
Robotica (2024), 1–29
doi:10.1017/S0263574724001061

RESEARCH ARTICLE

Dynamic modeling of wheeled biped robot and controller
design for reducing chassis tilt angle
Nan Mao1,2 , Junpeng Chen2, Emmanouil Spyrakos-Papastavridis1 and Jian S. Dai1,2

1Centre for Robotics Research, King’s College London, London, UK
2Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Southern University of Science and
Technology, Shenzhen, China
Corresponding author: Nan Mao; Email: herbmaonan@163.com

Received: 14 November 2023; Revised: 2 April 2024; Accepted: 8 May 2024

Keywords: controller design; dynamic modeling; wheeled biped robot; chassis tilt angle; planar parallel mechanism

Abstract
The wheeled-legged robot combines the advantages of wheeled and legged robots, making it easier to assist people
in completing repetitive and time-consuming tasks in their daily lives. This paper presents a study on the kinematic
and dynamic modeling, as well as the controller design, of a wheeled biped robot with a parallel five-bar linkage
mechanism as its leg module. During the motion of the robot, the robot relies on the tilt angle of the inverted pendu-
lum, and this angle often results in the tilting of the chassis of the robot, presenting challenges for the installation of
upper-body payloads and sensor systems. The controller proposed in this paper, which is developed by decoupling
the primary motions of the robot and designing a multi-objective, multilevel controller, addresses this issue. This
controller employs the pendulum pitch angle of the equivalent inverted pendulum model as the control variable and
compensates for the chassis tilt angle (CTA). This control method can effectively reduce the CTA of such robots and
eliminate the need for additional counterweights. It also provides a more spacious structural design for accommo-
dating upper-body devices. The effectiveness of this control framework is verified through variable height control,
walking on flat ground, and carrying loads over rough terrain and slopes.

1. Introduction
In the last twenty years, robot technology has rapidly evolved in tandem with the development of
societal productivity, encompassing the diverse development of robots that are now integral to soci-
ety. Among these, ground mobile robots have found extensive applications in fields such as logistics
and storage, counter-terrorism and bomb disposal, wilderness transportation, and domestic services
[1]. Two-wheeled balancing robots, which constitute a subset of mobile robotics, possess a moderate
number of variables and can be more closely approximated by the classical linear inverted pendulum
model. These features render them ideal research platforms for validating a variety of control algorithms.
Moreover, their simple structure and agile movement make them well-suited for operations in confined
spaces or complex environments, enabling the realization of tasks that other multi-wheeled robots may
be unable to undertake, such as space exploration and terrain reconnaissance [2].

Scholars from various countries have conducted extensive research on two-wheeled balancing robots
due to their uniqueness and practicality. Kazuo Yamafuji et al. [3] initially proposed the concept of a
two-wheeled balancing robot, laying the foundation for subsequent studies, even though the robot they
constructed could only move on fixed tracks at the time. Felix Grasser et al. [4] achieved a signifi-
cant milestone by developing the mobile inverted pendulum robot, establishing a dynamic model, and
designing a full-state feedback controller. This marked a pivotal moment in the history of two-wheeled
self-balancing robots, particularly for control on flat terrains.
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In the case of the above-mentioned two-wheeled self-balancing robot during acceleration or decelera-
tion, achieving higher acceleration requires a significant tilting of the body. If the body of the balancing
robot is equipped with devices such as robotic arms or LiDAR sensors, the use of these devices is
influenced by the chassis tilt angle (CTA), leading to reduced operational efficiency and collabora-
tive capabilities [5]. Therefore, in this context, a parallel mechanism is employed that enables the
drive wheels to have a two-degree-of-freedom (DOF) motion plane relative to the body. This approach
facilitates the adjustment of the body’s posture and height.

Leg structure design options include serial and parallel mechanisms. The parallel mechanisms have
compact structures, making them more suitable for heavy-load scenarios [6]. This study adopts a two-
DOF five-bar parallel mechanism. Giberti [7] applied this structure in a planar robotic arm design,
derived kinematic and dynamic equations, conducted arm testing, achieved tracking of the prescribed
trajectory, and determined its motion space. Kau [8] designed a quadruped mobile robot based on this
structure, showing lighter leg structure and higher motor efficiency compared to serial-legged robots.
Other researchers have improved robot motion performance by designing hybrid mechanisms [9] and
switching mechanisms [10].

To make a robot adaptable to the various environments and diverse demands, Dai introduced the
concept of the metamorphic mechanism in 1998 [11, 12] and then reconfigurable mechanisms [13] for
mechanisms to possess variable mobility and topology during motion, significantly broadening the func-
tionality and adaptability of robots [14]. Based on this, a novel robot hand with a metamorphic palm was
developed [15], with the mathematical and manifold-related perspectives [16], to have higher dexterity
of the hand [17]. In subsequent research, scholars delved deeper into the kinematics [18], manipulability
[19], and singular value decomposition [20] of the metamorphic hand. Furthermore, such mechanisms
have also found application in legged robots. Zhang et al. employed a planar six-bar closed-loop linkage
as the robot’s trunk, enhancing its stability margin and biomimetic performance [21]. The reconfigurable
quadruped robot, Origaker [22], developed by Tang et al., utilizes a spatial eight-bar mechanism [23],
offering four biomimetic configurations, thereby significantly enhancing the locomotion capabilities of
the robot [24, 25]. This serves as an inspiration for robot development from both a biomimetic and
mechanical design perspective. Additionally, other legged robots employing Bennett mechanisms [26],
planar five-bar mechanisms [27, 28], or parallel mechanisms [29] have served as valuable references for
leg designs in mobile robots.

In the field of robot control, numerous scholars have attempted to enhance the overall performance of
robots from various aspects [30]. Wang et al proposed a nonlinear controller that improved the robot’s
balancing performance [31]. Saglia et al. delivered an inverse-kinematics control strategy that largely
enhanced the robot’s performance [32, 33]. Klemm et al. derived the motion loop dynamics for more
complex systems, thus reducing the computational load on the controller [34]. Xin et al. introduced
the Cart-Linear Inverted Pendulum Model and implemented model predictive control to achieve online
dynamic hybrid locomotion in wheeled biped robots [35]. Chen et al. proposed a novel wheeled-spring-
loaded inverted pendulum model to characterize the dynamics of wheeled biped robots during jumping
[36]. In ref. [37], Zhang et al. introduced a wheel-to-foot transition mechanism and control strategy,
addressing the challenge of transitioning between the robot’s wheeled balancing and bipedal stand-
ing states. Robot parameter identification is also one of the significant challenges in dynamic control.
Chang et al. effectively reduced the difficulty of parameter identification by proposing the “E-B” identi-
fication method [38]. Other works have also focused on improving the performance of wheeled-legged
robots through approaches such as torque control [39], attitude compensation [40], and hybrid control
frameworks [41].

In this study, we focus on the dynamics modeling and the cascaded control strategy of the wheeled
biped robot based on the decoupling principle, with a compensating strategy for the CTA. This approach
enables the robot to maintain a horizontal posture during the inclined motion, effectively reducing the
CTA’s magnitude. The paper incorporates a five-bar mechanism. The validity of the established model
is verified through experiments. The main contributions of this paper are the following:
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(1) An analytical method that is used for detailed kinematic and dynamic modeling of this wheeled-
legged robot, enabling it to achieve self-balancing and locomotion.

