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Abstract

We introduce and study a new model: zero-automatic queues. Roughly, zero-automatic
queues are characterized by a special buffering mechanism evolving like a random walk
on some infinite group or monoid. The salient result is that all stable zero-automatic
queues have a product form stationary distribution and a Poisson output process. When
considering the two simplest and extremal cases of zero-automatic queues, we recover
the simple M/M/1 queue and Gelenbe’s G-queue with positive and negative customers.
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1. Introduction

In this section we provide an informal description of a special type of zero-automatic queue
(corresponding to a free product of three finite monoids). Consider a queue with a single server
and an infinite capacity buffer. Customers are colored either in red (R), blue (B), or green (G),
with a finite set of possible shades available within each color: �R, �B, �G. In the buffer,
two consecutive customers of the same color can either cancel each other or merge to create a
new customer of the same color. Customers of different colors do not interact. This process
is illustrated in Figure 1. The shades are modified in the merging procedure, according to the
following internal law: �i ×�i → �i ∪ {1}, i ∈ {R, G, B}, with 1 coding for the cancellation.
The only, but crucial, restriction is that each internal law should be associative.

We now give a more detailed account of the model and results. Zero-automatic queues may
be viewed as the synthesis of a simple queue and a random walk on a zero-automatic pair. We
first recall these last two models.

OR

Figure 1: A zero-automatic queue.
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430 T.-H. DAO-THI AND J. MAIRESSE

The M/M/1/∞ first-in-first-out (FIFO) queue, or simply referred to as an M/M/1 queue,
is the Markovian queue with arrivals and services occurring at constant rates, say λ and µ, a
single server, an infinite capacity buffer, and a FIFO discipline. This is arguably the simplest
and also the most studied model in queueing theory, with at least one book devoted to it [7]. The
queue-length process is a continuous-time jump Markov process and its infinitesimal generator
Q is given by Q(n, n + 1) = λ, Q(n + 1, n) = µ, for all n ∈ N. Under the stability condition
λ < µ, the queue-length process is ergodic, and its stationary distribution π is given by

π(n) =
(

1 − λ

µ

)(
λ

µ

)n

. (1.1)

Besides, and this constitutes the celebrated Burke’s theorem, the departure process in equilib-
rium has the same law as the arrival process.

Let us introduce the a priori completely unrelated model of a random walk on a plain group
studied in [22] and [23]. Let X be an infinite group or monoid with a finite set of generators �.
Let ν be a probability measure on � and let (xi)i∈N be a sequence of �-valued independent,
identically distributed random variables (i.i.d. RVs) of law ν. Let (Xn)n be the sequence of
X-valued RVs defined by X0 = 1X, Xn+1 = Xn ∗ xn = x0 ∗ x1 ∗ · · · ∗ xn, where 1X is the
unit element of X and ∗ is the group or monoid law. By definition, (Xn)n is a realization of
the random walk (X, ν). Now we assume that the pair (X, �) is formed by a plain monoid
with natural generators, the definition of which is given in Section 2.2. For the moment,
however, it suffices to say that the elements of X can be set in bijection with a regular language
L(X, �) ⊂ �∗. The random walk (Xn)n is viewed as evolving on L(X, �). If Xn = ua,
u ∈ X, a ∈ �, and xn = b ∈ �, then

Xn+1 =

⎧⎪⎨
⎪⎩

u if a ∗ b = 1X,

uc if a ∗ b = c ∈ �,

uab otherwise.

(1.2)

Now we assume that the random walk is transient. Let ν∞(u�N) be the probability that
the random walk goes to infinity in the ‘direction’ u (i.e. ν∞(u�N) = P{there exists an N

for all n ≥ N, Xn ∈ u�∗}). The following is the main result in [22]:

