \ldots, m\} \rightarrow\{0,1, \ldots, n\}$ a pattern, $j \leqq m, f(j)=i_{0}$ and $p \in C\left(i_{0}\right)$. Then there is a chain D covering P with $p \in D(j)$ and D following f in C if and only if for every subcontinuum M of P containing p, there exist a, b with $0 \leqq a \leqq j \leqq b \leqq m$, so that $M \subseteq \cup_{a \leqq k \leqq b} C(f(k))$, and $M \cap C(f(k)) \neq \emptyset$ for each $a \leqq k \leqq b$.

Proof. This condition is clearly necessary. We will show that it is also sufficient.

Let $\left\{B_{i}\right\}_{i \in \mathbf{N}}$ be a sequence of chains covering P and refining C such that for each $i \in \mathbf{N}$:

1) $p \in B_{i}(0)$
2) B_{i+1} is crooked in B_{i}
3) $\operatorname{mesh}\left(B_{i}\right)<1 /(i+1)$
4) it takes 3 links of B_{i+1} to span the intersection of 2 links of B_{i}.

We will construct D inductively, at each step extending what we have done before. If $S=\{C(u), C(u+1), \ldots, C(v)\}$ is a subchain of C, containing $C\left(i_{0}\right)$, define $E(S)$ to be the subchain of C consisting of:

1) $S \cup\{C(v+1)\}$ if there is a subcontinuum M of P containing p such that $M \subseteq(S \cup\{C(v+1)\})^{*}$ and $M \cap\left(C(v+1)-S^{*}\right) \neq \emptyset$.
2) $S \cup\{C(u-1)\}$ if there is a subcontinuum M of P containing p such that $M \subseteq(S \cup\{C(u-1)\})^{*}$ and $M \cap\left(C(u-1)-S^{*}\right) \neq \emptyset$.
3) $S \cup\{C(u-1), C(v+1)\}$ otherwise. Note that if $u=0,1)$ applies and if $v=n, 2$) applies, unless $S=C$ when we don't define $E(S)$.

Suppose for some subchain S of C, containing $C\left(i_{0}\right)$, and some $k \in \mathbf{N}$ we can amalgamate the maximal subchain of B_{k} which is properly covered by S and contains $B_{k}(0)$ to follow the maximal sub-pattern \tilde{f} of f containing j with the image of \tilde{f} in $\{l \mid C(l) \in S\}$. (A sub-pattern of f is a restriction of f to a set of consecutive integers.) Clearly we can do this for $S=\left\{C\left(i_{0}\right)\right\}$. Let \widetilde{B}_{k+1} be the maximal subchain of B_{k+1} contained in the amalgamated part of B_{k} and containing $B_{k+1}(0)$. Let B_{k+1}^{\prime} be the rest of the subchain of B_{k+1} maximal with respect to being properly covered by $E(S)$ and containing $B_{k+1}(0)$. By Theorems 2-4, with $A=\operatorname{cl}\left(\widetilde{B}_{k+1}{ }^{*} \cap B_{k+1}^{\prime}{ }^{*}\right)$ and $H=B_{k+1}^{\prime}$ we can obtain an
amalgamation of the subchain of some $B_{r}, r \geqq k+1$, maximal with respect to being properly covered by $E(S)$ and containing $B_{r}(0)$, so that the amalgamation follows the maximal subpattern of f, containing j, with image in $\{l \mid C(l) \in E(S)\}$.

Continuing in this manner we obtain the desired chain D.
Before we proceed to Theorem 6, we will illustrate some special types of chains which will be used. Let C_{0} and D_{0} be two chains covering the pseudo-arc P so that C_{0} and D_{0} have the same number of links. Let X be a collection of links of C_{0} so that $C_{0}(i)=D_{0}(i)$ for each $C_{0}(i) \in X$. Let C_{1} be a chain of very small mesh so that C_{1} closure refines C_{0}, and each of C_{0} and D_{0} is an amalgamation of C_{1}.