(2) A multi-objective and multilevel controller that is designed based on decoupling the robot’s
motion. With both simulations and practical experiments, when using locked and unlocked leg
structures, the control framework is demonstrated to significantly reduce the CTA during inclined
motion and loading processes.

(3) A control framework that primarily relies on the positional control of the motors, employing
direct motor drive without the need for additional transmission systems, thereby reducing the
control complexity.

The remainder of this paper is organized as follows. Section 2 provides a brief overview of the
overall mechanism of the robot. Section 3 elaborates on the detailed modeling and analysis of the
leg module’s kinematics, robot dynamics, and acceleration principles. Section 4 combines the bal-
ancing control of the robot with leg module locking/unlocking control to conduct a comprehensive
controller analysis. Section 5 involves simulation and physical experiments to validate the proposed
control framework, followed by an analysis of the experimental results. Lastly, Section 6 concludes the
paper.

Table I shows the relevant symbols and descriptions pertaining to the paper’s mathematical
derivations.

2. Overview of the wheeled biped robot
2.1. Requirements for mechanism design
The wheeled biped robot needs to adapt to various terrains while ensuring variable body inclination.
Building upon the foundations of traditional wheeled biped robots, a five-bar mechanism is introduced.
Accordingly, this paper defines the requirements for mechanism design as follows:

(1) The robot should possess a highly symmetric overall structure, ensuring that the projection of
the center of gravity in its upright state falls as close as possible to the geometric center of the
support polygon on the ground [42].

(2) The leg design of the parallel mechanism must ensure a movable connection to the chassis
[43]. This ensures that during motion, the driving wheels will not significantly impact the body
posture.

(3) As the plane of the driving wheels is always perpendicular to the ground, body posture
adjustability must be maintained, requiring the leg design to comprise at least two DOFs.

2.2. Mechanism design of the wheeled biped robot
Considering the aforementioned requirements, the conceptual design of the robot’s overall configuration
is depicted in Figure 1(a). The robot comprises the body module, two-sided driving wheel modules, and
leg modules connecting the body and driving wheels. Regarding the design of the legs, as mentioned in
section 2.1, each robot leg requires at least two DOFs to adjust the robot’s posture. Therefore, a simple
and effective parallel five-bar mechanism is deemed an auspicious choice. Compared to the traditional
planar four-bar mechanism, the five-bar mechanism not only has an additional DOF that enables more
flexible movement but also does not require a complex transmission mechanism [8]. It can be directly
driven by motors, which to a certain extent, reduces the control complexity. Its configuration is illustrated
in Figure 1(b), with both legs possessing the same configuration as each other. This five-bar mechanism
also maintains a symmetrical configuration on each side, enhancing leg rigidity.
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Table I. Nomenclature.

Symbols Descriptions
P Midpoint of the two hip joints of the same leg module.
h Distance from point P to the foot end.
R Radius of left or right wheel.
L0 Distance between the chassis’s equivalent COM and point P.
L1 Distance between the hip joints I and II on the same side.
L2,L3 Length of the thigh linkage (TL) and shank linkage (SL)
D Distance between the driving wheels on the left and right.
L Distance from center of mass (COM) of pendulum to wheel axle.
Hl, Hr Horizontal interaction force between the left and right wheel axis and the

pendulum.
Vl, Vr Vertical interaction force between the left and right wheel axis and the

pendulum.
fl, fr Static friction force of the ground against the left and right wheels.
τl, τr Driving torque of the left and right wheel.
xp Forward displacement of the pendulum.
x Forward displacement of the robot.
xr Desired forward displacement of the robot.
θ PPA (in FIP model), that is the angle between the pendulum and yB-axis.
θc CTA, that is the angle between the line L0 and the vertical line.
θL The angle between the line h and the vertical line.
θeq The angle between the line Leq and the vertical line.
δ PYA, that is the angle between the x-axis and xB-axis.
mp, mw Mass of the pendulum and a wheel.
Jp Moment of inertia of the pendulum around the zB axis.
Jpy Moment of inertia of the pendulum around the yB axis.
Jy Moment of inertia of the robot around the yB-axis.
Jω Moment of inertia of the wheel around its axial direction.
Jωy Moment of inertia of the wheel around its radial direction.
Leq Chassis equivalent COM to the wheel axle distance.
COG, COM Center of gravity and center of mass.
FIP First-order inverted pendulum.
TL, SL Thigh linkage and shank linkage.
CTA, PPA, PYA Chassis tilt angle, pendulum pitch angle and pendulum yaw angle.
YM, PM, FM Yaw, pitch and forward motion.

Fig. 1. Structure diagram of the wheeled biped robot.
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Fig. 2. Design of main modules of the wheeled biped robot.

The hip joints, denoted as drive joints I and II, on one side of the robot are connected to the body.
The shank linkages (SLs) are attached to the driving wheels at their ends, facilitating the forward and
backward movement of the robot. Due to the high symmetry requirements for balanced motion, the robot
is symmetrically designed, ensuring that the symmetrical linkages have equal lengths.

The overall structure of the robot is depicted in Figure 2. The mechanical components mainly consist
of three modules: the body module, leg module, and drive wheel module. The body module houses key
electronic devices, batteries, femoral joint motors, and flexible limiters for protecting the leg structure.
On each side, the leg can be divided into the TLs (thigh linkages), TL A and TL B, and the SLs, SL A and
SL B. The leg module is predominantly constructed of carbon fiber, ensuring strength while reducing
weight. The drive wheel module comprises a drive motor, rim, and pneumatic tire.

3. Kinematics and dynamics modeling of the wheeled biped robot
3.1. Kinematics modeling of the planar five-bar parallel mechanism
In general, existing approaches to robot modeling include the generalized coordinate method, and the
analytical method, among others. The former can generate a simplified symbolic representation when
modeling systems of low to medium complexity [36]. The latter in the analytical method, on the other
hand, offers more intuitiveness in simpler systems and can achieve real-time control with less computa-
tional resource consumption. For the system discussed in this paper, we have adopted the more intuitive,
analytical modeling method.

The leg module employs a planar parallel five-bar mechanism. Taking the leg module of one side as
an example, if the line connecting the two driving joints of the leg module is treated as an equivalent link,
a coordinate frame is established as shown in Figure 3(a) and simplified in Figure 3(b). The respective
coordinate systems and defined parameters are the following:

1) The origin O0 of the coordinate frame {L} is located at the center of rotation of driving joint I,
and the x0 and y0 axes are along the horizontal and vertical directions of the body, respectively.

2) The origin O1 in frame {L} is located at the center of the leg’s tip. The x1 and yA1 axes are parallel
to the x0 and y0 axes, respectively.
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Fig. 3. Coordinate frame and parametric annotations of the leg module.

3) Points A, B, and C serve as the joint rotational centers; α1 and α2 represent the rotation angles
of driving joints I and II, respectively; ε and φ denote the angles between the leg linkage lCO1

and lBO1 and the horizontal direction; and ψ indicates the angle between lCB and the horizontal
direction.