ν∞(u�N) = q̂(u1) · · · q̂(un−1)r̂(un) for all u = u1 · · · un ∈ L(X, �), (1.3)

where q̂(a) ∈ (0, 1) and r̂(a) ∈ (0, 1), for all a ∈ �.
The expressions in (1.1) and (1.3) share a common ‘multiplicative’ structure. Guided by

this analogy, we want to merge the two models together. To this end, we make the following
elementary observation: if we block the server in an M/M/1 queue then the number of waiting
customers after n arrivals is An = n. Also, (An)n can be viewed as the (not so random) random
walk on the pair ((N, +), {1}) associated with the probability ν : ν(1) = 1. Now, we replace
the trivial random walk (An)n by another, more complex, random walk (Xn)n on a plain triple
(X, �, ν). Hence, the random walk (Xn)n constitutes the buffering mechanism in a queue with
a blocked server. A zero-automatic queue is the model obtained when unblocking the server.
The set � is the set of possible classes for customers. Customers arrive at a constant rate λ.
Upon arrival, a new customer (class b) interacts with the customer presently at the back-end of
the buffer (class a), according to (1.2). At the front-end of the buffer, customers are served at
a constant rate µ.

https://doi.org/10.1239/aap/1183667618 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667618


Zero-automatic queues and product form 431

Let us comment on the name zero-automatic. Plain groups (see (2.1), below), are automatic
in the sense of Epstein et al. [12]. Automatic groups form an important class of groups
extensively studied in geometric group theory, the adjective ‘automatic’referring to the existence
of automata to recognize and multiply elements of the group. Now the pairs (X, �) formed
by a plain group with natural generators satisfy the zero-fellow traveller property (see [12] ).
It was proposed in [22] to call (X, �) a zero-automatic pair. By extension, a queue built
upon (X, �) is zero-automatic. The name is also supposed to evoke the local aspect of the
interactions between customers in the buffer; see (1.2).

Let γ̂ be the drift or rate of escape to infinity of the random walk (Xn)n. We prove in
Section 4 that the stability condition for the zero-automatic queue associated with (Xn)n is
λγ̂ < µ. Under this condition, we prove in Section 5 that the stationary distribution p for the
queue-content process has a ‘multiplicative’ structure, given by

p(u) = (1 − ρ)ρnq(u1) · · · q(un−1)r(un) for all u = u1 · · · un ∈ L(X, �), (1.4)

for some numbers ρ ∈ (0, 1) and, for all a ∈ �, q(a) ∈ (0, 1) and r(a) ∈ (0, 1). (These
numbers are, in general, different from their counterparts in (1.1) and (1.3).) Furthermore, the
departure process from the queue is a Poisson process of rate ρµ. Thus, we have an analog of
Burke’s theorem for all zero-automatic queues. Using standard terminology, zero-automatic
queues are quasi-reversible. To be more precise, given (Xn)n, several variants of zero-automatic
queues can be defined depending on the way in which the customers are incorporated into an
empty queue (boundary condition). There is precisely one choice for which the result in (1.4)
holds. The values of ρ, q(·), and r(·), as well as the right boundary condition, are obtained
implicitly via the unique solution of a set of algebraic equations; see Theorems 5.1 and 5.2,
below, for a precise statement.

Aside from the free monoid, the next simplest example of a plain monoid is the free group over
one generator: (Z, +). The zero-automatic queues associated with (Z, {−1, 1}) are variations
of Gelenbe’s G-queues, or queues with positive and negative customers, which were extensively
studied in the 1990s; see [13], [14], and the bibliography in [15]. General zero-automatic queues
can be viewed as a wide generalization of this setting. Indeed, in a zero-automatic queue,
different types of tasks (customers) can be modeled. Let us detail four of them which form a
representative sample without exhausting all the types within the realm of zero-automaticity.

• Classical type. Tasks are processed one by one with no simplification occurring in the
buffer; aa = aa. The corresponding pair is (N, {1}) ∼ ({a}∗, {a}).

• Positive/negative type. Tasks are either positive (a) or negative (a−1) and two consecutive
tasks of opposite signs cancel each other; aa−1 = a−1a = 1. The corresponding pair
is (Z, {1, −1}) ∼ (F (a), {a, a−1}). The relevant applications for this type of task are
discussed in [15].

• ‘One equals many’ type. It takes the same time to process one or several consecutive
instances of the same task; aa = a. For instance, consider a ticket reservation where
the number of requests is reflected only by an integer value in a menu-bar choice. The
corresponding pair is (B, {a}) where B is the Boolean monoid B = 〈a | a2 = a〉.