We will be speaking about a pattern which C_{1} follows in C_{0}. In doing so, we will wish to have a pattern f which "prefers" X. Thus if $C_{1}(2)$ is a closed subset of both $C_{0}(0)$ and $C_{0}(1)$, a pattern would assign it to either of these links. If X contained $C_{0}(0)$ but not $C_{0}(1)$ then we would assign it to $C_{0}(0)$. Thus whenever a link of C_{1} could be assigned to a link of C_{0} in X or to a link of C_{0} not in X, we choose a pattern which assigns it to a link in X. These are all fairly easy conditions to satisfy. It is the next condition which requires more care to obtain, but it is what will enable us to actually construct stable homeomorphisms. Suppose \widetilde{C}_{1} is a subchain of C_{1} so that the closure of some link of \widetilde{C}_{1} is in a link of X. By the pattern f, certain links of C_{0} are assigned to the links of \widetilde{C}_{1}. We will want the corresponding links of D_{0} to properly cover \widetilde{C}_{1}. This essentially says that, when C_{1} is making progress away from a link of X, it must look similar in D_{0} to what it does in C_{0}. But when it swings back toward X and fails to make progress, it can misbehave in D_{0}. Some condition like this last one will be necessary in the sequences of chains we will use to define our homeomorphism. In Theorem 6 we will hypothesize the existence of chains as described above.

All of the above conditions will be subsumed under the following definition: Let C_{0}, D_{0} and C_{1} be chains covering the pseudo-arc, X a collection of links of C_{0}, and f_{1} a pattern. Then $\left(C_{1}, f_{1}\right)$ is compatible with D_{0} relative to $\left(C_{0}, X\right)$ provided that:

1) C_{0} and D_{0} have the same number of links;
2) each of C_{0} and D_{0} is an amalgamation of C_{1};
3) C_{1} follows the pattern f_{1} in C_{0} with $C_{0}\left(f_{1}(j)\right) \in X$ for every $\operatorname{cl}\left(C_{1}(j)\right) \subseteq X^{*}$;
4) $C_{0}(i)=D_{0}(i)$ for each $C_{0}(i) \in X$;
5) for each subchain \widetilde{C}_{1} of C_{1} with $\left\{C_{0}\left(f_{1}(k)\right) \mid C_{1}(k) \in \widetilde{C}_{1}\right\} \cap X \neq \emptyset, \widetilde{C}_{1}$ is properly covered by $\left\{D_{0}\left(f_{1}(k)\right) \mid C_{1}(k) \in \widetilde{C}_{1}\right\}$.

In constructing stable homeomorphisms we shall obtain sequences of chains, patterns, and sets of links, as in this definition, of smaller and smaller mesh. In doing this, conditions 1 and 3 will allow us to define the final homeomorphism. Condition 5 at each stage will be necessary to achieve condition 4 at the next
stage. Condition 4 at each stage will enable us to make sure that the homeomorphism defined is stable. Condition 2 is largely for convenience.

Theorem 6. Let C_{0}, D_{0} and C_{1} be chains covering the pseudo-arc, with X a non-empty collection of links of C_{0} and f_{1} a pattern, such that $\left(C_{1}, f_{1}\right)$ is compatible with D_{0} relative to $\left(C_{0}, X\right)$. Then for each $\epsilon>0$ there exists a chain E of mesh less than ϵ, a pattern f_{2}, and a chain D_{1} covering P such that D_{1} follows the pattern f_{1} in D_{0}, and $\left(E, f_{2}\right)$ is compatible with C_{1} relative to $\left(D_{1},\left\{D_{1}(j) \mid C_{0}\left(f_{1}(j)\right) \in X\right\}\right)$.