From the geometric relationship in Figure. 3(b), one can obtain:⎧⎪⎪⎨
⎪⎪⎩

lO0C = (L2 cos α1, L2 sin α1)= (xC, yC)

lO0A = (L1, 0)

lAB = (L2 cos α2, L2 sin α2)

(1)

Then

lO0B = lO0A + lAB = (L1 + L2 cos α2, L2 sin α2)= (xB, yB) (2)

|lCB| =
∣∣lO0B − lO0C

∣∣=√
(xB − xC)

2 + (yB − yC)
2 (3)

According to the cosine law, we have

cos (ε+ψ) = cos ε cosψ − sin ε sinψ = L3
2 + |lCB|2 − L3

2

2L3|lCB| (4)

where sinψ = −(yB − yC)/|lCB| and cosψ = (xB − xC)/|lCB|. Substituting these values into Eq. 4 yields

2L3 cos ε (xB − xC)+ 2L3 sin ε (yB − yC)= |lCB|2 (5)

Letting c = 2L3 (xB − xC) , d = 2L3 (yB − yC), we have

c cos ε+ d sin ε= |lCB|2 (6)

Using the trigonometric identity, Eq. 6 can be rewritten as follows:

c
(

1 − tan2
ε

2

)
1 + tan2

ε

2

+
2d tan

ε

2

1 + tan2
ε

2

= |lCB|2 (7)
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Solving Eq. 7, ε can be expressed as:

ε= 2 arctan

(
d ±√

c2 + d2 − |lCB|4

c + |lCB|2

)
(8)

Since lCO1 = (
L3 cos δ, L3 sin δ

)
, lO0O1 can be expressed as:

lO0O1 = lO0C + lCO1

= (
xC + L3 cos ε, yC + L3 sin ε

)
= (

L2 cos α1 + L3 cos ε, L2 sin α1 + L3 sin ε
)

= (
l(O0O1)x , l(O0O1)y )

)
(9)

where the precise forms of ε, c and d are provided in Appendix A.1.
Based on the aforementioned forward kinematic analysis, the relationship between the end-point of

the leg module and the driving joint angles α1 and α2 can be obtained. After rearranging the equations,
the inverse kinematics solution of this leg module can be expressed as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
α1 = 2 arctan

(
f ±√

e2 + f 2 − g2

e + g

)

α2 = 2 arctan

(
i ±√

h2 + i2 − j2

h + j

) (10)

where the precise forms of e, f , g, h, and i are provided in Appendix A.1.
Thus far, we have established the kinematics of the leg module for the wheeled biped robot. This lays

the foundation for the subsequent dynamic modeling, acceleration analysis, and trajectory planning.

3.2. Dynamic modeling for the wheeled biped robot
The robot maintains point contact with the ground, with only two contact points, which cannot form
a stable contact surface. It requires additional driving forces and control algorithms to achieve body
balancing. Therefore, before further investigating the parallel structure of the robot, the issue of self-
balancing needs to be addressed.

When the leg modules of the robot are locked, the wheeled biped robot can be simplified into a first-
order inverted pendulum (FIP) model with two drive wheels, as shown in Figure 4. In this model, the
drive wheel is simplified as a uniformly distributed disk with a certain thickness, while the other parts
can be simplified as a homogeneous pendulum. This robot is a typical example of an underactuated
system [44, 45]. In Figure 4(a), two coordinate frames are established: the ground coordinate system,
denoted as OG − xGyGzG, and the pendulum coordinate frame, denoted as OB − xByBzB. In the figure, the
direction of yG and yB is aligned, zG and zB are created by the right-hand rule, and the origin points OG

and OB coincide with each other. The robot achieves yaw motion (YM) (yB-axis) and pitch motion (PM)
(zB-axis) as well as forward motion (FM) through the drive wheels. The pendulum pitch angle (PPA) of
the inverted pendulum is represented as θ , while the pendulum yaw angle (PYA) is denoted as δ. YM is
achieved by the differential rotation of the wheels, while PM and FM are achieved through codirectional
rotation of the wheels. Therefore, by decoupling the YM and the other two movements, the model can
be decomposed into planar motion and rotational motion, with their respective dynamics to be discussed
separately.

For the sake of clarification, a force analysis on the right wheel in Figure 4(a) is conducted, as shown
in Figure 4(b). Assuming the robot is in motion, a force analysis of the wheels yields the following
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Fig. 4. Dynamic analysis of the wheeled biped robot.

equations for both force equilibrium and torque equilibrium:⎧⎨
⎩

fr − Hr = mrẍr

Jω
R

ẍr = τr − frR
(11)

where fr represents the frictional force exerted by the ground on the right wheel, τr is the active torque
applied to the right wheel, Hr and vr result from the gravitational force mpg of the pendulum, leading
to the horizontal and vertical components of the force exerted on the wheel by the wheel axis, mr is the
mass of the wheel, Jω is the moment of inertia of the wheel around its axial direction, xr is the forward
displacement of the right wheel, and R is the radius of the wheel. Similar conclusions apply to the left
wheel. Figure 4(c) shows the external forces applied to the entire robot system. Let the axle displacement
of the FIP be denoted by x, which can be expressed as:

x = 1

2
(xl + xr) (12)

It is assumed that the left and right wheels of the FIP have the same mass and inertia. So mw = ml =
mr, Jω = Jωl = Jωr. From Eq. 11, one can obtain:⎧⎨

⎩
(fl + fr)− (Hl + Hr)= mw (ẍl + ẍr)

Jω
R
(ẍl + ẍr)= (τl + τr)− (fl + fr) R

(13)

Eq. 12 gives ẍ = (ẍl + ẍr) /2. By combining Eq. 12 with Eq. 13 to eliminate the static friction force
fl + fr, we can obtain:

2
Jω
R

ẍ + 2mwRẍ = (τl + τr)− (Hl + Hr) R (14)

For a homogeneous pendulum, conducting a force analysis at its COM yields:⎧⎪⎨
⎪⎩

mpẍp = Hl + Hr

mpÿp = Vl + Vr − mpg

Jpθ̈ = − (τl + τr)− (Hl + Hr) L cos θ + (Vl + Vr) L sin θ

(15)

where Jp is the moment of inertia of the pendulum around the zB axis. The relationship between the
displacement of the equivalent COM of the pendulum in the horizontal direction and the wheel axis
displacement can be expressed as follows:

xp = x + L sin θ

ẋp = ẋ + Lθ̇ cos θ

ẍp = ẍ + Lθ̈ cos θ − Lθ̇ 2 sin θ

(16)
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The relationship between the two in the vertical direction can be described as:

yp = L cos θ

ẏp = −Lθ̇ sin θ

ÿp = −Lθ̈ sin θ − Lθ̇ 2 cos θ

(17)

Substituting Eqs. 16 and 17 into Eq. 15 yields:

Jpθ̈ = − (τl + τr)− mpẍpL cos θ + mp

(
g + ÿp

)
L sin θ

= − (τl + τr)− mpL cos θ
(
ẍ + Lθ̈ cos θ − Lθ̇ 2 sin θ

)+
mpL sin θ

(
g − Lθ̈ sin θ − Lθ̇ 2 cos θ

)
= − (τl + τr)− mpẍL cos θ − mpL

2θ̈ + mpgL sin θ

(18)

Additionally, by substituting Eqs. 15 and 16 into Eq. 14 and eliminating the horizontal interaction
force Hl + Hr between the equivalent pendulum and the wheel axle, we can derive:

