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ORDERING UNIFORM COMPLETIONS OF PARTIALLY
ORDERED SETS

R. H. REDFIELD

Let (P, T) be a (nearly) uniform ordered space. Let (P, X') be the uniform
completion of (P, T) at T. Several partial orders for P are introduced and
discussed. One of these orders provides an adjoint to the functor which
embeds the category of uniformly complete uniform ordered spaces in the
category of uniform ordered spaces, both categories with uniformly continuous
order-preserving functions. When P is a join-semilattice with uniformly
continuous join, two of these orders coalesce to the unique partial order with
respect to which P is a join-semilattice, P is a join-subsemilattice of P, and
the join on P is continuous. Let B be an abelian /-group with locally convex
group and lattice topology T, and let B be the completion of B at the right
uniformity associated with T. Then the two orders mentioned above are
equivalent to the minimal partial order with respect to which B is an abelian
l-group, B* 2 BT, and the lattice operations on B are continuous.

1. Introduction. For topological terminology left undefined, see [3; 7].
Other definitions with which we assume the reader to be familiar may be

found in (1; 2].

Notation. Our undefined notation is standard with possibly the following
exceptions: We denote a net with domain D by {x;|6 € D} or merely {x;} if the
domain has been previously indicated. Let X, ¥ be sets and let 4 : ¥V —» X
be a function. The function 2 X h:Y X ¥V —=X X X is defined by
(x, v)h X h = (xh, yh). Let L be a lattice, and suppose M, N C L. Then

MV N={xValx € M, aé€ N},
MAN-={xAajx€c M, a€c N}

If A, BC L X L, then

AV B={xVayVDb|(y) cA, (,bdb) € B},
ANB={xAayADblky) €4, (ab)c Bj.

Let B be an /-group and suppose that H C B and J € B X B. Then
—H = {—x|x € H},
—J = {(—=x, =)@, 3) € J}.
We note the following result, which is straightforward to prove.
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PropositioN 1.1. Let (Y, T) be a separated uniform space. Let (Y, YX) be the
completion of (Y, T) at 1. Lety € Y and let {y;|6 € D} be a Cauchy net in ¥
converging to'y. If T is the set of symmetric entourages of T directed downwards,
then there exists a Cauchy net {xy|U € T%}, with domain T°, such that {xy}
converges to'y, and such that, as subsets of Y, {xy} C {vs}. In particular, if
J, H € T¢ are such that J C H, then (y,x;) € H.

Let P be a set with partial order <. Let T be a separated uniformity on P
and let (P, Y) be the completion of (P, T) at T. We may define a binary
relation R on P by: xRy if and only if there exist Cauchy nets {x,|U € T} C P
converging to x, and {yy|U € 1%} C P converging to y such that x, < vy for
all U € 18 If P is a lattice, and if the lattice operations on P are uniformly
continuous with respect to T, then Kiseleva [5] proves that R is a lattice
order for P.

We wish to investigate here the more general situation of partially ordered
sets, and to consider in what way the orders we define there are ‘“‘best” when
restricted to lattices. It seems clear that some sort of restriction must be
placed on T so that the uniform structure and the order structure mesh
properly. The appropriate restriction turns out to be (a weakening of)
Nachbin’s concept of ‘“uniform ordered space’’.

Acknowledgement. The author wishes to thank N. R. Reilly for discussions
during the development of this paper, and Paul Conrad for pointing out the
conjecture in [4] which led to this research.

2. (Nearly) Uniform ordered spaces. As above, let P be a set with partial
order <. Let

A(P) = {(x,x)|x € P}
be the diagonal of P, and let

G(L) = {(xy)x <yl

be the graph of <.
A semi-uniform structure for P [6] is a filter # on P X P satisfying
(i) forall V€%, A(P) C V;
(i) if V € &, there exists W € & such that Wo W C V.
The set

Fr={UNVIU,VcZ}

is then a uniform structure for P [6].

We say that a partially ordered set P with uniformity T is a nearly uniform
ordered space in case T is separated and there exists a semi-uniform structure %
for P such that N& D G(<L) and # * = T. A partially ordered set P with
uniformity T is a uniform ordered space [6] in case (P, T) is a nearly uniform
ordered space and additionally % C G(<).

https://doi.org/10.4153/CJM-1974-062-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-062-4

646 R. H. REDFIELD

Let P be a partially ordered set with topology T. We say that T is locally
convex if for every x € P and every neighbourhood N of x, there exists a
neighbourhood M of x such that M is convex and M C N.

ProProsITION 2.1. If (P, T) is a nearly uniform ordered space, then the topology
on P induced by T s locally convex.

Proof. The proof of [6, Proposition 9] does not use the assumption that
NF S G(L).

Example 2.2. Let Q be the rational numbers with usual order. Then for
any prime number p, T, the p-adic topology on Q [3], is not locally convex.
Since T, is a ring topology for (), there is a uniformity T on () whose induced
topology is T,. By Proposition 1.1, (Q,T) is not a nearly uniform ordered
space.

Example 2.3. This example shows that not every nearly uniform ordered
space is a uniform ordered space.

Let R be the real numbers and let R~ = {r € Rjr < 0}. Let P = R X R-.
Let T be the uniformity P inherits from the usual uniformity on R X R. Then
T is separated. Define a binary relation L on P by: (x, ¥)L(r, s) if and only if
1) y#0,x<r,and y<s,or (2) y=0,s=0,and 0 <x <7, or (3)
y=0, s=0, and x <r <0. A straightforward case-by-case argument
shows that L is a partial order on P.

Let G(L) be the graph of L. Suppose that # is a semi-uniform structure
for P such that N# D G(L) and ¥ * = T. Let H € &% . Then there exists
V €% such that Vo V C H. Since# * = T, V € T. Therefore, there exists
8 <0 such that ((—1,0), (—1,68)) € V. Since V%, VIOG(L) and
hence

((—=1,8), (1,0)) € V.
Therefore
((-1,0),(1,0)) e VoV CH.
Thus
((=1,0), 1,0)) € NF
But —1< 0< 1and hence ((—1,0), (1,0)) ¢ G(L). Therefore
F L G(L),

i.e., (P, T) is not a uniform ordered space. However, if we let# be the semi-
uniformity on P inherited from the usual semi-uniformity on R X R, then
clearly # * = T and N& 2 G(L). Therefore (P,T) is a nearly uniform
ordered space.
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A set T is totally ordered if T is partially ordered and if
TXT=0G6(L)UGL)™

In this case, the notions of ‘‘nearly uniform ordered space” and ‘“‘uniform
space’’ are equivalent:

ProposiTION 2.4. Let T be a totally ordered set with uniformity T. Then
(T, 1) is a uniform ordered space if and only if it is a nearly uniform ordered
space.