• ‘Dating agency’type. Two instances of the same task cancel each other; aa = 1. Consider
a tennis player looking for a partner (to be provided by the server); when two such tasks
are next to each other in the buffer, they leave to play a game instead of waiting in line.
The corresponding pair is (Z/2Z = 〈a | a2 = 1〉, {a}). Instead of tennis players, we may
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consider music trio players, bridge players, etc., the corresponding group being Z/3Z,
Z/4Z, etc.

To model a server where several of the above types (and possibly several copies of the same
type) can be processed, we have just to perform the free product of the corresponding monoids
or groups (see Section 2.1 for the definition).

The M/M/1 queue is the basic primitive for building Jackson networks, which have the re-
markable property of having a ‘product-form’stationary distribution. More generally, networks
made of quasi-reversible nodes tend to have a product form distribution; see, for instance, [26].
In a subsequent work [9], we proved that this is indeed the case for both Jackson-type and
Kelly-type networks of zero-automatic queues.

A preliminary version, without proofs, of the present paper has appeared in the conference
proceedings [8].

2. Preliminaries

Notation. We denote by Z, N and R+ the integer, nonnegative integer, and real numbers,
respectively. We denote by N

∗ and R
∗+ the positive integer and real numbers, respectively.

The symbol ‘�’ is used for the disjoint union of sets. Given a set T and S ⊂ T , we define
1S : T → {0, 1} by 1S(u) = 1 if u ∈ S and 1S(u) = 0 otherwise. Given a set T , a vector
x ∈ R

T , and S ⊂ T , set x(S) = ∑
u∈S x(u).

Let us recall the material needed for random walks on plain monoids. The presentation
follows [22] and [23].

2.1. Monoids and groups

Given a set �, the free monoid generated by � is denoted by �∗. The unit element is denoted
by 1 or 1�∗ . As usual, the elements of � and �∗ are called letters and words, respectively. The
subsets of �∗ are called languages. The length (number of letters) of a word u is denoted by
|u|� . Let (X, ∗) be a group or monoid with a set of generators �. The unit element of X is
denoted by 1X. When X is a group, the inverse of x ∈ X is denoted by x−1. We always assume
that 1X /∈ � and, in the group case, that x ∈ � implies that x−1 ∈ �. The length with respect
to � of an element x of X is given by

|x|� = min{k | x = a1 ∗ · · · ∗ ak, ai ∈ �}.
The Cayley graph X(X, �) of X with respect to � is the directed graph with nodes X and arcs
u → v if there exists an a ∈ � such that u ∗ a = v.

Consider a relation R ⊂ �∗ × �∗, and let ‘∼R’ be the least congruence on �∗ such that
u ∼R v if (u, v) ∈ R. Let X be isomorphic to the quotient monoid (�∗/ ∼R). We say that
〈� | u = v, (u, v) ∈ R〉 is a monoid presentation of X and we write X = 〈� | u = v,

(u, v) ∈ R〉. Given a set S, we denote by F(S) the free group generated (as a group) by S. Let
S−1 be the set of inverses of the generators. A monoid presentation of F(S) is

F(S) = 〈S � S−1 | aa−1 = 1, a−1a = 1, for all a ∈ S〉.
Given two groups or monoids X1 and X2, we denote by X1 �X2 the free product of X1 and X2.
Roughly, the elements of X1�X2 are the finite alternate sequences of elements of X1\{1X1} and
X2 \{1X2}, and the law is the concatenation with simplification. More rigorously, the definition
is as follows. Let S = X1 �X2. The free product, X1 �X2, is defined by the following monoid
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Figure 2: The random walk (Z/2Z � Z/3Z, ν).

presentation:

〈S | (for all u, v ∈ S∗, for all i ∈ {1, 2}), u1Xi
v = uv,

(for all a, b, c ∈ Xi such that c = a ∗ b), uabv = ucv〉.
If X1 and X2 are groups, then X1 � X2 is also a group. The free product of more than two
groups or monoids is defined analogously. The Cayley graph of the group Z/2Z � Z/3Z is
represented in Figure 2(a).

