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Each share is 3a;2 — 2x — 5, the quantum being 3a;2; each recipient of
a quantum must return + 2a; + 5 to the fund-box.

Out of the fund-box move 6a;4 pounds to A, and there distribute
in 3a;2-quanta to 2a;2 persons, who each return 2x + 5 and therefore a
total of 4a;8 + 10a;2 to the box as shown. Next move 15a;2 out of the
box to position B and there give.out in 3a;2 quanta to 5x persons who
each return 2x + 5, that is, a total of 10x2 at C and 25a; at D. Next
move out 27a;2 etc. until the fund is reduced to 45a; -f- 49 and further
quantum distribution is impossible. The quotient is 2a;2 + 5a; + 9
people and the remainder 45a; + 49 pounds.

I found, long ago, a pupil calculating without division the
remainder of a polynomial divided by a;2— 2a; + 3; he was substituting
2x — 3 for x2 wherever a;2 occurred in the dividend. The boy's argu-
ment was that he was applying the remainder theorem. He was
right, but I might have seen that the boy was applying Horner's
method. For obviously quantum-division consists in pushing every
a;2-quantum out of the fund-box and receiving, for every quantum
pushed out, an exchange of 2a; — 3. And have we not here a new
way to the remainder theorem? Teach quantum-division, say in two
steps as outlined above, emphasising perhaps the exchange for every
quantum distributed till the degradation of the fund leaves a
remainder with quantum output impossible. Then come to the
remainder theorem; the remainder after division by x — h will be
the degraded fund after every a;-quantum in it has been exchanged
for h.

MERCHISTON CRESCENT,

EDINBURGH.

Elementary methods in the theory of numbers

By S. A. SCOTT.

Introduction.

§ 1. The importance of proving inequalities of an essentially algebraic
nature by " elementary" methods has been emphasised by Hardy
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(Prolegomena to a Chapter on Inequalities), and by Hardy, Littlewood
and Polya (Inequalities). The object of this Note is to show how
some of the results in the early stages of Number Theory can be
obtained by making a minimum appeal to irrational numbers and the
notion of a limit. We use the elementary notion of a logarithm to a
base " a" > 1, and make no appeal to the exponential function. The
Binomial Theorem is only used for a positive integer index. Our
minimum appeal rests in the assumption that a bounded monotone
sequence tends to a limit. We adopt throughout the usual notation.
Finally, it need scarcely be added that the methods employed are not
claimed to be new.

§ 2. We write <j> (r) = U p, where r is an integer, and p runs through

primes only.

Lemma 1: <f>(r) < 22r.

We observe first tha t ( J is clearly an integer. Each prime p

for which r < p 5S 2r divides (2r)! bu t not (r\)2. Hence </> (r) divides

, and thus

= 2*'.

Lemma 2: II p < 16*.
J)Siz

There exists an integer m such that 2'"-1 <I x < 2m. Hence we
have

n p ^ n p ="n". n P
1

n~m
= n ^ (2"-1) < n 22" = 22"'+1-2

n = \ « = 1

Lemma 3: 2 —'^JL— is bounded.
Pix P(P - 1)

Here the logarithms are taken to a general base a not yet
determined {a > 1).
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If n is a positive integer, it easily follows by the Binomial
1 -f- — i is monotone increasing and always less than

n )

3. Hence it tends to a limit 6 5S 3. It follows that for a 22 b, we
/ 1 \n

have I 1 H ) < a.
n IHence

Now we have

log( 1 + — "\ < — forw> 1. (1).
1 n I n

» = 2

= log 2 + S — log (1 + — ) — -~ (by partial summation)

< log 2 4- 2 — < log 2 + S — = log 2 + 1 L_ < log 2 + 1.

Lemma 4: x\ > xxd~x for all positive integers x, where d is a certain
constant.
If we were to assume the properties of the exponential function, this
would follow at once, since xx/x! < ex.

Write / ( * ) = X~-

Then

a;

.-. /(a;) increases with a;, and/(a;) > / ( l ) = d for a; > 1.

§3. Theorem 1: 2 —5_i _ log a; is bounded.

We start with the well-known identity

[a;]! = II J>1*IP1 + WPH+ >

where [y] means the greatest integer contained in y. Suppose x > 3.
Then xx > [x]! > II pWri > II p*'***

PSkx
- 1 « S logp/j; —3: a; 2

= U p .a *^x > 16 .a P^X

https://doi.org/10.1017/S0950184300002603 Published online by Cambridge University Press

https://doi.org/10.1017/S0950184300002603


XIX

g g z 2 logpip

Hence a >a p&x

I t follows that 2 •^L? - log a; < log 16; To prove the in-

equality in the opposite direction, we have by Lemma 4 (assuming, as

we may without loss, that x is an integer)

xxb~x<x\ ^ II p*lp+*lp°- + ~--+*lp* where - ^ is the last term
ps» p*

whose integer part does not vanish.

1

p p plc~1 \

p

P : _ J_ p (p — 1)

« — x x 2 logpjp kx

Hence xb <a p-x .a , where k is a constant, by Lemma 3
with a Si 6.

It follows that S ^ ^ - log x > - log 6 - A.

Theorem 2: TT(X)>C2.-~— where n (x) is the number of primes
logx

^ x, and c2 a constant.

By Theorem 1, we have log x — c1< 2 ° < log x + cx. Let

h be any number > 2cj.

Then 2
x<p-ix P

Also 2 -
P V^x P pHa~h.z P

> log x — cx — {log (a~h . x) -\- Ci} = h — 2cj.

/ x
Hence -n (x) / , > a~h (h — 2c,) = c2.