Proof. Let # be a semi-uniform structure for 7" such that % D G(<)
and # * = T. Suppose (x,y) € NZ \G(<L). Then (y,x) € G(<) T NZ.
Let Hc T Then HD VN V! for some V €Z. Since (y,x) € V,
(x,y) € V=1, thus (x,y) € H. Therefore (x,y) € N T. But (x,y) ¢ G(L)
and hence (x, y) € A(T). Therefore, T is not separated and the result follows.

3. Partial orders on some uniform completions. Let (P, T) be a nearly
uniform ordered space, and let (P, Y) be the uniform completion of P at 7.
Define a binary relation € on P as follows: x € y if and only if for each
Cauchy net {xy|U € T} C P converging to X, there exists a Cauchy net
{yu|U € T} C P converging to y such that for all U € T¢, xy < vyy. We call
this relation the strong order on P.

Let % be a semi-uniform structure for P such that N%# 2O G(<L) and
Z * = 7. Define a binary relation < (%) on P by: x <(&#) y if and only if
for each V € %, for each Cauchy net {x,|U € T°} C P converging to X, there
exists a Cauchy net {yy|U € T°} C P converging toy such that for all U € 1%,
(xu, yu) € V. We call the relation < (%) on P the % -order on P. Clearly
if x €y, thenx < (&) y for every semi-uniform structure # for P such that
NF DG(L)andF * = 1.

ProrpositioN 3.1. If (P, T) is a nearly uniform ordered space, then the strong
order and the F -orders are partial orders on P.

Proof. Let # be a semi-uniform structure for P such that N.% 2 G(<)
and ¥ * = 1.

Clearly x € x and x <(%) x for all x € P.

Suppose X €y X <(F)y) andy € x (y < (%) x). By Proposition 1.1,
there exists a Cauchy net {yy|U € T*} € P converging to y. We will show
that {yy} converges to x. Let W € T°. Let H € T°® be suchthat HoH & W,
and let V € & be such that

VoV)yN\ (Vo V)tCH.

By definition of € (< (%)), there exist Cauchy nets {xy|U € T°} C P converg-
ing to X and {zy|U € T} C P converging to y such that for all U € T3,
Yo < %y (Yo, xy) € V) and xy < 2y ((%p, 20) € V). Hence

(yU’xU) E G(S) g V((yU:xU) E V)y

https://doi.org/10.4153/CJM-1974-062-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-062-4

648 R. H. REDFIELD

and
(xu,2v) € G(L) SV ((wy, 2v) € V).

Since {yy} and {zy} are Cauchy nets converging to y, there exists
K ¢ T¢such that K € H and if J C K, then

(yr25) € VOV
Hence (z,ys) € V, and thus (x;, y,) € Vo V. Hence
rnx5) € Vo)'NVCHCH.

But by Proposition 1.1, (x,x;) € K C H and hence
x,v;) € HoH cw.

Therefore, {yy} converges to x and since Y is separated and {y} also converges
toy,Xx =Y.

Supposex £y X <(F)y)andy <z (y <(F)z). (Let VEF, and let
W €% be such that Wo W C V.) Let {xy|U € T*} € P be a Cauchy net
converging to X. Then there exist Cauchy nets {yy|U € T} C P converging
to y and {z|U € T*} € P converging to z such that for all U € 7%,
2y < yu ((Xy, yu) € W) and vy < 2y (Yo, 2v) € W). Then for all U € T3,
xy < 2y ((Kp,20) € Wo W C V) and hence x € z (x < (%) z).

4. Properties of the strong order and the % -orders. In this section we
show that if (P, T) is a uniform ordered space, then the.# -orders extend the
order on P, and that any % -order (the strong order) on a nearly uniform
ordered space makes (P, Y') a (nearly) uniform ordered space.

PROPOSITION 4.1. Let (P, T) be a nearly uniform ordered space. Any F -order
on P satisfies

G(L) SGKEF)N) N (P XP).

Proof. Let x,y € P be such that x < y. Let V, W €% be such that
W o W C V, and suppose that {xy|U € T} C P is a Cauchy net converging
tox. If JC WM W1, then (x,x;) € WM W-1C W-1. Since

(x,9) EG(L)C W, (x5,9) € WoW C V.
Let

 fxo, fUZ WA W
Yo =y, fUC WA WL

Then {yy} € P is a Cauchy net converging to y and for all U € 7%,
(*y, yu) € V. Therefore, x < (F) y.

PROPOSITION 4.2. Let (P, T) be a uniform ordered space, and suppose that F
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UNIFORM COMPLETIONS 649

is a semi-uniform structure for P such that NF = G(L) and F * = Y. Then
the F -order on P extends the order on P, i.e., G(<) = G(<(F)) N (P X P).

Proof. Letx,y ¢ P.ByProposition4.1,ifx <y,x< (% )y.Suppose x< (Z ) y.
The net defined by xy = x for all U € T° is a Cauchy net converging to x.
Let V, W €% besuch that Wo W C V. Then thereis a net {y,|U ¢ T} C P
converging to vy such that (x,yy) = (xy,yy) € W for all U € 1. If
JCSTWNWL (v,y,) € WNW1C W-L Thus (x,y) € WoW C V. We
have shown that (x,y) € NZ and hence (x,y) € G(L), i.e.,, x < 9.

That Proposition 4.1 (and therefore 4.2) does not necessarily hold for
the strong order follows from the next example.

Example 4.3. In this example, we construct a uniform ordered space whose
strong order does not extend the original order.
Let R be the real numbers and let

P ={(x9) € RXRlx=0o0ry = 0}.

Let T be the uniformity on P inherited from the usual uniformity on R X R.
Partially order P by (x,y) < (r,s) if and only if x <7 and y <s. It is
straightforward to show that (P, T) = (P, Y) is a uniform ordered space.
Now (0,0) < (0, 1), and the net {(0,1/n)|z = 1,2,...} is a Cauchy net
converging to (0,0). Let {x4|U € 1°} C {(0,1/n)} be a Cauchy net as in
Proposition 1.1. If {yy|U € T} is a net satisfying xy < yy for all U € 1%,
then yy = (0, yy') for some v/ € R, for all U € T*. Hence if {yy} converges,
it must converge to (0, r) for some » € R. Therefore, there is no Cauchy net
{vy} converging to (1, 0) and satisfying xy < vy, i.e., (0,0) is not € (1, 0).