2.2. Plain monoids and groups

A plain monoid is a monoid X of the form

X = S∗ � F (T ) � X1 � · · · � Xk, (2.1)

where S and T are finite sets and X1, . . . , Xk are finite monoids. A plain group is a plain
monoid which is also a group. A plain monoid X defined as in (2.1) is a plain group if and only
if S = ∅ and X1, . . . , Xk are groups. Define

� = S � T � T −1 � X1 \ {1X1} � · · · � Xk \ {1Xk
}.

The set � is a finite set of generators of X, which we call natural generators. Define the
language L(X, �) ⊂ �∗ by

L(X, �) = {u1 · · · uk | for all i < k, ui ∗ ui+1 /∈ � ∪ {1X}}. (2.2)

It is easily seen that the set L(X, �) is in bijection with the group elements. Below we often
identify X and L(X, �). The following is a consequence of the definition of a plain monoid:

a ∗ b ∈ � ∪ {1X} ⇐⇒ b ∗ a ∈ � ∪ {1X}, a, b ∈ �. (2.3)
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To see that (2.3) holds, it is sufficient to check it case by case. It is convenient to introduce the
sets

Next(a) = {b ∈ � | b ∗ a /∈ � ∪ {1X}} = {b ∈ � | a ∗ b /∈ � ∪ {1X}} for all a ∈ �.

Observe that

L(X, �) = {u1 · · · uk | for all i, ui−1 ∈ Next(ui)} = {u1 · · · uk | for all i, ui+1 ∈ Next(ui)}.
The following property, to be used later on, is also a direct consequence of the definition of a
plain monoid:

a ∗ b ∈ � �⇒ Next(a) = Next(b) = Next(a ∗ b).

Consider the directed graph of successors (�, →), where

a → b if b ∈ Next(a). (2.4)

Except for the case in which X = F(T ) where |T | = 1, the graph (�, →) is strongly connected.

2.3. Random walks on monoids and groups

Let (X, ∗) be a group or monoid with a finite set of generators �. Let ν be a probability
distribution over �. Consider the Markov chain on the state space X with one-step transition
probabilities given by Px,x∗a = ν(a) for all x ∈ X and a ∈ �. This Markov chain is called the
(right) random walk (associated with) (X, ν). Let (xn)n be a sequence of i.i.d. RVs distributed
according to ν. Set

X0 = 1X, Xn+1 = Xn ∗ xn = x0 ∗ · · · ∗ xn. (2.5)

Then the sequence (Xn)n is a realization of the random walk (X, ν). For all x, y ∈ X, we
have |x ∗ y|� ≤ |x|� + |y|� . Applying Kingman’s subadditive ergodic theorem [18] yields
the following (first noticed by Guivarc’h [16]): there exists a γ ∈ R+ such that

lim
n→∞

|Xn|�
n

= γ almost surely (a.s.) and in Lp,

for all 1 ≤ p < ∞. We call γ the drift of the random walk. To illustrate this, consider the
plain group X = Z/2Z � Z/3Z = 〈a | a2 = 1〉 � 〈b | b3 = 1〉 and the natural generators
� = {a, b, b2 = b−1}. Let ν be a probability measure on �. Figure 2(a) represents a finite
part of the infinite Cayley graph X(X, �), and the one-step transitions of the random walk
(X, ν) starting from the state ba. Figure 2(b) shows the same one-step transitions of the group
elements viewed as words of L(X, �) (written from bottom to top).

2.4. Random walks on plain monoids and groups

It is convenient to introduce the notion of a plain triple.

Definition 2.1. A triple (X, �, ν) is plain if

(i) X is an infinite plain monoid not isomorphic to Z or Z/2Z � Z/2Z;

(ii) � is a set of natural generators;

(iii) ν is a probability measure whose support is included in � and generates X.
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Proposition 2.1. If (X, �, ν) is a plain triple, then the random walk (X, ν) is transient.

If X is an infinite plain monoid with the support of ν generating X, there are only two cases
in which (X, ν) is not transient

(1) the triple (Z, {−1, 1}, { 1
2 , 1

2 });
(2) the triples (Z/2Z�Z/2Z, {a, b}, ν), for any ν, where a and b are the respective generators

of the two cyclic groups.