2
Jω
R

ẍ + 2mwRẍ = (τl + τr)− mpẍpR

= (τl + τr)− mpR
(
ẍ + Lθ̈ cos θ − Lθ̇ 2 sin θ

) (19)

After simplifying Eqs. 18 and 19, we obtain the dynamic equations for the PM and FM of the robot:

⎧⎪⎨
⎪⎩

(
Jp + mpL2

)
θ̈ + mpẍL cos θ = − (τl + τr)+ mpgL sin θ(

2
Jω
R

+ 2mwR + mpR

)
ẍ + mpRLθ̈ cos θ = (τl + τr)+ mpRLθ̇ 2 sin θ

(20)

For the robot’s YM, under the assumption that the robot achieves self-balancing through a controller,
we have:

Jyδ̈ = D

2
(Hr − Hl) (21)

where Jy is the moment of inertia of the robot around the yB-axis, which can be calculated using the
parallel-axis theorem, as demonstrated below:

Jy = 2

(
Jωy + mw

(
D

2

)2
)

+ (
Jpy + mp(L sin θ )2

)
(22)

The PYA, δ, of the robot can be expressed as:

δ = 1

D
(xr − xl) (23)

Taking into account Eq. 11, we have:

(fr − fl)− (Hr − Hl)= mw (ẍr − ẍl)= mwDδ̈ (24)

Then
Jω
R
(ẍr − ẍl)= Jω

R
Dδ̈ = (τr − τl)− (fr − fl) R (25)

By using Eqs. 21, 24, and 25 and eliminating the difference in static friction force fr − fl and the
difference in horizontal interaction force Hr − Hl, we obtain the following dynamic equation for the
robot’s YM: (

Jωy

D

R
+ mwDR + 2

D
RJy

)
δ̈ = (τr − τl) (26)
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Fig. 5. Verification of dynamics equations via Simulink.

Eqs. 20 and 26 comprise the dynamic equations. We have built a simulation model in Simulink to
validate these dynamic equations. At a body height of 0.2 m and with an acceleration of 0.3 m/s2, we
obtained two datasets to conduct a comparative analysis, as shown in Figure 5. Herein, state variables
with the subscript “c” are calculated according to the dynamics equations, and those without a sub-
script are collected from Simulink. By inputting the torque into the dynamic equations, we calculate
the system’s acceleration at the current moment and then integrate the acceleration to obtain state infor-
mation such as velocity and position. The results extracted from the Simulink model are congruent
with those obtained using the dynamic equations, confirming the correctness of the derivation of these
equations.

So far, through a Newtonian mechanics-based analysis, we have obtained dynamic expressions of the
robot corresponding to the locked parallel structure (Eqs. 20 and 26). It can be observed that the robot’s
dynamics involve nonlinear terms such as gravitational torque, centrifugal force, and variable inertia
parameters. When the robot is in a self-balancing state, the PPA, θ , has a small value, and the rate of
change of the angle, denoted as θ̇ , is also small. Therefore, the following linearization assumptions can
be made: sin θ ≈ θ , cos θ ≈ 1, θ̇ 2 ≈ 0, and sin2

θ ≈ 0.
This assumption considers that the PPA θ state moves minimally and disregards the effect of the

centrifugal force of the pendulum on the wheel axis movement, as well as the influence of the PPA θ on
the YM. In this case, the dynamic expressions can be linearized as follows:⎧⎪⎨

⎪⎩
(
Jp + mpL2

)
θ̈ + mpẍL = − (τl + τr)+ mpgLθ(

2
Jω
R

+ 2mwR + mpR

)
ẍ + mpRLθ̈ = (τl + τr)

(27a)

(
Jωy

D

R
+ mwDR + 2

D
RJy

)
δ̈ = (τr − τl) (27b)

3.3. Decoupled representation of the state space and acceleration analysis
By selecting the robot state variable X = [

x ẋ θ θ̇ δ δ̇
]T and the control variable u = [

τl τr

]T , the
linearized robot dynamics can be represented in state-space form:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẍ

θ̇

θ̈

δ̇

δ̈

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

0 0 A23 0 0 0

0 0 0 1 0 0

0 0 A43 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x
ẋ
θ

θ̇

δ

δ̇

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
B21 B22

0 0
B41 B42

0 0
B61 B62

⎤
⎥⎥⎥⎥⎥⎥⎦
[
τl

τr

]
(28a)
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Fig. 6. State-space model decoupling process.

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

ẋ

θ

θ̇

δ

δ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28b)

where the precise forms of M, A23, A43, B21, B41, B61, B22, B42 and B62 can be viewed in Appendix A.2.
In this case, from the linear state-space equations, it can be observed that the control torques applied

to the left and right wheels simultaneously affect the pitch, yaw, and FM. However, the rotational
states around the yB-axis, represented via δ and δ̇, remain unaffected by other state variables. Based
on this relationship, it is straightforward to decouple the state space into two independent state spaces
and control them separately (this result relies on the assumption that θ is small and changes minimally,
and that the robot carries a static load).

Two new control variables are introduced, namely τθ and τδ, that, respectively, represent the driving
torques that control the PPA θ and the PYA δ of the control system. Through an intermediate decoupling
link, as shown in Figure 6, a conversion from control variables τl and τr to τθ and τδ can be achieved
[46].

The decoupling process can be expressed via the following equations:[
τl

τr

]
=
[

D11 D12

D21 D22

] [
τθ

τδ

]
=
[

0.5 −0.5

0.5 0.5

] [
τθ

τδ

]
(29)

After decoupling, the two state-space models can be expressed as:⎡
⎢⎢⎢⎢⎣

ẋ

ẍ

θ̇

θ̈

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 A23 0

0 0 0 1

0 0 A43 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

ẋ

θ

θ̇

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

B21

0

B41

⎤
⎥⎥⎥⎥⎦ τθ (30a)

[
δ̇

δ̈

]
=
[

0 1

0 0

] [
δ

δ̇

]
+
[

0

B62

]
τδ (30b)

As shown by the equations above, controllers can be designed separately for the two state-space
models. The first controller maintains the robot’s PM within a certain range, achieving self-balancing
and FM. The second controller, building upon the balanced state, controls the YM of the robot, enabling
it to change its direction.
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Fig. 7. Acceleration analysis of the wheeled biped robot.

For the simplified inverted pendulum model of the wheeled biped robot, its FM requires both the
pendulum and the wheels to experience the same acceleration. For the wheels, this acceleration is pro-
vided by the static frictional force exerted by the ground. Analyzing the forces acting on the pendulum
can be performed by following the approach illustrated in Figure 7.

As observed from Figure 7, the combined force Ftotal of the wheel axle provides horizontal accel-
eration to the pendulum [47]. When the robot maintains a constant PPA θ under the influence of the
controller, the acceleration of the pendulum’s COM in the vertical direction is 0. Therefore, using
trigonometric analysis, the horizontal acceleration can be deduced as follows:

apx = g tan θ (31)

It can be seen that in order for the pendulum to attain a horizontal acceleration, it is necessary for
the vehicle to generate and maintain a tilt angle θ . However, for traditional wheeled biped robots, due
to the absence of adjustable leg modules, the generation of the equivalent pendulum tilt angle can only
originate from the CTA. This is disadvantageous for subsequent installation of upper-body mechanisms,
such as manipulators, cameras, and LiDAR, which, to some extent, constrains the development of self-
balancing robots.