Let (P, T) be a nearly uniform ordered space. Let # be a semi-uniform
structure for P such that N% D G(L) and F * = 1. For V € #, let | V]|
be the subset of P X P consisting of all those (X, y) such that for each Cauchy
net {xy|U € T} C P converging to X, there exists a Cauchy net
{y0|U € 1%} C P converging to y such that (xy,yp) € V for all U € T5.
Let |# | be the filter on P X P generated by {|V||V € # }.

LemMA 4.4. |F | is a semi-uniform structure for P.

Proof. (i) Since A(P) C Vforall V €%, (x,x) € |V] for all x € P.

(i) Let V,W €% be such that Wo W C V. Suppose that (x,y),
(y,z) € |W|, and let {xy|U € T¥} € P be a Cauchy net converging to X.
Since (x,y) € |W|and (y,z) € |W]|, there are Cauchy nets {y,|U € ¢} C P
converging toy and {z,|U € T%} C P converging to z such that for all U € T¢,
(xy, yv) € Wand (yy, 2y) € W. Thus (xy,2y) € Wo W C Viorall U € T°.
Therefore (x,2) € |V|, i.e. |[W|o|W|C |V]. Hence |# | is a semi-uniform
structure for P.

LEMMA 4.5. | F |* = T.
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Proof. (If A € T%, then A is the set of (x,y) € P X P such that if
{xy|U € T} C P converges to X and {yy|U € 1%} € P converges to y, then
there exists U € T* such that for all J, K C U, (x;, yx) € A. Also Y is the
filter generated by {A]4 € T}, and {A|4 € 1%} € T°%.)

Let V, W €.% be such that Wo W C V, and let H = VN V-1 We will
first show that |W| N |W|* C H: Let (x,y) € |W| N |W]|™!, and suppose
that {x|U € T} € P and {yy|U € 1%} C P are Cauchy nets converging to
x and y respectively. Then there exists a Cauchy net {ay|U € T*} C P con-
verging to y such that (xy, ay) € W for all U € T%, and there exists K € T*
such that for all X, Y C K, (ax,yy) € W. Hence (xx,vyy) € Wo W C V.
Since (x,y) € |W[~1, there exists a Cauchy net {by|U € T°} C P converging
to X such that (yy, by) € W, ie. (by, yy) € WL, for all U € T%. Since {by}
converges to X, there exists L € T*such thatforall X, ¥V C L, (xx, by) € W1
Thus (xx,vy) € Wlo Wt C V-1 Therefore, if X,Y C LNK, then
(xx,vy) € VN V1 le. (x,y) € H.

Let V€%, and let H = VN V-1. We next show that H C |V|: Let
(x,y) € H, let {xy|U € 1} C P be a Cauchy net converging to X, and let
{z0|U € T} € P be a Cauchy net converging to y. Suppose that W € T° is
such that for all J, K € W, (x,, 2zx) € H C V. Define

 fx, fUZ W
Yo = Nz, iU C W.

Then clearly {yy} € P is a Cauchy net converging to y such that (xy, yy) € V
for all U € T°. Therefore (x,y) € |V| and hence H C |V[.

Now if A € Y, then there exists V € % such that A D H, where H =
VN V-1, and hence by the above A D |W| N |W|~! for some |W| € |.Z |.
Conversely, if A € |.# |*, then there exists V € % such that A D | V| N | V|-
Let H = VN V-1 Then by the above, |V| 2 H, and thus, since H is sym-
metric, | V| M |V|~' 2 H. Hence, A D H, and therefore, |# [* = 1.

LEMMA 4.6. G(K(F)) =N |Z |.
Proof. The result follows immediately from the definitions.

ProrosiTION 4.7. Let (P, T) be a mnearly uniform ordered space. Then any
F —order on P makes (P, YX) a uniform ordered space.

Proof. By Lemmas 4.4, 4.5 and 4.6, |.% | is a semi-uniform structure for P
such that G(K(F)) = N |F |and | F |* = 7.

PROPOSITION 4.8. Let (P, T) be a nearly uniform ordered space. Then the strong
order on P makes (P, ) a nearly uniform ordered space.

Proof. Clearly there exists an % -order on P and clearly G (< (%)) D G(<).
Thus, by Lemmas 4.4, 4.5 and 4.6, |# | is a semi-uniform structure for P
such that N |# | 2 G(<) and |.# |[* =Y.
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To ensure that (P, Y) with the strong order is a uniform ordered space, we
need an extra condition on (P, T). The condition we suggest in Section 6 is
sufficient for this result and also implies the strong order version of Propo-
sition 4.2.

5. The maximal semi-uniform structure. The results of Section 6
depend on a particular semi-uniform structure, whose definition and basic
properties we discuss here.

Let T be a separated uniformity on the partially ordered set P; let

F(T) = {V € 1| there exist V1, Vs, ... € Tsuch that
Vi, =7V, and foralln V.2 G(<L) and
Var10 Vo1 © Vn}-

PROPOSITION 5.1..F (T) is a semi-uniform structure for P.

Proof. Clearly A(P) C V for all V € # (T). If V € # (T), then V, in the
definition of & (T) is an element of # (T) such that VV, 0 Vy € V. To see that
Z (1) is a filter on P X P, we first note that clearly if U D V € .% (T), then
UcZ(T). Furthermore, if U,V €% (T), then consider U; N Vy,
UsN\Vsy.... Clearly UiV, =UNV. For any =, U, NV, €N,
U,NTV,2DG(L), and

(Unt1M Vi) © (U1 N V1) © Upg1 0 Ui © Uy,
(Unt1 M Vay1) 0 (Unir M Viy1) © Vi1 0 Vg1 © Ve
Thus
(Unt1 N Vg1) 0 (Upg1 N Vi) S U N Ve
ProposiTiON 5.2. (P, T) s ¢ nearly uniform ordered space if and only if

F(1)* D 1.

Proof. Since Z (T) C T, clearly% (T)* C T. Thus, if # (T)*DT F(T)* =
Therefore,# (T) is a semi-uniform structure for P such that % (T) D G(<)
and Z (1)* = T.

Conversely, suppose that & is a semi-uniform structure for P such that
N9 DG(L) and F* = 1. Clearly 9 C % (T). Hence, if H € T, then
H=UNV-1for U VeEF(T),ie., HEF (T)*

PROPOSITION 5.3. (P,T) is a uniform ordered space if and only if N\ F (T) C
G(<L) and F (1)* 2 1.

Proof. Let & be a semi-uniform structure for P such that N\ % = G(L)
and ¥* = 7. Clearly 9 C% (1). Thus N 9 D NZ (1), i.e.

G(L) 2 NF(T).

