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1. Introduction. In [5] Professor Hooley announced without proof the following
result which is a variant of well-known work by Heilbronn [4] and Danicic [3] (see [1]).

Let k ^2 be an integer, b a fixed non-zero integer, and a an irrational real number.
Then, for any e > 0, there are infinitely many solutions to the inequality

\ank-m\<n-p{k)+f with (bn,m) = l. (1)

Here

The difference between the above and previous work lies in the imposition of the
condition (bn,m) = \ (in fact it is the condition {n,m) = \ which is of greater
significance). This result was required to prove a theorem on approximating irrational
numbers a by fractions of the form v/A where /(v) = 0 (mod A) for some given
polynomial / of odd degree exceeding 1 (Theorem 2 in [5], see our corollary below). The
exponent p(k) for k > 3 follows by combining Hooley's result in [6] with the usual Weyl
inequality method, as is briefly sketched at the end of that paper. Here we shall prove the
following stronger result. Our method also circumvents difficulties in the case k = 2.

THEOREM. Let k>2 be an integer, b a fixed integer, and a an irrational real number.
Then there are infinitely many solutions to (1) with

Notes. For k s 6 better results follow from the work of Wooley [7]. It will be clear
from our proof that the chief difficulty lies with large prime common factors of m and n.
This is the reason why our results fall short of the exponent 2x~k given by the usual
Heilbronn/Danicic approach. Using Wooley's work the integers n are "smooth" (that is
all their prime factors are less than nv for some TJ > 0) and so this difficulty does not arise.
Recently significant progress has been achieved in the case k = 2 [8], but it is not clear
whether this new technique can be adapted to work in the present context.

COROLLARY. Let f(x) be a polynomial with integer coefficients having odd degree
k a 3. Then, for any given real irrational a, and any e > 0, there are infinitely many moduli
A for which there is a solution v to f(v) = 0 (mod A) and

| (4)
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with

Here \\x\\ denotes the distance from x to the nearest integer.

The corollary may be deduced from the theorem by the argument presented in [5]
(for even k a different argument is used which does not require results like our theorem).

We begin the proof by noting that for any function f{x,y)

(6)
(a,ft) = l a,b p P(a,b)2ip

or (a,b) = \
where here and elsewhere in the paper p and r denote primes, and P(m,n) denotes the
smallest common prime factor of m and n. If (m, n) = 1 we put P(m, n) = \. The common
factor p in the second sum in (6) means that we are interested in bounding solutions to

\ankpk~l -m\<p-1(pnyw+'. (7)

The problem with (7) is that although the right hand side is smaller (and so we expect
fewer solutions than to (1)), the discrepancy between the exponents k and k -1 raises
problems. For k ^ 3 we shall find that an efficient strategy is to approximate ank by
fractions with a suitably small denominator (see [2] where a similar approach is used). For
k = 2 we need to insist that n has a rather special form at the outset.

As usual, we start with a convergent alq to a and consider

ank

-m <L~\ n<N, (bn,m) = l, L = 2NpW~e, (8)

where N is chosen so that q = (NkL)112. It follows that if n, m is a solution to (8) then

\ank -m\< {NkL)-'Nk + L"1 = 2L~l <n-
pW+t

as required.

2. Preliminary lemmas. We write N(N, 8) for the number of solutions to

I 1 < 51 , , (9)
and N(N, S, t) for the number of solutions to (9) with («, f) = 1.

LEMMA 1. Let s^l and b an integer coprime to s be given. Let 8 e (0,\). Then, for
N ^ 1 we have

( ^ + ~s + ^ j ) (10)

for any TJ > 0, where G = 2i~k. Here the implied constant depends only on 17 and k.

Proof. This result is implicit in the usual Heilbronn/Danicic treatment. See Chapter
3 of [1].
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The bound (10) will sometimes have the great disadvantage that N will be smaller
than we would like (because we have extracted a large prime factor), but 5 will be quite
small. The N1+2v~e term in the error thus becomes dominant. Professor Hooley has given
a variant of the above result [6] where the main term is sacrificed, but the error term is
improved (at least for small 8). We state his result as follows. Without this result we
would obtain p(k) = (3.2*"2)"1 for k > 3.

LEMMA 2. Under the hypotheses of Lemma 1 we have

(11)

We now state a variant of Lemma 1 which includes a coprimality condition. We write (p{t)
for Euler's totient function.