As Z and Z/2Z�Z/2Z have been excluded from consideration, then the random walk (X, ν) is
transient; see [22] for details. The case in which X = Z is specific. Some of the results below
remain true but not all of them. For simplicity, we treat this case separately in Section 6.

Define

B =
{
x ∈ R

�

∣∣∣∣ for all i, x(i) > 0,
∑

i

x(i) = 1

}
,

B =
{
x ∈ R

�

∣∣∣∣ for all i, x(i) ≥ 0,
∑

i

x(i) = 1

}
.

(2.6)

The traffic equations play an essential role in the study of the random walk (X, ν).

Definition 2.2. The Traffic Equations (TE) associated with a plain triple (X, �, ν) are the
equations of the variables (x(a))a∈� ∈ R

�+ defined by

x(a) = ν(a)x(Next(a)) +
∑

b∗d=a

ν(b)x(d) +
∑

d∈Next(a)
b∗d=1X

ν(b)
x(d)

x(Next(d))
x(a) for all a ∈ �.

(2.7)
An admissible solution of (2.7) is a solution belonging to B.

By multiplying both sides of (2.7) by
∏

b x(Next(b)), we obtain a new set of equations
without denominators. With some abuse, a solution r in B of this set of equations is still called
a solution of the TE.

The following proposition can be deduced easily from the proof of Theorem 4.5 of [22].

Proposition 2.2. Let (X, �, ν) be a plain triple. The traffic equations have a unique admissible
solution.

The harmonic measure and the drift can be expressed as a function of the solution to the TE,
which makes Proposition 2.2 interesting. Define the set L∞ ⊂ �N by

L∞ = {u0u1 · · · uk · · · ∈ �N | for all i ∈ N, ui+1 ∈ Next(ui)}. (2.8)

A word belongs to L∞ if and only if all its finite prefixes belong to L(X, �). The set L∞
should be viewed as the ‘boundary’ of X.

Let (Xn)n be a realization of the random walk which is transient by Proposition 2.1. The
harmonic measure of the random walk is the probability measure ν∞ on L∞ with finite-
dimensional marginals defined by

ν∞(u1 · · · uk�
N) = P{there exists an N, for all n ≥ N, Xn ∈ u1 · · · uk�

∗},
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for all u1 · · · uk ∈ L(X, �). This indeed defines a measure on L∞ because the random walk
is transient, and because Xn and Xn+1 differ by at most their last symbol. Intuitively, the
harmonic measure ν∞ gives the direction in which (Xn)n goes to infinity.

For a proof of the following theorem the reader is referred to the proofs of Theorem 4.5 of
[22] and Theorem 3.3 of [23]. In the specific case of the free group, the proof appears in [11],
[25], and also the survey [21].

Theorem 2.1. Let (X, �, ν) be a plain triple. Let r̂ = (r̂(a))a∈� be the unique admissible
solution to the traffic equations. Set q̂(a) = r̂(a)/r̂(Next(a)), for all a ∈ �. The harmonic
measure ν∞ of the random walk (X, ν) is given by

ν∞(u1 · · · uk�
N) = q̂(u1) · · · q̂(uk−1)r̂(uk) for all u1 · · · uk.

The drift of the random walk is given by

γ̂ =
∑
a∈�

ν(a)

[
r̂(Next(a)) −

∑
b | a∗b=1X

r̂(b)

]
. (2.9)

3. The zero-automatic queue

We first define the zero-automatic queue informally, before defining it formally in Defini-
tion 3.1. Let X be a plain monoid, � be a set of natural generators, and ν a probability measure
on �. The associated zero-automatic queue is formed by a simple single server queue with
FIFO discipline and an infinite capacity buffer in which the buffering occurs according to the
random walk (X, ν). It is a multiclass queue (classes �) but the class does not influence the
way customers get served, only the way they get buffered. More precisely, the instants of
customer arrivals are given by a Poisson process of rate λ, and each customer carries a mark, or
class, which is an element of �. The sequence of marks is i.i.d. of law ν. Upon arrival, a new
customer interacts with the customer presently at the back-end of the buffer and, depending on
their respective classes, say b and a, one of three following possible events occurs:

(i) if b ∗ a = 1X, then the two customers leave the queue;

(ii) if b ∗ a = c ∈ �, then the two customers merge to create a customer of type c;

(iii) otherwise, customer b takes place at the back-end of the buffer, behind customer a.