Proposition 5.3 then follows from Proposition 5.2.

https://doi.org/10.4153/CJM-1974-062-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-062-4

652 R. H. REDFIELD

PROPOSITION 5.4. For every (nearly) unmiform ordered space (P,T),.% (T)
is the unique maximal semi-uniform structure for P satisfying

(NF (1) 2G(L)) NF (1) = G(L)
and F (T)* = 1.

Proof. If % is such a structure, then clearly ¥ C.% (T). Proposition 5.4
then follows from Propositions 5.1, 5.2 and 5.3 and their proofs.

6. The strong order and condition (M). Let P be a partially ordered set
with uniformity T. We say that T (or (P, T)) satisfies condition (M) in case

(M) for all IV € T, there exists W € T
such that Wo G(L) C G(L) o V.

Since G(L) o (UNTV)C (G(L)oU)N (G(L)o V) forall U, V € 7, the
set {G(<) o U|U € T} is a filter-base on P X P. Let % (T) be the filter on
P X P generated by {G(<) o U|U € T1}.

ProrosiTioN 6.1. Let P be a partially ordered set with uniformity T. Then T
satisfies (M) if and only if # (T) = € (1).

Proof. SuppOSe that T satisfies condition (M). If H € % (T), then there
exists J € % (T) such that J o J C H. Since G(<L) C J,

G(L)oJCJoJCH.

Since J € T, this implies H € € (T). Thus# (1) C % (7).
Conversely, suppose U € T. By condition (M), there exist Vi, V,, ... € T
such that ¥V, = U, and for all #, V,y ;0 V,y1 € V, and

Vn+1 OG(S) g G(S) O Vw

. Then W, = G(L)o V; =

Consider W, = G(<) 0o Vy,_y for n = 1,2, .
) S W, and

G(L) o U. Furthermore, for all n, G(<
W10 Wipr = G(£) 0 Verg1 0 G(LZ) 0 Vg
g G(S) o G(S) o) V2no V2n
g G(S) O V2n—1
= W,.
Therefore, G(<) o U € # (T) and hence % (T) &% (T).
Suppose Z (T) = € (T). Let U € T. Then G(<) o U € % (T) and hence

there exist Vi, Vs € # (T) such that Vi0 Vo C G(<) o U. Since € (1) is a
filter-base, there exist J1, Jo € Tsuch that G(<) 0o J1 € Viand G(L) 0. C V..
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Thus
JloG(S) - G(S) oJloG(S) oJs C G(S) oU.
Therefore, T satisfies condition (M).

PROPOSITION 6.2. Let (P, T) be a nearly uniform ordered space. If T satisfies
condition (M), then the strong order is equivalent to the ¥ (T)-order.

Proof. Clearly, G(Z) C G(<L (F (1)).

Conversely, suppose X < (% (T)) y and let {x,|U € T*} C P be a Cauchy net
converging to X. Let ¥V € T% Then there exists a Cauchy net {y,|U € 1} C P
converging to y such that (xy,yy) € G(<L) o V for all U € T°. Hence there
exists ay € P such that (xy, ay) € G(<L) and (ay, yy) € V. Consider the net
{ay} C P. For all V€T, xy, <ay, and (ay,yy) € V. Let V, V' € T% be
such that V' o V' C V. There exists U € T* such that for J, K C U,
s yx) € V. Thus,if , K S UN V', (as,v;) € JC V'and (y;, yx) € V.
Hence (a;, yx) € V. Therefore {ay} is a Cauchy net converging to the same
point to which {yy} converges; i.e., {a,} C P is a Cauchy net converging toy.
We conclude that x € y.

COROLLARY 6.3. Let (P, T) be a nearly uniform ordered space. If T satisfies
condition (M), then (P,X°) with strong order is a uniform ordered space.

Proof. The result follows from Propositions 4.7 and 6.2.

COROLLARY 6.4. Let (P, T) be a uniform ordered space. If T satisfies condition
(M), then the strong order on P extends the order on P, i.e.,

G(Z) =G(Z)N (P XP).
Proof. The result follows from Propositions 4.2 and 6.2.

Example 6.5. Not every uniform ordered space satisfies condition (M):
(P, T) of Example 4.3 is a uniform ordered space whose strong order does not
extend its original order. Therefore, by Corollary 6.4, (P, T) does not satisfy
condition (M).

7. Ordering uniform completions of semilattices. The first result of
this section says that there is only one candidate for a topological extended
semilattice operation on the uniform completion of a semilattice with separated
uniformity.

Let (S, o) be a semilattice with separated uniformity T. Let (S,Y) be its
completion at T. Let E(o) & S X S be the set of all (x,y) such that there
exist Cauchy nets {xy|U € T¢} C S converging to X and {yy|U € T} C S
converging to y such that xy 0 yy = yy for all U € T°. For the semilattice
(S, o), let

D) = {(x,y) € SX Slxoy = y}.
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Example 7.1. This example shows that E (o) is not necessarily the graph of
a partial order. As in Example 2.2, let Q be the rational numbers with semi-
lattice operation V, and let 7', be the p-adic topology on Q for some prime p.
Let T be the usual uniformity associated with T, (see [3]), and let N be the
natural numbers. Forx € Q, let,(x) be the exponent of p in the decomposition
of x into prime factors. Then for U € T¥, there exists a minimal #(U) ¢ N
such that

{(x, Mo, —3) 2 n(U)} S U.
Let
xy =14 p"O71, Yo = p"9, zyp =1+ p"¥.

Then {xy|U € T%} and {z4|U € T°} are Cauchy nets in Q converging to 1,
and {yy|U € 19} is a Cauchy net in Q converging to 0. Furthermore, for all
U € 7¢,

Xy Vyy =9y and yy V 2y = zp.

Therefore, (1,0) € E(V) and (0,1) € E(V), and hence E(V) is not the
graph of a partial order on the uniform completion of Q at 7.

THEOREM 7.2. Let (S, 0) be a semilattice separated uniformity T. Suppose
that p is a continuous semilattice operation on S.

(a) If D(o) & D(p), then E(o) & D(p).

(b) If (S, o) is a subsemilattice of (S, p), then E(0) = D(p).

Proof. (a) Let (x,y¥) € E(0), and suppose that {x,|U € 1%} C S,
{yu|U € T} © .S are Cauchy nets converging to X, y respectively such that
Xy 0 yy = yy for all U € T*. Since p is continuous, {xypyy} converges to Xpy.
Since D (o) € D(p), xypyy = yy for all U € T*. Thus {xypyy} also converges
to y, and hence Xpy =y, i.e., (X,y) € D(p).