4. Cascade controller design to reduce chassis tilt angle (CTA)
When the robot needs to cover long distances on flat ground, locking the leg modules to attain a general
wheeled biped self-balancing robot configuration can effectively reduce the energy consumption relating
to the leg module’s active joints. However, in scenarios where the robot requires frequent short-distance
movements, frequent acceleration and braking can lead to oscillations in the CTA. In such cases, unlock-
ing the leg module is necessary to maintain the horizontal orientation and to enable changes in vertical
height. The overall control framework corresponding to situations in which the leg module is unlocked
is depicted in Figure 8.

The entire control framework can be divided into the parallel mechanism controller, the wheel
joints controller, and the measurement and equivalent parameters calculation. In the parallel mecha-
nism controller, the approach relies upon calculating the leg joint angles based on the desired height and
displacement to change the robot’s configuration. The control of the wheel joints is divided into self-
balancing control and turning direction control, with corresponding controllers designed for each one of
these. The outputs of the controllers, τθ and τδ, are then converted into output torques, τl and τr, for the
wheel joints, which are then sent to the robot. In the measurement and equivalent parameters calculation
layer, the corresponding parameters are calculated based on the actual output and measurement results
and then fed back to the wheel joint controllers to close the loop.

The central concepts of the control framework revolve around real-time estimation of the length Leq

between the chassis equivalent COM and the wheel axis, as well as the equivalent PPA, θeq, of the
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Fig. 8. Control frame when the leg module is unlocked.

inverted pendulum model. This treatment ensures that the entire model can be approximated by an FIP.
Closed-loop control is applied to the forward velocity of the wheel axis, using the position of the wheel
axis relative to the robot as the desired foot-tip position. This process ensures the maintenance of the
desired horizontal orientation and vertical height.

The subsequent sub-sections sections provide specific information about the balancing, and velocity,
controllers of the robot.

4.1. Balance controller design of the robot
When the leg module is locked, the robot’s structure is simplified into that of a conventional wheeled
biped self-balancing robot, which is then analyzed using the classical FIP model. When the leg module
is unlocked, it is controlled by joint actuators, and all parts of the robot are assumed to be rigid bodies
with constant masses. Even when the joint actuator speed is slow, the robot can still be abstracted as a
variable-length FIP model. Based on this model, an analysis is performed to determine the left and right
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Fig. 9. Pendulum pitch angle θ closed-loop control and single-input-single-output control system.

wheel joint driving torques required to enable self-balancing control. Controlling the robot’s balance
corresponds to controlling the PPA, θ .

From Eq. 30(a), it is known that the differential equation for the PPA, θ , can be expressed as follows:

θ̈ = A43θ + B41τθ (32)

Furthermore, based on an earlier derivation, A43 = − |A43|< 0, B41 > 0 (in Appendix A.2).
Performing a Laplace transform on the above equation yields the transfer function of the PPA, θ , with
respect to the driving torque τθ :

Gpθ (s) = θ (s)

τθ (s)
= B41

s2 + |A43| (33)

This transfer function possesses a pair of complex conjugate poles located on the imaginary axis,
indicating critical stability. This implies that if the system is at an equilibrium point, a slight disturbance
could cause the system to diverge, which aligns with our intuitive understanding: perturbing the robot’s
wheel joint with a sufficient large force/moment, while in an upright position, will lead to the robot
falling over. Considering closed-loop control of the angle θ , the concomitant feedback control system
is designed as shown in Figure 9(a).

The Gcθ (s) controller’s design is based on a classical Proportional-Integral-Derivative (PID) control
scheme. In single-input-single-output continuous systems, the PID control algorithm, which functions
in accordance with the proportional, integral, and derivative terms of the error, is a widely used control
law in practical engineering applications. For the continuous system depicted in Figure 9(b), a PID
controller of the form shown in Eq. 34 below is employed:

u = Kp

(
e(t) + 1

Ti

∫ t

0

e(τ )dτ + Td

de(t)

dt

)
(34)

where Kp, Ti and Td correspond to proportional gain, integral time constant, and differential time con-
stant, respectively, and e(t) is the deviation between the desired value and the actual value of the
controlled variable of the system, namely the error. In the self-balancing control of the wheeled biped
robot, based on the open-loop system that is itself in a critically stable state, the concomitant unity
negative feedback closed-loop system can be described via the following transfer function:

Gcloseθ (s) = θ (s)

θt(s)
= Gcθ (s)Gpθ (s)

1 + Gcθ (s)Gpθ (s)
(35)

If only the proportional control element is used, the characteristic equation of the closed-loop system
is:


(s) = s2 + |A43| + B41Kp (36)

When Kp ≥ 0, the system poles are located on the imaginary axis. However, when Kp < 0, the system
will have positive real poles. This implies that regardless of the value of Kp, the closed-loop system under
pure integral control remains unstable. Therefore, considering the adoption of PD control is necessary.
Taking Gcθ (s) = KpTds + Kp, the characteristic equation of the closed-loop system becomes:


(s) = s2 + B41KpTds + (|A43| + B41Kp

)
(37)
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whose solution can be expressed as:

s1,2 = −B41KpTd

2
± 1

2

√



= −B41KpTd

2
± 1

2

√(
B41KpTd

)2 − 4
(|A43| + B41Kp

) (38)

To ensure stability of the closed-loop system, the solutions of the characteristic equation should have
negative real parts. Taking KpTd > 0, when 
< 0, the closed-loop poles are complex conjugates with
negative real components. When 
≥ 0, it is only necessary to ensure that:

|A43| + B41Kp > 0 (39)

The choice of different values for the parameters Kp and Td will lead to different performance of
the closed-loop system. In the case of self-balancing robots, it is generally desirable for the system to
exhibit as fast a response as possible, and minimal fluctuations in the pitch axis angle. Therefore, when
applying this PD controller in practice, larger values of Kp and KpTd can be employed to fine-tune a set
of parameters that provide improved self-balancing performance.

4.2. Cascaded PID-based velocity controller design for the robot
As deduced from the acceleration analysis in Section 3.3, it is apparent that for the robot to possess a
non-zero velocity while maintaining self-balancing, the robot needs to generate a certain PPA, θ , to pro-
vide forward acceleration. Consequently, the problem of controlling the robot’s velocity fundamentally
becomes a trajectory-tracking problem for PPA θ . Treating the subsystem Gcloseθ (s), refined through
the PD control law, as an inner-loop subsystem, we can derive the relationship between the forward
displacement x and the desired PPA θt from Eq. 30 as:

x(s)s2 = A23θ (s) + B21τθ

= A23θ (s) + B21Gcθ (s) (θt(s) − θ (s))

= (A23 − B21Gcθ (s)) θ (s) + B21Gcθ (s)θt(s)

= ((A23 − B21Gcθ (s))Gcloseθ (s) + B21Gcθ (s)) θt(s)

(40)

That is

Gpx(s) = x(s)

θt(s)
= ((A23 − B21Gcθ (s))Gcloseθ (s) + B21Gcθ (s))

s2
(41)