Proof. Let $\left\{A_{n}\right\}_{n \in \mathbf{N}}$ be a sequence of chains covering P such that for each $n \in \mathbf{N}$:

1) A_{n+1} is crooked in A_{n};
2) $A_{0}=C_{1}$, and $\operatorname{mesh}\left(A_{n}\right)<1 / n$ for $n>0$;
3) A_{n} is an amalgamation of A_{n+1};
4) It requires at least 4 links of A_{n+1} to span between any two non-adjacent links of A_{n};
5) Any subchain of A_{n+1} spanning the intersection of two links of A_{n} contains at least two links whose closures are a subset of that intersection.

Let n be an integer so large that mesh $\left(A_{n}\right)<\epsilon$, and $n>0$. Consider A_{n+1}. Amalgamate the links of A_{n+1} to form $D_{1}(l)=C_{1}(l)$ for each $\mathrm{cl}\left(C_{1}(l)\right) \subseteq X^{*}$. Let $\Gamma=\left\{\gamma \mid \gamma\right.$ is a subchain of A_{n+1} maximal with respect to having no link contained in $\left.\left\{D_{1}(l) \mid \mathrm{cl}\left(C_{1}(l)\right) \subseteq X^{*}\right\}\right\}$. We shall form the other links of D_{1} from Γ^{*}. In doing so we shall restrict our attention to a single $\gamma \in \Gamma$, since a similar procedure applies to each. The amalgamation of the links of some A_{m}, $m \geqq n+1$, in γ shall consist of several steps and the final D_{1} and pattern f_{2} will not be determined until the end of the proof. Some steps will modify what we have already amalgamated, but we will still refer to the result of each step as D_{1} though it is not our final chain.

Suppose $\gamma \in \Gamma$ is minimally covered by $\left\{C_{1}(p), C_{1}(p+1), \ldots, C_{1}(q)\right\}$. The amalgamated γ will follow the pattern $\left.f_{1}\right|_{\{p, p+1, \ldots, q\}}$ in D_{0} and match up on the links we have already amalgamated. For each α, $p \leqq \alpha \leqq q$, define:
$F_{\gamma}(\alpha)$ is the first link of γ whose closure is contained in $C_{1}(\alpha)$ but not in $C_{1}(\alpha-1)$;
$L_{\gamma}(\alpha)$ is the first link of γ whose closure is contained in $C_{1}(\alpha) \cap C_{1}(\alpha+1)$.
Let γ_{1} be the closure of the first link of γ.
Step 1 . Suppose that for some α and some $r \geqq 1$, the collection of all subchains δ of A_{n+1} contained in the part of γ from γ_{1} through $L_{\gamma}(\alpha)$ has been amalgamated to follow the pattern $\left.f_{1}\right|_{\{p, p+1, \ldots, \alpha\}}$ in D_{0} with $\gamma_{1} \cap\{\delta\}^{* *} \subseteq$ $D_{1}(p)-\operatorname{cl}\left(D_{1}(p+1)\right)$, and condition 5 in the definition of compatible satisfied for $E=A_{n+r}$ and for the part of D_{1} so far amalgamated. (This can certainly be done for $\alpha=p, r=1$.) Consider the set of all subchains ζ of A_{n+r+2} maximal with respect to having both end links in γ_{1} and having the closure of each link contained in the part of γ through $L_{\gamma}(\alpha)$. We will keep the amalgamation the same on these chains during this step.

Consider the set of all subchains η of A_{n+r+2} contained in the part of γ to $F_{\gamma}(\alpha+1)$ and intersecting the chains ζ at most in end links. (η contains no link whose closure is contained only in $F_{\gamma}(\alpha+1)$.) Amalgamate into part of D_{1} the links of some $A_{s}, s \geqq n+r+2$, contained in the chains η to follow the pattern $\left.f_{1}\right|_{\{p, \ldots, \alpha+1\}}$ in D_{0} with $\gamma_{1} \cap\{\eta\}^{* *} \subseteq D_{1}(p)-\operatorname{cl}\left(D_{1}(p+1)\right)$.