(b) Since (S,0) is a subsemilattice of (S, p), D(o) C D(p). Thus by
(a), E(o) € D(p). Suppose xpy =y, and let

lagUe 1} C S, {b]UECT}CS

be Cauchy nets converging to X, y respectively. Since (S, 0) is a subsemilattice
of (S, p), aypby € S for all U € T°. Since p is continuous, {aypby} S S is a
Cauchy net converging to Xpy = Y. Since p is a semilattice operation,

(ap) o (aypby) = (avpay)pby = aypby
for all U € T°. Since {ay} converges to X, this implies that (x,y) € E(o).

CoROLLARY 7.3. Let (S, 0) be a semilattice with separated uniformity 1. If
there is a continuous semilattice operation p on (S,Y) such that (S, o) is a sub-
semilattice of (S, p), then E(0) is the graph of a partial order.

We would like to use the results of previous sections to produce such a
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p as in Theorem 7.2 (b). To this end, let (L, V) ((L, A), (L, V, A)) be a
join-semilattice (meet-semilattice, lattice) with separated uniformity T. We
call (L, 1, V) ((L,T, N), (L, T, V, N\)) a j-uniform semilaitice (m-uniform
semilattice, uniform lattice) in case V (A, V and A) is (is, are) uniformly
continuous.

PROPOSITION 7.4. A j-uniform semilattice is a uniform ordered space which
satisfies condition (M), thus so is a uniform lattice.

Proof. The result follows from [6, Proposition 11] and its proof.

Let (L,T,V) ((L,T, A)) be a j-uniform (m-uniform) semilattice; let
(L,7) be its completion at T. Then V (A) may be extended to a uniformly
continuous function ¥ (A) from L X L to L.

ProrpositioN 7.5. If (L, T, V) is a j-uniform semilattice, then VW is the least
upper bound with respect to the strong order. If (L, T, V, N) is a uniform laitice,
then A 1is the greatest lower bound with respect to the strong order.

Proof. Let {xy|U € T¢} C L and {yy|U € T¢} & L be Cauchy nets con-
verging to X and y respectively. Then {xy V yy|U € ¢} C L is a Cauchy net
converging to X W y. Since xy < xy V yy and yy < xy V yy for all U € T,
xZxVWyandy < x VWy. Let {z,/U € T} C L be a Cauchy net converging
toX A Y. Then zy < xy V zyand 2y < yy V 2y for all U € T5. We will show
that {xy V 2y} converges to X and that {y, V 2y} converges toy. Let U € T¢
and suppose H € T¢ is such that H V H € U. There exists W € T* such that
if JC W,

(25, %5 N ys5) € H.
Thus

(27 V x4, (xs ANys) Vx5) € HV H,
1.e.,

(27 V x5,%;) € U.

Thus {zy V xy} is a Cauchy net converging to the same point to which {xy}
converges; i.e., {zy V xy} converges to X. Similarly, {zy V yy} converges to y
and hencex Ay £ xandX Ay 2 y.

Suppose X € Zand y € z. Let {py|U € T¢} C L be a Cauchy net converg-
ing to x Wy, and let {xy|U € T¢} C L, {yy|U € T} & L be Cauchy nets
converging to X,y respectively. There exist Cauchy nets {ay|U € 1%} C L,
{by|U € 1%} C L converging to z such that xy < ay, yy < by forall U € T%.
Then {ay V by} is a Cauchy net converging to z and xy V yy < ay V by for
all U € 1. Letzy = (ay V by) V pyforall U € T8 Then zy > py for all U.
Let V € T¢ and let H € T° be such that H Vv H C V. There exists W € T¢
such that if U C W,

(v, v V yu) € H.
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Thus
((ay V by) V pu, (ay V by) V (xv V yv)) € HV H,

ie.,

(2y, ay V by) € V.

Hence {zy} is a Cauchy net converging to z and thus x Wy < z. We conclude
that W is the least upper bound with respect to the strong order on L.

Suppose thatz € x and z € y. Let {zy|U € T*} C L be a Cauchy net con-
verging to z and suppose {xy|U € T} C L, {yy|U € T} C L are Cauchy nets
converging to X, y respectively such that zy < xy and zy < yp forall U € T8,
Then zy < xy A vy for all U € T¢ and clearly {xy A yy} € L is a Cauchy
net converging toX A Y. Thusz € x A y. We conclude that A is the greatest
lower bound with respect to the strong order on L.

CoROLLARY 7.6. A j-uniform semilattice (L,T, V) (uniform lattice
(L,T, V, N\)) s a join-subsemilattice (sublattice) of (L, <€) and (L, <(Z (T)).

Proof. By Propositions 6.2, 7.4, and 7.5, the join (join and meet) on L
agrees (agree) with the join (join and meet) on L restricted to L.

COROLLARY 7.7. Let (L,T, V) ((L,T, V, A)) be a j-uniform semilattice
(uniform lattice). Then the strong order on L is the unique order on L such that L
is a join-semilattice (lattice), L is a join-subsemilattice (sublattice) of L, and the
join (join and meet) on L is (are) continuous.

Proof. By Proposition 7.5 and Corollary 7.6, the strong order satisfies the
conditions. By Theorem 7.2 (b), such an order is unique.

CoroLLARY 7.8. Let (L, T, V) ((L,T, V, A)) be a j-uniform semilaltice
(uniform lattice). Suppose L is ordered such that L is a join-semilattice (lattice)
and L is a join-subsemilattice (sublattice) of L. Then the join (lattice operations)
is (are) continuous if and only if it is (they are) uniformly continuous.

Proof. 1f the join (lattice operations) is (are) continuous, then the order is
the strong order by Corollary 7.7. Thus it is (they are) in fact uniformly
continuous.

We also have another characterization of the strong order on a j-uniform
semilattice.

COROLLARY 7.9. For a j-uniform lattice (L, T, V), X € ¥ of and only if there
exist Cauchy mets {xy|U € T8} C L, {yy|U € T°} C L converging to X,y
respectively such that xy < yy for all U € T°.

Proof. The statement of the condition merely re-phrases the definition of
E(V) in terms of the join-semilattice order.

We note that this version of the strong order is precisely the definition used
in [5] to extend the order on a uniform lattice to its completion. (See Section 1.)
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Remark 7.10. A dual strong order, < 4, could be defined on the uniform com-
pletion of a nearly uniform ordered space (P, T, <) by: x €,y if and only if
for each Cauchy net {yy|U € T*} C P converging to y, there exists a Cauchy
net {xy|U € T¢} C P converging to X such that xy < yy for all U € T%.
Similarly, dual % -orders could be defined, but these would be equivalent to
the corresponding # -orders. The results of Sections 3 and 4 would then hold
with the obvious (dual) modifications.