The characteristic equation of the system can be expressed as:


(s) = s2
(
s2 + B41KpTds + (|A43| + B41Kp

))
(42)

In addition to having two poles corresponding to the PPA θ , the system also possesses two poles
with values of 0. One of them arises from the pure integral of the forward velocity ẋ to the forward dis-
placement x, while the other is inherent to the forward velocity ẋ. If we set v(s) = x(s)s, then the transfer
function Gpv(s) from the target PPA θt(s) to the forward velocity v(s) has the following characteristic
equation:


(s) = s
(
s2 + B41KpTds + (|A43| + B41Kp

))
(43)

If the forward velocity ẋ is taken as the controlled variable and the desired forward velocity is used
as the reference input ẋt, applying unity negative feedback to the transfer function Gpv(s) as shown in
Figure 10, it can be observed that the system can achieve the following step input commands:

err = (ẋr(∞) − ẋ(∞))

= lim
s→0

sR(s)Gpv(s)

= lim
s→0

s
1

s
Gpv(s)

(44)
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Fig. 10. Unity negative feedback on the transfer function Gpv(s).

Fig. 11. Closed-loop control system based on cascade PID for the robot.

Fig. 12. Diagram of equivalent COM.

For robot velocity control, pure integral closed-loop control can theoretically achieve set-point regu-
lation of the desired forward velocity. Considering the existence of unmodeled joint friction and sensor
observation errors in the actual robot, practical implementation of closed-loop velocity control on the
robot is achieved using a PI controller. This forms a cascade control system as shown in Figure 11.

By appropriately adjusting the parameters of the self-balancing PD controller and the velocity loop
PI controller, it is possible to achieve velocity control for self-balancing and FM of the robot in both the
locked and unlocked states of the leg modules.

4.3. Relationship between CTA and inverted pendulum model after unlocking of leg modules
Concerning the balancing controller of the robot, its objective is to guide the convergence of the equiva-
lent PPA θeq of the FIP model, rather than controlling the CTA θc. This difference in objectives may result
in the equivalent PPA θeq being zero during movement, while the CTA θc is not, as shown in Figure 12(a).
Consequently, the control framework necessitates additional compensation for the CTA θc. This com-
pensation is realized through a PD control scheme, producing a torque output that supplements the
output torque of the balancing controller.

For the sake of clarity, let us define the midpoint of the two hip joints of the same leg module as point
P. The distance from P to the foot end is denoted as h, and the angle between the line h and the vertical
line is θL. The line from the chassis’s equivalent COM to point P is designated as L0, and the angle
between the line L0 and the vertical line is defined as θc. The distance from the chassis’s equivalent
COM to the foot end is represented as Leq, and the angle between the line Leq and the vertical line is
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defined as θeq. At point P, we establish a two-dimensional ground coordinate frame, denoted as xgPyg,
and a chassis coordinate frame, denoted as xbPyb.

As shown in Figure 12(b), the coordinates (xb, yb) calculated from the forward kinematics are in the
body coordinate frame xbPyb, and they need to be transformed into (xg, yg) coordinates in the ground
coordinate frame xgPyg, as follows:

xg = yb sin (θc) + xb cos (θc)

yg = yb cos (θc) − xb sin (θc)
(45)

Subsequently, we can calculate θL and h:

θL = tan−1

(
xg

yg

)
h =√

xg
2 + yg

2

(46)

By implementing closed-loop PID control on the forward linear velocity of the wheel axis, the desired
horizontal position xgt of the wheel axis relative to point P can be obtained, while the desired verti-
cal position ygy of the wheel axis relative to point P will be directly specified by the command. The
coordinates (xt, yt) in the body coordinate frame xbPyb can be computed using Eq. 47:

xt = xgt cos (θc) − ygt sin (θc)

yt = xgt sin (θc) + ygt cos (θc)
(47)

Using the leg module’s inverse kinematics model, the required joint angles are calculated and then
used to control the leg motors’ movement.

By continuously estimating the real-time position of the equivalent COM relative to the wheel axis,
it becomes possible to calculate the angle θeq and the length Leq. These calculations are subsequently
integrated into the FIP model. Given that the chassis typically carries additional mechanisms, resulting in
a total mass exceeding that of the leg module, the influence of the leg modules is temporarily disregarded
when calculating the equivalent COM. Based on the geometric relationship illustrated in Figure 12(c),
θeq and Leq can be expressed as:

Leq =
√

h2 + L2
0 − 2hL0 cos (π + θc − θL)

θeq = θL + sin−1

(
L0

Leq

)
(θL − θc)

(48)

Then θ̇eq can be expressed as:

θ̇eq = θ̇L + sin−1

(
L0

Leq

)
θ̇L − sin−1

(
L0

Leq

)
θ̇c (49)

Therefore, the angle θeq and its rate of change θ̇eq, in the above equation, correspond to θ and θ̇ in the
FIP model, respectively, which yields the input torques required for self-balancing of the robot.

5. Simulation and experiments for wheeled biped robot
5.1. Simulation of motion and control
To validate the modeling and control strategies proposed in this paper, simulations were conducted using
a robot dynamics simulation platform. Webots, an open-source rigid-body robot dynamics simulation
software utilizing the Ordinary differential equation (ODE) physics engine, was selected for its user-
friendly interface [48]. In this study, Webots was chosen as the dynamic simulation platform, and a
simplified wheeled-legged self-adaptive balancing robot was constructed, as depicted in Figure 13. In
Figure 13, (a), (b), and (c) respectively depict a robot walking on flat ground, traversing rough terrain,
and walking on a slope in the simulation.
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Fig. 13. Snapshots of the wheeled-legged robot simulated using Webots.

Fig. 14. Simulation responses generated when using constant target velocity values (Top: legs locked,
bottom: legs unlocked).

The simulation utilized the dynamic parameters presented in Table II in Appendix A.3. A simulation
step of 0.002 s (500 Hz) was set. The PID control parameters were chosen as detailed in Table III in
Appendix A.3.

To evaluate the effectiveness of the control framework, simulation experiments were conducted under
varying target velocity commands and different chassis height commands. A fixed target velocity com-
mand of 1.2 m/s was used, and the resulting translational velocity and CTA response were obtained for
chassis heights of 0.18 m, 0.225 m, 0.27 m, and 0.315 m, as shown in Figure 14.
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Fig. 15. Schematic diagram of equivalent PPA θeq producing an acceleration.

Figure 14’s subfigures (a) and (b) depict the robot’s speed and CTA response when the legs are
locked, whereas (c) and (d) display these same variables when the legs are unlocked. In subfigures
(a) and (c) of Figure 14, for different chassis heights, the controller effectively achieves following of
the 1.2 m/s velocity command in the simulation environment. Acceleration of the inverted pendulum
model relies on the vertical projection of the body’s COM onto the wheel axis, inducing an equivalent
pendulum tilt angle. When the robot needs to accelerate along the forward axis, it must initially move in
the opposite direction to disrupt its balance and generate a positive tilt angle. Regarding subfigures (b)
and (d), when the robot generates an equivalent PPA (θeq), the wheel axis moves relative to the chassis
in the opposite direction. This will cause the entire robot to be subjected to a recovery torque due to
the CTA compensator. This torque causes the chassis to exhibit a reverse tilt angle (−θc), thus forming
an equivalent PPA (θeq) used for acceleration (as depicted in Figure 15). The amplitude of the CTA’s
fluctuations does not exceed the 0 ◦ – 2.9 ◦ range. (Unless otherwise noted, this article discusses CTA
without regard to the initial reverse tilt process.)