LEMMA 3. Given the hypotheses of Lemma 1 together with a positive integer t ̂  Nk.
Then we have

Jf(N, 8, t) = 2N8^(l + O(AT")) + o (N 1 + 5 " (^ + -s + ̂ ) " ) . (12)

Proof. We make the dependence of JV(N, 8) on bis explicit, by rewriting the number
of solutions to (9) as M(N, bis). By Lemma 1 we then have

Jf(N, 8, t) = 2 fi(d)M(Nld, bdkls)

The first term in (13) equals 2N8(p(t)(l + O(N~1?))/r, while the second term leads to the
error term in (12) since

d\t O. t d\t

3. Proof of Theorem for k 3= 3. It is clear from (6) and (7) that problems will arise if
there is some very good approximation, say u/v, to a/q, which gives rise to many
approximations m/nk = u/v. For large prime common factors this difficulty is dealt with
by Lemma 5 below. We first prove the crucial step needed in Lemma 5 as a separate
result. We put K = 2*~2 and write a ~ A to mean A ^ a < 1A.

LEMMA 4. Let k > 3, 5 e (0, \), J, H, N > 1 be given, with

J>max(HKI2,NeHK8) for some S>0. (14)

Then, for any real a, we have that the number of solutions to

| a«*-m|<5 , n<N, P(m,n)>J, (15)
is

ATlo^V £ RJf(N/R,8/R",Q(R)). (16)
R=2>J=0,\,...
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Q(R) -UP-

Proof. Let r = P(m,n). We consider the contribution to the number of solutions of
(15) with r — R = 2'. We thus wish to bound the number of solutions to

avkrk~1-nt\<8/R, with v<N/R. (17)

Here and in the following we suppress the condition (v, m) coprime to Q(R) for the sake
of clarity. Let T = (2R)k8-lH-KN-€(>2kRk^ by (14)). By Dirichlet's theorem in
Diophantine approximation, for each v there are integers b, s with (b, s) = 1 and

av
s

1_
~sT'

We deal first with the case 2s > HK. We have

br'-H
\avV " 1 II =

br, / c - l

+ O(Ne8/R).

Hence the number of solutions to (17) for each v with 2s ̂  HK can be estimated by
Lemma 2 as

Ne8 2 -«»'^"K

R

Multiplying this by N/R and summing over « log N values for R gives the first term in
(16).

The case 2s « HK needs to be split into three subcases as follows.
(i) s \ rk~\ We note that

\\brk (2/Q*-1 1 /
7 v

/ , (2/?)*-'\ 1 „ jf S
(18)

s II Is s \ T

Here we have used T>2kRk~1 and RH~K >JH~K >8Ne by (14). It follows from (18)
that there can be no solutions to (17) arising from this case.

(ii) s ¥= 1, s | rk~x. Since r is a prime, there is at most one solution for each given s.
Hence there can be at most N/R solutions to (17) arising from this case. Summing over R
then gives «N/J < N/H solutions as required.

(iii) s = l. Since (2R)k''iT~l<\, if

|ow*-t|<7'-1 and <8/R,
we must have

\avk-b\<8R-k. (19)

For each solution to (19) trivially there will be at most R solutions in r to (17). This leads
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to the sum in (16) and completes the proof. Note that m = brk ' so (v,h) is coprime to
Q(R) as claimed.

LEMMA 5. Let k>\, a, q, L, N be as given in Section 1. Then either
(i) there is a solution to

an
• — m <L~K, (m,n) = l, l-K.

(ii) the number of solutions to

an" 1
m P(m,n)>LK-

IS

~x where TJ = 2 * 2e.

(20)

(21)

(22)

Proof. Suppose (i) does not hold. We then apply Lemma 4 with J = LK 'W, Nx = N,
5i = l/L, H = LN2r>. By (16) we get a bound «N1"T?L~1 plus a sum involving the
solutions to

an
•- m

1
LR k> P{m,n)>J, n^N/R, (n,q) = l. (23)

Here we have noted that since (i) fails the condition (Q(J), m,n) = l implies P(m, n) > J,
and the addition of («, q) = 1 to Lemma 4 carries through the proof. We also remark that
since (n,q) = 1 we must have

I I I
and so we need only consider values of R with LRk < q. We now apply Lemma 4 again
with 52 = L~yR~k, N2 = N/R. This gives «Ni~2r'/(HR) solutions plus those coming from
a further inequality to which Lemma 4 can be applied again with 63 = (LRkUk)~*,
N3 = N/(RU), where U^R, L(UR)k<q. At this point the argument stops because we
are left to consider solutions to

v^N/(RUV), (v,q) = (24)

where V > U > R. Since

with

J3kL

3A:(2*-2-l) *

the only solutions to (24) have vk = 0 (mod*?), but this is ruled out by the condition
(v,q) = l.
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The total number of solutions to (21) is thus

as required.