In Section 6, we could use condition

(J) forall V € 7T, there exists W € T
such that G(<) o W C Vo G(L)

to replace condition (M), and the set Z(T) = the filter generated by
{UoG(L)|U € 71} to replace % (T). The essential part of [6, Proposition 11],
viz. [6, Theorem 10], remains true if we replace condition (M) with condition
(J). Then [6, Proposition 11] holds when we replace the hypothesis of a uni-
formly continuous join with that of a uniformly continuous meet. This would
permit a ‘‘dualizing” of hypotheses (that is, replacing ‘‘j-uniform” with
“m-uniform’) in such results as Propositions 7.4 and 7.5. To prove the dual
versions of Corollaries 7.6 through 7.9 would then require the following meet-
semilattice interpretation of Theorem 7.2:

THEOREM 7.2d. Under the hypotheses of Theorem 7.2, we have the following:
(@) If D(0)™ S D(p)7', then E(o)™ & D(p)~".
(b) If (S, o) is a subsemilattice of (S, p), then E(0)~' = D(p)~.

8. Ordering uniform completions of /-groups. In this section, let B be
an [-group with Hausdorff topology T such that (B, T) is both a topological
group and a topological lattice. Let T,, T;, T be, respectively, the right, left,
and two-sided uniformities associated with T. Then T, is generated by sets
of the form

W= {@y)x—yecW
where W is a neighbourhood of 0; for the same W’s, the sets
W= {&y|-x+yec W

generate T;; and T is the filter generated by T,\U T,. Let B,, B;,, B be the
completions of B with respect to T,, T, T, respectively.

Corollary 7.7 (and its proof) indicates part of the proof of a conjecture of
Conrad [4]. If B is abelian, then B, = B; = B may be considered as a super-
group of B. Conrad conjectured — in different terminology — that the strong
order is the minimal lattice order on B such that B is an abelian I-group,
B+ D B, and the lattice operations on B are continuous. We will show that
this conjecture is true in a more general situation, provided that at least one
of the lattice operations on B is uniformly continuous. This hypothesis is not
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as restrictive as it may appear; we will show that in fact it is equivalent to the
assumption of local convexity for T.

LeEmMMA 8.1. The following are equivalent:

(@) V is uniformly continuous with respect to €, (T, T);

(b) A s uniformly continuous with respect to T, (T,, T).

Proof. We note that

a ANb=—[(—a) V (=b)] and a Vb= —[(—a) A (—=0)]
for all a, b € B. Since — : B — B is uniformly continuous with respect to
T [7], the equivalence of (a) and (b) in the case of T is clear.

Suppose V is uniformly continuous with respect to T,, and let V € T,.
Then by [3, III, 3, Proposition 2] —V € T,. Thus there exists H € T, such
that H V HC —V.Then —H € T,. Let (x, v), (¢,b) € —H; thus (—x, —y),
(—a, —b) € H and hence ((—x) V (—a), (—=y) V (=d)) € —=T; ie.,
(=[(=x) V (=a)], =[(=y) V (=b)]) € V. Therefore (x A a,y A D) € V,
ie. (—H) N (—H) € V. Thus A is uniformly continuous with respect to T,
i.e. (a) implies (b). Similarly (b) implies (a). The equivalence of (a) in the case
of T; and (b) in the case of T, may be proven similarly.

LemMma 8.2. If T is locally convex, then the lattice operations on B are uni-
formly continuous with respect to T,, T, and T.

Proof. Let W be a neighbourhood of 0 and let_4 be the set of convex neigh-
bourhoods of 0. Since T is locally convex, there exists M € .4 such that
M C W. Since the lattice operations on B are continuous, and again since T
is locally convex, there exists N € A suchthat NV NC Mand NANC M
(M is a neighbourhood of 0 and 0 V 0 = 0 = 0 A 0). We first consider the
uniformity U,. Suppose that (x,7v), (a,b) € N. We will show that
(x Va,yVDd), (x ANa,y Ab) € W, and hence that N vV NC W and
NANCW.

We note that x — y,a — b € N and thus since M is convex, that any ¢
such that

=) AN@—0)<t<(x—y) V(-0
is an element of M C W. Furthermore,
1) [xVa—=[yVil=I[xVad+[(-y) A (=D)]
=[x Va) -y Al Va)—10]
=[x=2)V(@e—=9]Alx—=0)V (@@—0)],
(2) xVa—-[yVb]=I[xVa+I[(—y) A (—D)]
=[x+ (=) A=)V e+ (—y) A (=0))]
=[@—=y) A @—=0]VI[a—=y A (@—10)],
B) EAa=yA]=[E=—3V &—-0]lAl@—-y)V (@-—D0),

4) [kAad—-DAd=[&—-y)Al@—]VI=20) A (—>)]
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Thus

=y AN(@—=0b)<[xVa] —[yVdby (1),
(x =9V (@—=0)2[xVa —[yVDd by (2),
(x—y)AN(e—0) <[xAa]l—[y Ab]lby (3),
x—y)V(@—=5)>2[xAa] —[y Ab]lby (4).

Therefore,
[x Va] —[y VD] [x ANal = [y Ab] €W,
ie,(xVa,yVbd),xAayAbdb) €W.

Therefore A and V are uniformly continuous with respect to T,.
Similarly, A and V are uniformly continuous with respect to T; and hence
with respect to 1.

ProrosiTION 8.3. The following are equivalent:

(a) V s uniformly continuous with respect to 1., T, or T;
(b) A s uniformly continuous with respect to 1T,, T,, or 1;
(c) T zs locally convex.

Proof. By Propositions 2.1 and 7.4, (a) implies (c). By Lemma 8.2, (c)
implies (a) and (b). It remains to show that (b) implies (a). Suppose A is
uniformly continuous with respect to T, (T;, T). By Lemma 8.1, V is uni-
formly continuous with respect to T, (T,, T). Then, as above, T is locally
convex, and hence V is uniformly continuous with respect to T,, T; and 7.
Thus (b) implies (a).

We call an /-group B with Hausdorff group and lattice topology T a ul-group
in case the equivalent conditions (a), (b), (c) of Proposition 8.3 hold.

ProrositioN 8.4. Let (B, T) be an abelian ul-group. Then (B, T, Z) is an
abelian ul-group.

Proof. By [3, III, 3, Theorem 2], (B, T) is a topological abelian group. By
Propositions 7.5 and 8.3, the lattice operations on (B, €) are uniformly
continuous. It remains to show that (B, €) is a partially ordered group. Let
x 2y and suppose b€ B. Let {xy|U € T} € B, {y,U€ 7T} CB,
{by|U € T} C B be Cauchy nets converging to X, ¥, b respectively such that
xpy < yy for all U € 1% Then xy + by < yy + by for all U € T Since
(B, T) is a topological group, {xy + by} & B, {yv + by} & B, converge to
x + b, y + b respectively. Thus x + b £y + b, and hence (B, €) is a
partially ordered group.