Using a fixed chassis target height command of 0.225 m, simulation results are obtained for various
forward velocity step commands, namely: 0.8 m/s, 1.2 m/s, 1.6 m/s, 2.0 m/s, and 2.4 m/s. As shown in
Figure 16, subfigures (a) and (b) display the robot’s response when its legs are locked, and (c) and (d)
when its legs are unlocked. Under a fixed chassis height, the robot consistently tracks velocity commands
of varying magnitudes effectively. As the target velocity values are increased, the corresponding peak
CTA amplitudes also increase. After unlocking the leg structure, the range of CTA changes becomes
significantly smaller compared to when the legs are locked, always remaining below 3.5 ◦ (in the FM).

The proposed control strategy’s feasibility and stability are validated in the simulation environ-
ment. It is demonstrated that, after unlocking the parallel structure, the robot can stably respond to
both velocity and chassis height commands, while exhibiting very low levels of CTA oscillation as a
tradeoff.

5.2. Motion experiments of the robot prototype
To further validate the effectiveness of the leg module unlocking, and its impact on the robot’s motion
and control strategy, we constructed a robot prototype as an experimental platform, as shown in
Figure 17. Subfigures (a), (b), and (c) in Figure 17, respectively, show the robot traversing flat ground,
slopes, and rough terrain. These aspects will be discussed in detail below. The prototype is equipped
with a six-axis inertial sensor on the chassis, capable of estimating the ground attitude, three-axis
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Fig. 16. Simulation responses generated when using a fixed target height (Top: legs locked, bottom:
legs unlocked).

angular velocities, and three-axis accelerations of the robot chassis. The leg module employs high-
torque FOC DC motors to power the active joints, while the wheel mechanism utilizes FOC DC
motors to drive the left and right wheel joints. The dynamic parameters of the prototype are outlined
in Table IV in Appendix A.3. Consistent with the simulation environment, the control frequency is
set to 500 Hz, and after tuning, the PID control parameters are determined as shown in Table V in
Appendix A.3.

We altered the relative heights of the chassis and wheel axis to establish a variable-length inverted
pendulum, locking the leg module in place. We conducted experiments to assess the robot’s FM at four
target height states (namely 0.18 m, 0.225 m, 0.27 m, and 0.315 m). The velocity and CTA response
curves, pertaining to situations in which the legs are unlocked/locked, are shown in Figure 18. Figure 18
illustrates the velocity and CTA responses during two distinct robot conditions: when the leg joints are
locked, as shown in (a) and (b), and when the leg joints are unlocked, as presented in (c) and (d). From (a)
and (c), it is evident that the robot’s velocity can converge for varying values of equivalent rod length h
of the legs, and the convergence speed when the legs are unlocked is faster than when the legs are locked.
From (b) and (d), it can be observed that after the legs are unlocked, the robot’s CTA decreases from
about 7 degrees to approximately 1.5 degrees. Additionally, as the height h decreases, the amplitude of
the CTA slightly increases. This is due to a reactive torque generated by the legs during swinging, which
acts on the chassis. As the height h decreases, this reactive force increases, augmenting the disturbance
to the chassis, thereby leading to a slight increase in the CTA.

Similarly, when the robot’s height h is set to a fixed value of 0.225 m, and target velocities of 0.8 m/s,
1.2 m/s, 1.6 m/s, 2.0 m/s, and 2.4 m/s are given during the locking/unlocking of the leg mechanisms,
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Fig. 17. Experimental snapshots of the prototype.

the corresponding robot responses are depicted in Figure 19. Subfigures (a) and (b) display the velocity
and CTA responses when the leg mechanisms are locked, while (c) and (d) display the responses after
unlocking the leg mechanisms. From (a) and (b), it is observed that as the target velocity increases,
the robot requires a larger CTA to provide the necessary acceleration. At the five target velocity set-
tings of 0.8 m/s, 1.2 m/s, 1.6 m/s, 2.0 m/s, and 2.4 m/s, the maximum CTA generated by the robot during
acceleration or braking is 4 degrees, 6.3 degrees, 8.6 degrees, 10.3 degrees, and 12 degrees, respec-
tively. By comparing subfigures (b) and (d), it is evident that the trend remains consistent, but after
unlocking the leg mechanisms, the maximum CTA value decreases from 12 degrees to 2.7 degrees.
This means that, in terms of peak CTA values, the maximum CTA when the leg mechanisms are
unlocked is even lower than the minimum CTA when the leg mechanisms are locked. It is evident that
unlocking the leg mechanisms effectively reduces the CTA, thereby maintaining the chassis’s horizontal
orientation.

To further verify the practicality of the proposed control framework for the robot’s movement on
complex terrains, an experimental environment for the robot’s prototype movement was set up, as
shown in Figure 17(c). Wooden planks and strips were used to create evenly-spaced obstacles (with
a height of 10.3 mm, width of 40 mm, and spacing of 240 mm) protruding from the flat ground for
the experiments. The robot’s target velocity was set to 1.2 m/s, allowing the robot to accelerate over
a 1 m distance on flat ground, then pass through a 1.25 m rugged terrain section, and finally brake at
four different target height commands: 0.18 m, 0.225 m, 0.27 m, and 0.315 m. The responses when the
leg mechanisms were locked and unlocked are shown in Figure 20. After unlocking the leg mecha-
nisms, the robot’s CTA could still be maintained within a 2.9-degree range, which was significantly
lower than the corresponding range recorded when the leg mechanisms were locked. This demon-
strates that the control framework can effectively maintain the robot’s balance when traversing rugged
surfaces.

As previously mentioned, reducing the CTA of the robot aids in the support of upper-body loads
and completion of operations. Therefore, experiments were also conducted on the robot under different
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Fig. 18. Experimental responses generated when using a fixed target velocity (Top: legs locked, bottom:
legs unlocked).

load conditions, as shown in Figure 21. In Figure 21, subfigures (a) and (b) show the robot carrying
a load of 10 kg while traversing rugged terrain and while rolling up a 15-degree ramp, respectively.
The red arrows in the figures indicate the direction of the robot’s movement. Figure 22 displays the
CTA responses recorded while the robot was traversing rough terrain and while rolling up a 15-degree
slope, under different loads (it should be noted that these are static loads; dynamic loads such as those
involving the operation of robotic arms require further discussion). Under loaded conditions, the robot’s
target speed was set to 1.2 m/s and the target height to 0.225 m, accelerating over a flat surface for 1 m
before entering a 1.25 m rough terrain segment or a 15-degree slope, and finally braking. The robot’s
CTA responses generated when using locked/unlocked leg structures were compared over the same
travel distance. Subfigures (a) and (b) respectively show the CTA responses recorded when the robot
was traversing rough terrain with locked and unlocked leg structures. Comparing the two figures, it is
apparent that with the leg structure unlocked, the tendency of the CTA’s value to increase due to the
load is less than that when the leg structure is locked. Furthermore, the amplitude of the CTA when
the leg structure is unlocked is also smaller than when it is locked. Subfigures (c) and (d) respectively
show the CTA responses measured when the robot is rolling up a 15-degree ramp with locked and
unlocked leg structures. The main point of interest is the data variation while traversing the slope (the
data between the two red vertical lines, with subsequent data showing the robot’s response after braking
not analyzed here). When the robot carries a smaller load, the CTA amplitude exhibited when the legs
are unlocked is significantly smaller than that corresponding to the locking of the legs. As the robot’s
load gradually increases, the advantage of unlocking diminishes. Overall, compared to when the leg
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Fig. 19. Experimental responses generated when using a fixed target height (Top: legs locked, bottom:
legs unlocked).