Step 2. Consider the set of all subchains θ of A_{s+2} contained in the part of γ to $F_{\gamma}(\alpha+1)$ and maximal with respect to having both end links in γ_{1}. We will keep the amalgamation into D_{1} the same on these chains during this step.

Consider the set of all subchains κ of A_{s+2} contained in the part of γ through $L_{\gamma}(\alpha+1)$ and intersecting the chains θ at most in end links. Amalgamate into part of D_{1} the links of some $A_{t}, \quad t \geqq s+2$, contained in the chains κ to follow the pattern $\left.f_{1}\right|_{\{p, \ldots, \alpha+1\}}$ in D_{0} with $\gamma_{1} \cap\{\kappa\}^{* *} \subseteq D_{1}(p)-\mathrm{cl}\left(D_{1}(p+1)\right)$.

Continue in this manner. Do the analogous procedure from the opposite end of γ.

Step 3. When the part of A_{u} to $F_{\gamma}(q)$ has been amalgamated, and the analogous part from the other end of γ, consider the collection of all subchains λ of A_{u+2} contained in the part of γ to $F_{\gamma}(q)$ which are maximal with respect to having both end links in γ_{1}, and the analogous chains λ^{\prime} from the other end of γ. We will keep the amalgamation into D_{1} the same on these chains during this final step.

Consider the set of all subchains μ of A_{u+2} contained in γ and having only end links in common with chains λ and λ^{\prime}. Amalgamate into D_{1} the links of some $A_{v}, \quad v \geqq u+2$, contained in these chains μ to follow the pattern $\left.f_{1}\right|_{\{p, \ldots, q\}}$ in D_{0} with $y_{1} \cap\{\mu\}^{* *} \subseteq D_{1}(p)-\operatorname{cl}\left(D_{1}(p+1)\right)$ and analogously for the closure of the last link of γ. This is the final amalgamation and D_{1} is the chain that results when this procedure has been done for each $\gamma \in \Gamma$. (The obvious modifications to this procedure can be made if only one end of γ intersects $\left\{D_{1}(l) \mid \mathrm{cl}\left(C_{1}(l)\right) \subseteq X^{*}\right\}^{*}$.) A_{w} is the desired chain E, where w is the largest v in the last step used for any γ. For the pattern f_{2}, by our construction any pattern preferring $\left\{D_{1}(l) \mid \mathrm{cl}\left(C_{1}(l)\right) \subseteq X^{*}\right\}$ which E follows in D_{1} will do.

The following theorem, proved by Lehner [9] in 1959 will also be used.
Theorem 7. Suppose $H_{0}, H_{1}, \ldots, H_{n}$ are non-degenerate subcontinua of the pseudo-arc P such that H_{i} and H_{j} are in different composants of P if $i \neq j$. Suppose H_{i} is irreducible between the points P_{i} and $Q_{i} \quad(i \leqq n)$. Then for each $\epsilon>0$ there exists a chain D, with mesh $(D)<\epsilon$, covering P such that $D\left(P_{i}, Q_{i}\right)^{*}$ contains $H_{i}, D\left(P_{i}, Q_{i}\right)^{*} \cap D\left(P_{j}, Q_{j}\right)^{*}=\emptyset$ if $i \neq j, D\left(P_{1}, Q_{n}\right)=D$, and $D\left(Q_{1}\right)<D\left(P_{2}\right)<D\left(Q_{2}\right)<\cdots<D\left(P_{n}\right)$. (Here $D(A)$ is the first link of D containing the point A, and $D(A, B)$ is the subchain of D from $D(A)$ through $D(B)$.)
4. Main result. We now have everything necessary to prove the following theorem:

Theorem 8. Let U be an open subset of the pseudo-arc P. Let p and q be distinct points of P such that the subcontinuum M irreducible between p and q does not intersect $\mathrm{cl}(U)$. Then there exists a homeomorphism $h: P \rightarrow P$ with $h(p)=q \quad$ and $\left.\quad h\right|_{U}=1_{U}$.