PropositioN 8.5. Let (B, T) be a ul-group. Then the strong order on B,
(B, B) s the minimal lattice order < on B, (B, B) such that G(<) € G(X)
and the join on B, (B, B) is continuous.
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Proof. By Propositions 3.1, 7.4, 7.5, 8.3, and Corollary 6.4, the strong order
on B, (B, B) satisfies the conditions. By Corollary 7.9 and Theorem 7.2 (a),

G(Z) = E(V) S G(5)

for any lattice order < on B, (B,, B) satisfying the conditions.

A

COROLLARY 8.6. Let (B, T) be an abelian ul-group. Then the strong order on
B = B, = B s the minimal partial order on B such that B is an abelian I-group,
B+ D B*, and the lattice operations on B are continuous.

Proof. Let < be a partial order on B satisfying the conditions. Since B is
an abelian /-group and Bt D B*, G(<) € G(X). The result follows from
Propositions 8.4 and 8.5.

COROLLARY 8.7. Let (B, T) be a ul-group. Then the strong order on B, (B,, B)
is the minimal lattice order < on B, (B, B) such that G(<) € G(X) and the
lattice operations on B, (B, B) are uniformly continuous.

Proof. By Proposition 7.5, the strong order satisfies the additional condition.
The result follows from Proposition 8.5.

9. Categorical considerations. Definitions of terms which are left un-
defined in this section and which do not appear in a preceeding section, may
be found in [2] or any book on category theory. (NB: We use “functor’ for
‘“‘covariant functor’.)

Let A, B be categories and leta : B — A be a functor. A functor8: A - B
is adjoint to « in case for each object 4 of I there is a morphism ¢, : 4 — ABa
such that if X is an object of 8 and if g : 4 — Xa is a morphism of I, then
there exists a unique morphism & : 48 — X of 8B such that (¢,) (ka) = g. The
functor which takes a separated uniform space to its completion (and a
uniformly continuous function to its extension) is adjoint to the functor
which embeds the category of complete separated uniform spaces and uni-
formly continuous functions in the category of separated uniform spaces and
uniformly continuous functions.

Let nu© be the category of nearly uniform ordered spaces and uniformly
continuous order-preserving functions. Let u be the category of uniform
ordered spaces and uniformly continuous order-preserving functions. Let
CnuO and CuL be the categories of uniformly complete nearly uniform
ordered spaces and uniformly complete uniform ordered spaces, respectively.
Let  : CuO —uL, ¢ : CnuO — nuO be the natural embedding functors. We
wish to investigate possible adjoint functors to  and ¢.

Specifically, we will investigate the following problem: Let (P, T, <) be
a (nearly) uniform ordered space. Let (P, Y) be its uniform completion, and
let ¢, : P — P be the usual uniform embedding (see [3]). Can we specify a
partial order < on P with the following properties:
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(1) P, T, <) is a (nearly) uniform ordered space;

(i) t,: (P, <) — (P, <) preserves order;

(i) if (X, &8, ) is a uniformly complete (nearly) uniform ordered space,
if f:P—>X is a uniformly continuous order-preserving function, and if
f: (P,r)— (X, E) is the unique uniformly continuous function such that
t,f = f, then f: (P, <) — (X, £) preserves order?

Let (P, T, <) be a nearly uniform ordered space, and let (P,Y) and
t, : P — P be as above. For simplicity, we sometimes ignore #, and identify P
with its £,-image in P. Let

& (X) = {V € Y|there exist Vi, Vs, ... € Y such that
Vi=V,and foralln, V, D G(<) and
Va1 0 Vo1 © Vn}'

LEMMA 9.1. & (X') is a semi-uniform structure for P.

Proof. The proof is similar to that of Proposition 5.1.

Let <; and <, be the binary relations defined on P as follows:
x <;yifandonlyifx =yorx,y € Pandx <y;
X <,y if and only if (x,y) € N & ().

ProrosiTioN 9.2. Both <; and <. are partial orders on P.

Proof. Clearly < is a partial order. Since Y is separated, Lemma 9.1 and the
argument of [6, pp. 58—59] show that N & (X') is the graph of a partial order.

We will show that <; and <, can be used to define adjoint functors to
¢ and 7 respectively.

LetZ (T) be the maximal semi-uniform structure for P defined in Section 5.
Let | % (T)] be the collection of subsets of P X P defined following Example 4.3.

LemMa 9.3. |Z (T)] C & ().

Proof. If V € | % (T)|, then by Proposition 4.1 and Lemma 4.6, G(<) C V.
Thus by Lemma 4.4, for every V € | (T)|, there exist Vi, Vs, ... € X such
that V = Vi, and for all n, V0,0 V,u1 © V, and G(L) C V,. Therefore,
|#(1)] € & ().

Provrosition 9.4. (P, Y, <1) is a nearly uniform ordered space, and (P,X, <»)
15 a uniform ordered space.

Proof. By Proposition 9.2, (P, <) and (P, <,) are partially ordered sets;
by Lemma 9.1, & (X) is a semi-uniform structure for P; and from the defini-
tions, G(<;) € N & () and G(<,.) = N & (). Thus it suffices to show that
&(r)* =Y. By Lemma 4.5, | (T)|* =7, and hence by Lemma 9.3,
& )* 2| (D)|* =7. Clearly & (0)* C 7T, and hence & (¥)* =.

ProposITION 9.5. Let ¢ : nuD — Enu take an object (P, T, <) to (P, X, <,)
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and a morphism to its uniformly continuous extension. Then { is a functor which
is adjoint to §.

Proof. Let (P, T, <) be a nearly uniform ordered space. By Proposition 9.4,
(P,x, <) be a uniformly complete nearly uniform ordered space. Clearly,
t, preserves order. Let (X, &, £) be a uniformly complete nearly uniform
ordered space, let f: P — X be a uniformly continuous order-preserving
function, and let f: (P,X") — (X, Z) be the unique uniformly continuous
function such that ¢f = f. It suffices to show that f: (P, <,) — (X, X)
preserves order. To this end, suppose that x <;y. If x =y, then xf = yf,
and thus xf < yf. If x # y, then there exist a,b € P such that a < b and
at, = X, bt, =y. Thus

xf = at,f = of < 0f = bt,f = yf.