Fig. 20. Experimental responses recorded during rough terrain experiment (Left: legs locked, right:
legs unlocked).
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Fig. 21. Experiment screenshots: the robot carries loads across uneven terrain and slopes.

Fig. 22. Experimental responses recorded when carrying different loads over rough terrain and slopes
(Left: legs locked, right: legs unlocked).

structures are locked, robots with unlocked leg structures exhibit a clear advantage in terms of CTA
response.

In conclusion, this study has verified the feasibility of the control strategy with both simulation and a
physical platform involving the locked/unlocked leg module. Experimental validations were conducted
on the prototype under different configurations. Additionally, to verify the universality of the proposed
control framework, experiments were conducted on robots traversing rough terrain and slopes under
various load conditions. The results indicate that the control framework can effectively reduce the robot’s
CTA after unlocking the leg structures, confirming the effectiveness of the control framework. This has
significant implications for the widespread application of such robots.
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6. Conclusions
In order to mitigate the CTA’s impact on upper-body structures during a wheeled-legged robot’s motion,
and to enhance its adaptability in complex environments, we developed kinematic and dynamical mod-
els of the wheeled-legged robot. The robot employs a five-bar mechanism as its leg module. This study
focuses on conducting the motion-decoupling analysis and introduces an accompanying multilevel cas-
caded controller. The robot can keep the chassis horizontal with respect to the ground and control the
height of the chassis during motion. When the leg structure is unlocked and moving on flat ground at
a speed of 1.2 m/s, the maximum CTA value is about 1.2 degrees. Compared to the case when the leg
structure is locked, with a maximum CTA amplitude of 6.5 degrees, the unlocked-leg-structure case
exhibits a significant improvement. When the wheeled-legged robot carries a load over a rough ter-
rain and a sloping terrain, this cascaded control method can still effectively reduce the CTA to a certain
extent. However, as the load increases, the said improvements gradually diminish. Overall, this cascaded
control method can effectively reduce the CTA during this type of robot’s motion, thereby extending its
application range.

In the future, we will further optimize the control method for robots carrying loads (especially
dynamic loads like robotic arms), to enhance the robot’s performance in complex conditions.
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A. Appendix
A.1. Parameters in kinematic derivation

ε= 2 arctan

⎛
⎝d ±

√
c2 + d2 − |l4

CB

c + |lCB|2

⎞
⎠ ,

c = 2L3 (xB − xC)= 2L3 (L1 + L2 cos α2 − L2 cos α1) ,

d = 2L3 (yB − yC)= 2L3 (L2 sin α2 − L2 sin α1) .

(A1)

e = 2L2l(OA0 OA1 )x ,

f = 2L2l(OA0 OA1 )y ,

g = l2
(OA0 OA1 )x

+ l2
(OA0 OA1 )y

+ L2
2 − L2

3,

h = 2
(

l(OA0 OA1 )x − L1

)
L2,

i = 2l(OA0 OA1 )y L2.

(A2)

A.2. Parameters in dynamic derivation
M = 2JpJω + 2mpL2Jω + mpR

2Jp + 2mωR2Jp + 2mpmωL2R2,

A23 = − (
m2

pgR2L2
)
/M,

A43 = mpgL
(
2Jω + mpR2 + 2mωR2

)
/M,

B21 = −R
(
mpL

2 + mpRL + Jp

)
/M,

B41 = (
2mωR2 + mpR

2 + mpRL + 2Jω
)
/M,

B61 = − (RD) /
(
JωyD

2 + mωD2R2 + 2R2Jy

)
,

B22 = B21, B42 = B41, B62 = −B61.

(A3)
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Table II. Dynamic parameters of simulation in Webots.

Parameters Numerical values
Chassis mass 7 kg
Moment of inertia of the chassis about its own pitch axis 9.498000e-02 kg · m2

Moment of inertia of the chassis around its own yaw axis 1.650000e-01 kg · m2

Relative height of chassis COM 0.05 m
Mass of TL 0.32477 kg
Mass of SL 0.56700 kg
Length of TL 0.15 m
Length of SL 0.288 m
Mass of the wheel 0.527790 kg
Moment of inertia of a wheel about its own pitch axis 1.121500e-03 kg · m2

Moment of inertia of a wheel about its own yaw axis 6.311500e-04 kg · m2

Table III. PID parameters in webot simulation.

Variables in PID control Gain coefficients
Equivalent pitch angle θeq 30
Equivalent pitch angular velocity θ̇eq 8
Difference of forward motion displacement for the robot xt − x 0
Difference of forward motion velocity for balance control ẋt − ẋ 6
Difference of yaw angle δt − δ 0
Difference of yaw angle velocity δ̇t − δ̇ 0
Compensation for chassis tilt angle θ 10
Compensation for chassis tilt angle velocity θ̇ 2
Difference of forward motion velocity for the leg module ẋt − ẋ 0.05 kg
Joint angle position of the leg module 8
Joint angular velocity of the leg module 0.5

Table IV. Dynamic parameters of prototype experiments.

Parameters Numerical values
Chassis mass 6.836 kg
Moment of inertia of the chassis about its own pitch axis 9.498000e-02 kg · m2

Moment of inertia of the chassis around its own yaw axis 0.167716011 kg · m2

Relative height of chassis COM −0.027 m
Mass of TL 0.185 kg
Mass of SL 0.279 kg
Length of TL 0.15 m
Length of SL 0.288 m
Mass of the wheel 0.432 kg
Moment of inertia of a wheel about its own pitch axis 0.001665983 kg · m2

Moment of inertia of a wheel about its own yaw axis 0.000913442 kg · m2
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A.3. Parameters in simulation and experiments

Table V. PID parameters in prototype experiments.

Variables in PID control Gain coefficients
Equivalent pitch angle θeq 18.4928
Equivalent pitch angular velocity θ̇eq 4.4873
Difference of forward motion displacement for the robot xt − x 0.6
Difference of forward motion velocity for balance control ẋt − ẋ 3.3
Difference of yaw angle δt − δ 0
Difference of yaw angle velocity δ̇t − δ̇ 2
Compensation for chassis tilt angle θ 10
Compensation for chassis tilt angle velocity θ̇ 2
Difference of forward motion velocity for the leg module ẋt − ẋ 0.06 kg
Joint angle position of the leg module 12
Joint angular velocity of the leg module 3

Cite this article: N. Mao, J. Chen, E. Spyrakos-Papastavridis and J. S. Dai, “Dynamic modeling of wheeled biped robot and
controller design for reducing chassis tilt angle”, Robotica. https://doi.org/10.1017/S0263574724001061
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