Proof of Theorem for k>3. To simplify the proof we suppose that b = 1 in the
following. If there are infinitely many solutions to (20) for infinitely many alq the result
follows. Otherwise suppose that (20) is false for alq. Let 8 = L~X. The number of
solutions to

an
m

q
(m,n) = l, n*N, (n,q) = l (25)

is (using the notation of § 2 with bis = alq)

(26)

where si(p) denotes the number of solutions to (25) with P(m,n) =p. The first term in
(26) is

2N5 — (l

with 7j = 2~*~2e by Lemma 3. Now take bis = apk~lIq in the definition of Jf(N,8,t).
Then that part of the sum in (26) with p ^ LK~*Ne can be bounded above by

using Lemma 3. The error term is O(8N 2T)) since

N L2K' — N'
(28)

It is the first inequality in (28) which is more significant and leads to the quoted value for
p(k). For the part of the sum in (26) with p > L^"1/^' we use Lemma 5. We thus obtain
that the number of solutions to (25) is

q v

for all large N. This completes the proof for k > 3.
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4. The case k = 2. We now only count solutions n which have a prime factor of size
around A'1'5. This enables us to use the following result.

LEMMA 6. Let a,q,L,N be as given in Section 1 with L >32. Suppose that 2^
with DP<N,P> Nm. Then the number of solutions to

2p2\\I p~P, r~D,

is

' L \D NP ND DP

(29)

(30)

for any 17 > 0.

Proof. Since (30) exceeds N/(DP)>1, we may assume that at least one solution to
(29) exists for each n. It follows that for some n,p, r restricted as in (29) we have

n2a 1
LD2P2'

Now we rewrite b/rp2 as c/d with (c,d) = 1 and consider the possible values for d (since
p, r are primes there are only 6 possible values for d).

(i) d = p2r. We count the number of solutions to

— <T7: with f<8P2D.
LD

(31)

We have

II q II I l r p 2

It follows that (31) will only have solutions if

cf = h (modp2r) with \h\«l/LD.

There are therefore « 1 + (P2D)/LD = 1 + P2/L possible solutions for each n. Summing
over the N/PD possible values for n then gives a bound

"
N NP

+LD

which is suitable in view of (30).
(ii) d =pr. Suppose there is another solution u = vw with t/u = b/rp2. Then

Hence t/u = c/d, which means v = r,w =p. There are thus at most two solutions for each
n in this case, which leads to «N/PD solutions altogether.
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(iii) d =p or p2. In this case we have

llo^L-1

LD2'

We can therefore deal with this case by multiplying by D (a very generous upper bound
for the number of primes r~D\) the number of solutions to

m2a 1

LD 2 > (m,q) = l.

(The number of solutions to pn = m is no more than 5 since p > Nm). We bound this
number by considering the congruence

m2a = h (modq), \<\h\<qlLD2.

For each fixed h there are «NV solutions to m2a = h (mod q) and so we finally obtain a
bound

LD2 ND/

which gives the third term in (30).
(iv) d = r. We now must have

ran < (LDP2i 2 \ - l (32)

For each fixed r we may argue as in (iii) to show that the number of solutions to (32) is
«Nvq(LDP2)~\ Multiplying by PD then gives the second term in (30).

(v) d = \. We now count PD times the number of solutions to

n2a\\

We may argue as in case (iii) again eventually arriving at a bound «Nvq(LDP)~\ which
is smaller than either of the terms from (iii) and (iv). This completes the proof.

Proof of Theorem for k=2. Write P = LmNAi>, R = LmN6r> with T> = e/100. We
count solutions to

an2p2

q
<-, n^N/p, p-P, (np,mq) = l, (n,p) = l. (33)

As before we write S = l/L. In the following p is always to be taken as coprime to q. The
number of solutions to (33) is Sx-S2- S3 where 5X counts solutions to

an2p2

S2 counts solutions to

an2p
<S/p,
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and S3 counts solutions to
p2n2ar m

<8/r, , P{m,n)>r.

Now let

Then, by Lemma 3,
\ogp-

= V
P~P P PR

l/2\

)
2N<p(q)8

(1 + (34)

Here we have observed that <p(pq)/pq = (1 + O(l/p))(p(q)/q, and L = N2/5 ' gives
PKSW-' and P2q<8N2-'.

Applying Lemma 3 to S2 gives the formula

arguing as for 5^
We split 53 into 3 subsums S4, S5, S6 with r < N " , Nv <r<R, r>R respectively. By

the argument used for S: we have

Here T is the number of solutions n, p, r such that r ¥=p and

p n ra

For Ss we count solutions to

1rm2a\\ 8 N
<-> m-<-, (m,q) =

An application of Lemma 3 yields an upper bound

N1~rl<p(q)8

since by our choice of R we have R < 82Nl~e and Rq < N2~e.
For S6 we apply Lemma 6 to obtain

7=0.1....

Hence the number of solutions to (33) is

which completes the proof.
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