Proof. Let $\epsilon<\operatorname{dist}(M, \operatorname{cl}(U))$. By Theorem 3 there exists a chain C with mesh $(C)<\epsilon / 2$ such that $\operatorname{St}(p, C)=C(0), \operatorname{St}(q, C)=C(k), k$ even, $k>2$, and M is covered by $\{C(0), \ldots, C(k)\}$. There exists a chain D refining C with $\operatorname{St}(p, D)=D(0), \operatorname{St}(q, D)=D(k)$, such that D follows the pattern f in C, where:

$$
\begin{aligned}
& f(m)=m \text { for } m \leqq k ; \\
& f(m)=2 k-m \text { for } k \leqq m \leqq 2 k ; \\
& f(m)=m-2 k \quad \text { for } m \leqq 2 k .
\end{aligned}
$$

Let $C_{0}=C$ and let D_{0} be an amalgamation of D where:

$$
\begin{array}{ll}
D_{0}(n)=D(k-n) \cup D(k+n) \cup D(2 k-n) \cup D(2 k+n) \quad \text { if } n \leqq k / 2 ; \\
D_{0}(n)=D(k-n) \cup D(2 k+n) \quad \text { if } k / 2<n \leqq k & \\
D_{0}(n)=D(2 k+n) \quad \text { if } n>k . &
\end{array}
$$

We can now inductively construct chains C_{r} and $D_{r}, r \in \mathbf{N}$, such that for each $r \in \mathbf{N}$:

1) C_{r} and D_{r} have the same number of links;
2) there exists a pattern f_{r} such that C_{r+1} follows f_{r} in C_{r} and D_{r+1} follows f_{r} in D_{r};
3) $\operatorname{mesh}\left(C_{r}\right)<1 / r$ and $\operatorname{mesh}\left(D_{r}\right)<1 / r$, for $r>0$;
4) $C_{r}(s)=D_{r}(s)$ for each r, s such that $\left(C_{r}(s) \cup D_{r}(s)\right) \cap U \neq \emptyset$;
5) $\operatorname{St}\left(p, C_{r}\right)=C_{r}(0)$ and $\operatorname{St}\left(q, D_{r}\right)=D_{r}(0)$.

The first four conditions follow directly from Theorem 6. Theorem 7 and the proof of Theorem 6 guarantee that condition 5 can be satisfied at each stage if it is satisfied at the previous stage. (We have constructed it into $r=0$.) Then by Theorem 1 there is a homeomorphism $h: P \rightarrow P$ with $h(p)=q$ and $\left.h\right|_{U}=1_{U}$.

Corollary 9. Let U be an open subset of the pseudo-arc P. Let $\left\{p_{i}\right\}_{i \leqq n}$ and $\left\{q_{i}\right\}_{i \leqq n}$ be sets of points of P such that for each $i \leqq n$ the subcontinuum M_{i} of P irreducible between p_{i} and q_{i} does not intersect $\mathrm{cl}(U)$, and $M_{i} \cap M_{j}=\emptyset$ if $i \neq j$. Then there exists a homeomorphism $h: P \rightarrow P$ with $h\left(p_{i}\right)=q_{i}$ for each $i \leqq n \quad$ and $\left.\quad h\right|_{U}=1_{U}$.
5. Questions. It is clear that each stable homeomorphism of the pseudo-arc P must be set-wise fixed on each composant of P. One might wonder about the converse.

Question 3. Suppose h is a homeomorphism of the pseudo-arc P so that for each composant A of $P, h(A)=A$. Is h stable? Is h the composition of at most two primitively stable homeomorphisms? (cf. [6].)