/ logo:

Theorem 3: 77 (x) < c3.
logs;

With the notation of Lemma 1, we have <f> (n) < 22".
WTrite 0(x) = 2 log p.
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Then 2n log 2 > log <f> (n) = 6 (2n) — 6 (n).

Take n = 2''1. Hence 2r log 2 > 6 (2r) - 6 (2*-1).
Sum the inequalities obtained from this by giving r the values

1, 2, 3 m. We obtain 0 (2m) < 2 log 2 S 2"-1 < 2»' + 1 log 2.

Determine ??i now by 2'"~1 ^ x < 2m.
Hence 0 (x) ^ 6 (2"<) ^ 4x log 2.
Again, 0 (a;) :> 2 log £> ^ {77 (x) - 77 (x'')} log .T'.

£^ < p ^ x

Since IT (#*) < x\ it follows that

. (x) / * < 2 «l£) + ] ^ < 8 log 2 + L 0 ^ .
/ log x x ,r; a;5

Suppose now that [a;4] = n.

Then —5_— < _M-i '—' < 1, the last inequality being proved
x- n

\>y a simple induction with the aid of (1).

Hence 77 (a;) I < 8 log 2 + 2 = c,.
/ log x

§4. Lemma 5: 2 log x is bounded, where the logarithm is

taken to the natural base.
It can be proved by " elementary " methods (Hardy, Littlewood

and Polya, Inequalities: Theorem 35) that

1 V
1 -\ 1 increases steadily for all x > 0, and

x )
1 \~x

1 ) decreases steadily for all x > 1.
x )

/ 1 \ ~x

Hence (1 I tends to a finite limit c which is clearly the
\ x)

same as when x-> 00 through integer values.

Thus (l - — \ X>c for all x > 1. (2)

/ 1 \x . 1
Similarly I 1 + — ) < a, from which it follows, putting — = y,

that log (1 + y) < y, for 0 < y < 1. (3)
N o w ( l + ±) = ( l + — L \ ( i f n = m - l ) = ( l - — ) . ( l - —

\ n J \ m—\) \ ml \ m
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It follows that b = c.

Taking a ̂  c( = b) in (2) above, we have

1 \~x ( 1 \ 11 ) > a. Hence log (1 \ < for x > 1. (4)
•* * \ x) x x

Since, in the previous work, we have required a 5: b, we assume from
now on that a = b.

1 1
Write a(x) — S l o g x ^ l + \ -\- A + . . . ,-\ logn0 if n0 = [x]

— + log ( 1 - —
n \ n

"» f 1 1 ^

< i + s Ji-__LI = i .

»=2 (. » n J

A l s o t r ( a ; ) > • ' - - • " X

+ o .
n — lj 1 ( + 1 ) + 1

Hence 0 < a (a;) < 1.

It should be noted that the base of logarithms must here be the
Napierian one.

Lemma 6: S — loglog x is bounded, where (for simplicity)
2s»si n log n

x is an integer.

The expression in the lemma is S an where a2= -—: —loglog 2,
2s 2 log 2

and, for w ^ 3,

f I / i x

1 . flog ( n - 1 ) 1 1 . J s \ n>
an= +log]—^ ; [ = - i hlog)l+ n /

n log n [ log n J w log n [ log w

< —. + log 11 + \ 7L±\ < - j , = 0 (using (4)).
n log n I log n I ralogw nlogn

Hence S a« < a2 = -̂ĵ —g ~ loSlog 2-
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1 , L . \ n - l
f (

Again, for n ̂  3, an = — log j 1 + . , n *' f
wlogn I log(n— 1) I

= log 4 > 1, as a < 3).

Hence 2 an > cu + —; — —= > a., — —= = — loglog 2.

2£nsx - x log x 2 log 2 - 2 log 2 & B

Theorem 4 : 2 loglogx is bounded.

logn 1 . . . 1

Let an = —— when n is a prime » ; a,s = otherwise.
n n n

v l°gP v ! v logp , , 1 , „ 1 )
.-. S an = S — S — = 2 —s-i _ log a; + -Hog x — 2 — \ .

By Theorem 1 and Lemma 5, each part is bounded, from which it

follows easily that 2 —^— is bounded.
»si log n

Thus 2 2 is bounded, and the result now
Pix p 2&n£x nlogn

follows from Lemma 6. In this theorem the base of logarithms is

the natural base, since we have used Lemma 5.

Theorem 5: II ( l ) < c4 (log a;)"1.
PSix\ P/

We have seen that 1 ~\ J is monotone-increasing. Putting

/ 1 ,-«+!
m = n — 1, it follows that 1 is monotone-increasing, and

\ nJ
i i •—»+i

hence tends to a limit which is clearly c(=a). Thus ( 1 ) <a

for n > 1.
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H e n c e log ( 1 — — ) > — •
n I n —1

We have, therefore,

l o g n ( l -

Also

VI JSJ p

2 loglog x
pSx P

\n — 1 n

< CB.

Hence log II (1 ) + loglog x < c6, which proves the
pax \ p/

theorem.

TRINITY COLLEGE,

DUBLIN.

A note on some networks of polygons

By W. BARRETT.

Given an infinity of polygons which form the boundary of a finite
number of polyhedra, we shall consider the complex K consisting of
the polyhedra, and of the faces, edges and vertices of the polygons.
We consider only those cases in which the Eulerian Characteristic N
of K is finite. Then if the mean number of sides meeting at a vertex is
p, and the mean number of sides of a polygon is q, then

The complex K is considered as the limit of a complex K' having
a finite number v0 of points, vx of edges, v2 of polygons, and v3 of
polyhedra, when v2 tends to infinity in a definite manner. Since

v2 :< S ( 1 )> which is finite if v1 is finite, it follows that vt is infinite

if v2 is infinite.
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