The proof that an adjoint for » may be defined similarly to { for ¢ is some-
what more complicated than the proof of Proposition 9.5. We will need the
following two lemmas, the first of which is straightforward to prove.

LeMMA 9.6. Let X, Ybesetsandleth : V — X bea function. Let L, J C X X X
be such that Lo L < J. Then

L X k)" o L(h X h)=* C J(h X h)~.

Lemma 9.7. Let (P, 7T, <), (X, E, &), and (Y, ¥, Z) be nearly uniform
ordered spaces. Let g : P —X,t:P—Y, and k: Y — X be uniformly con-
tinuwous functions such that tk = g, and suppose that g and t preserve order. If
V € % (B), then there exist Ey, Es, ... ¢ YV such that V(k X k)~! = E,, and
for all m, G(L)(t X t) C E, and E,1 0 Eypy C E,.

Proof. Let Vi, Vo, ... € E be such that V; = V, and for all z, G(Z) S V,
and V,y10 V1 © V,. For each #n, let E, = V,(k X k)"t € V. If «,b € P
are such that a < b, then ag X bg, ie., (a)tk X (b)tk. Hence for all #,
(at, bt)(k X k) € G(K) S V,, ie., (at,bt) € V,(k X E)"! = E, Thus,
G(L)txXt)yCE, for all n. By Lemma 9.6, since V,;;0 V11 & V,,
E,.10E,; C E, By definition, V(k X k)~! = E,.

ProrosiTioN 9.8. Let 4 : uO — Cu take an object (P, T, <) to (P, X, <»)
and a morphism to its uniformly continuous extension. Then 4 is a functor which
s adjoint to 9.

Proof. Let (P,T, <) be a uniform ordered space. By Proposition 9.4,
(P,T, <,)isauniform ordered space. Clearly, ¢, preserves order. Let (X, &, <)
be a uniformly complete uniform ordered space, letf: (P, T, <) — (X, g, £)
be a uniformly continuous order-preserving function, and letf : (P,x) —» (X, =)
be the unique uniformly continuous function such that £,f = f. It suffices to
show that f : (P, <) — (X, £) preserves order. To this end, suppose that
X <.y. Then (x,y) € N &€ (). Thus by Lemma 9.7, (x,y) € V(f X f)-1
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forall V € # (8), ie., (xf,yf) € Viorall V € # (8). Thus
f,yf) €c NF (&) = G(S),

ie., xf < yf.
In fact, <, is the partial ordering of P we would expect in view of the
preceding sections, namely < (& (T)).

PROPOSITION 9.9. G(<L32) = G(L (£ (T))).
Proof. By Lemma 9.3, | (T)| € & (¥), and hence by Lemma 4.6,
G (F () =NFM2NENX) =G(<L,).

Conversely, suppose that x <(% (T))y. Let 7(r) be the topology on P
associated withX’, and for all V € X', let * be the closure of V with respect to
) X I(r).

We first show that (x,y) € Veforall V€ &(r). Let V ¢ & (x). Clearly,
for all H € &), Hlt, X t,)"' D G(L) and H(t, X t,)~! € T. Thus, by
Lemma 9.6 as applied in Lemma 9.7, V(¢, X t,)~! € # (T). Thus there exist
Cauchy nets {xy|U € 1%} € P, {yy|U € T} € P such that {xyt,} converges
to X, {yyt,} converges toy, and (xy, yy) € V (¢, X t,)~! for all U € 1. Thus
(xuly, Yulpy) € Vfor all U € 1%, and hence (x,y) € Ve

If H € & @), then there exists V € & (¥') such that Vo Vo V C H. Thus
by [3, II, 1, Proposition 2],

V=N (WoVol)SVoVoVCH.
vers

Hence (X,y) € Hforall H € &), ie, X,¥) € N EMX) = G(L,).
The following examples show that <; may or may not be equivalent to <,.

Example 9.10. Let (P, T, <) be a uniformly complete uniform ordered
space. Then clearly G(<1) = G(L»).

Example 9.11. Let Q be the rational numbers with usual order < and
usual uniformity T. Then clearly, (0, T, <) is a uniform ordered space.
Clearly, R is the completion of Q at T and 0 < (& (T)) , i.e., 0 <, m. However,
since 7 € R\Q, 0 £; =, and thus G(<;) # G(<,).

Let v : uD — nu be the natural embedding functor. Let 7 : nuO — uO be
defined by f7 = f for all morphisms f and (P, T, <)5 = (P, T, <) where
G(R) = NF(1).

ProrosITION 9.12. 7 25 a functor which is adjoint to v.

Proof. As in [6, pp. 58-59], < is a partial order on P. Then clearly (P, T, <)
is a uniform ordered space. Since G(<) € NZ (T) = G(Z), the identity
map from (P, T, <) to (P, T, <) preserves order. Let (X, &, ) be a uniform
ordered space, and suppose that f : P — X is a uniformly continuous order-
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preserving (with respect to <) function. It suffices to show that if x < v,
then xf < vf. By Lemma 9.7, if V € % (%), then V(f X f)~' € # (T). Thus

(6, y)ENT (1) C AR V(XN

ie., (xf,y) € N (E). Since (X,E, <) is a uniform ordered space,
(f, 3f) € G(S), i.e, xf S of.

Remark. Let ju@(muS, u) and CjuS(EmuS, Cu¥) be, respectively, the
categories of j-uniform semilattices (m-uniform semilattices, uniform lattices)
and uniformly complete j-uniform semilattices (m-uniform semilattices,
uniform lattices), both with uniformly continuous join-preserving (meet-
preserving, join- and meet-preserving) functions. Using Corollary 7.7 (Remark
7.10, Corollary 7.7) as a guide, we see that the strong order is the only candidate
for a solution to the problem of ordering the completion of a j-uniform semi-
lattice (m-uniform semilattice, uniform lattice) so as to describe an adjoint
to the natural embedding functor from Cju& (EmuS, Cu¥) to jus (Mu$, ud).
Routine manipulation shows that it is indeed the proper order, i.e. that the
extension of a uniformly continuous join-preserving (meet-preserving, join-
and meet-preserving) function to the completion does preserve the join (meet,
join and meet).

Let A and G A be, respectively, the categories of abelian #/-groups and uni-
formly complete abelian ul-groups, both with uniformly continuous group and
lattice homomorphisms. That the strong order on the completion is an
“adjoint”’ ordering may be seen by the following argument (cf. Corollary 8.6):
The completion with strong order is an abelian #/-group by Proposition 8.4;
the unique extension of a morphism to the completion is a uniformly con-
tinuous group homomorphism by (3, III, 3, Propositions 3 and 8], and a
lattice homomorphism by the routine manipulation mentioned above.
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