In [5] Brechner discusses a "standard" embedding of the pseudo-arc in the plane and shows that any stable homeomorphism of the pseudo-arc which, under this embedding, can be extended to a homeomorphism of the plane must be the identity. She also shows that for this embedding there is a homeomorphism of the pseudo-arc which, while not extendable to the plane, is conjugate to a homeomorphism which is extendable. She then asks the question, is every homeomorphism of the pseudo-arc conjugate to a homeomorphism which is extendable under this embedding? Since any conjugate of a stable homeomorphism is stable, we have provided a negative answer to this question.

In the same paper she defines a homeomorphism h of the pseudo-arc to be essentially extendable if there exists an embedding $\phi: P \rightarrow E^{2}$ so that $\phi h \phi^{-1}$ extends to a homeomorphism of E^{2}. She then conjectures that each essentially extendable, primitively stable homeomorphism of P is the identity. If this is true, the results of this paper would show that there are homeomorphisms of P which are not essentially extendable, a not altogether surprising result.

Question 4. Does there exist an essentially extendable stable homeomorphism of the pseudo-arc, other than the identity?

The following question concerning a possible strengthening of the results of this paper is also of interest.

Question 5. If M is a proper subcontinuum of the pseudo-arc P, U is an open subset of P with $M \cap \operatorname{cl}(U)=\emptyset$, and $h: M \rightarrow M$ is a homeomorphism, does there exist a homeomorphism $\bar{h}: P \rightarrow P$ with $\left.\bar{h}\right|_{M}=h$ and $\left.\bar{h}\right|_{U}=1_{U}$? (cf. [9].)

A straightforward modification of these techniques can be used to construct non-trivial stable homeomorphisms of the pseudo-circle [2], [7], and of any pseudo-solenoid [7].

Since the considerations which lead one to question the existence of nontrivial stable homeomorphisms of the pseudo-arc arise mainly from the fact that P is hereditarily indecomposable, rather than from the fact that it is a pseudo-arc per se, the following question is also of interest.

Question 6. Does every hereditarily indecomposable continuum have a stable homeomorphism which is not the identity?

The answer to the following question is likely to be no, but we state it for what interest it has.

Question 7. Is the set of stable homeomorphisms dense in the space of homeomorphisms of the pseudo-arc?

References

1. R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J., 15 (1948), 729-742.
2. -Snake-like continua, Duke Math. J., 18 (1951), 653-663.
3. - Concerning hereditarily indecomposable continua, Pac. J. Math., 1 (1951), 43-51.
4. - The pseudo-arc, Summary of Lectures and Seminars, Summer Institute on SetTheoretic Topology, Madison (1955), A.M.S., 72-75.
5. B. Brechner, On stable homeomorphisms and imbeddings of the pseudo-arc, Ill. J. Math, 22 (1978), 630-661.
6. M. Brown and H. Gluck, Stable structures on manifolds, Ann. of Math., 79 (1), (1964), 1-17.
7. L. Fearnley, Hereditarily indecomposable circularly chainable continua, Ph.D. Thesis, Univ. of London, 1970.
8. O. H. Hamilton, A fixed point theorem for pseudo-arcs and certain other metric continua, Proc. Amer. Math. Soc., 2 (1951), 173-174.
9. G. R. Lehner, Extending homeomorphisms on the pseudo-arc, Trans. Amer. Math. Soc., 98 (1961), 369-394.
10. E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate sub-continua, Trans. Amer. Math. Soc., 63 (1948), 581-594.
11. -_ A note on the pseudo-arc, Trans. Amer. Math. Soc., 64 (1949), 57-58.
12. J. T. Rogers, Jr., The pseudo-circle is not homogeneous, Trans. Amer. Math. Soc., 148 (1970), 417-428.

Texas Tech University, Lubbock, Texas

[^0]: Received November 23, 1977 and in revised form March 22, 1978. This paper represents part of the author's doctoral dissertation done under Professor R. H. Bing at the University of Texas at Austin.