In the mean time, at the front-end of the buffer, the customers are served one by one and
at a constant rate µ by the server. To be complete, we need to specify how customers are
incorporated when the buffer is empty. Several variants may be considered, and we view this
‘boundary condition’ as an additional parameter of the model. The resulting flexibility in the
definition of a zero-automatic queue will turn out to be a crucial point.

According to the above description, the queue-content (the sequence of classes of customers
in the buffer) is a continuous-time jump Markov process. The more formal definition of the
queue is given via the infinitesimal generator of this process.

Definition 3.1. (Zero-automatic queue.) Consider a plain triple (X, �, ν). Let L(X, �) be the
set of words defined in (2.2). Consider r ∈ B (see (2.6)) and λ, µ ∈ R

∗+. The zero-automatic
queue of type (X, �, ν, r, λ, µ) is defined as follows. The queue-content (M(t))t∈R+ is a
continuous-time jump Markov process on the state space L(X, �) with infinitesimal generator
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Q defined by

Q(u, bu) = λν(b) for all b ∈ Next(un),

Q(u, cun−1 · · · u1) = λ
∑

b | b∗un=c

ν(b) for all c ∈ � \ {un} such that there exists b ∈ �,

b ∗ un = c,

Q(u, un−1 · · · u1) = λ
∑

b | b∗un=1X

ν(b),

Q(u, un · · · u2) = µ,

for all u = un · · · u1 ∈ L(X, �)\∪a∈�{a}∗. Furthermore, for all a ∈ � such that a ∈ Next(a)

and for all n ≥ 1,

Q(an, ban) = λν(b) for all b ∈ Next(a), (3.1)

Q(an, can−1) = λ
∑

b | b∗a=c

ν(b) for all c ∈ � \ {a} such that there exists b ∈ �,

b ∗ a = c, (3.2)

Q(an, an−1) = µ + λ
∑

b | b∗a=1X

ν(b), (3.3)

and, finally, the boundary condition is

Q(1�∗ , a) = λν(a)r(Next(a)) for all a ∈ �. (3.4)

We denote by M/M/(X, �) any zero-automatic queue of type (X, �, ν, r, λ, µ).

Remark 3.1. The reason behind choosing the boundary condition to be of the form given in
(3.4) is as follows: the buffer-content is viewed as the visible part of an iceberg consisting of
an infinite word of L∞; see (2.8). When the buffer is empty, new customers are incorporated
depending on the invisible part of the iceberg, whose first marginal is assumed to be r . This
last point will be justified a posteriori in Theorem 5.1.

The simplest example of a zero-automatic queue is the one associated with the free monoid
(N, +). The triple (Z, {−1, 1}, ν), where ν is a probability measure on {1, −1}, is not plain.
However, it is simple and interesting to generalize Definition 3.1 in order to define a zero-
automatic queue associated with the free group (Z, +). We now discuss the zero-automatic
queues associated with (N, +) and (Z, +).

For the simple queue, consider the free monoid X = {a}∗ = {ak, k ∈ N} over the single
generator set � = {a}. Hence, for any λ, µ ∈ R

∗+, there is only one possible associated queue,
(X, �, ν, r, λ, µ), where ν(a) = r(a) = 1. By specializing the infinitesimal generator Q given
in Definition 3.1, we obtain

Q(an, an+1) = λ, Q(an+1, an) = µ, for all n ∈ N.

This is the simple M/M/1/∞ FIFO queue with an arrival rate λ and a service rate µ.
For the G-queue, consider the free group X = F(a) = {ak, k ∈ Z} and the set of generators

� = {a, a−1}. Let ν be a probability measure on � such that ν(a) > 0 and ν(a−1) > 0.
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Consider r ∈ B and λ, µ ∈ R
∗+. The zero-automatic queue (F (a), �, ν, r, λ, µ) has an

infinitesimal generator Q given by

Q(an, an+1) = λν(a), Q(an+1, an) = µ + λν(a−1),

Q(a−n, a−(n+1)) = λν(a−1), Q(a−(n+1), a−n) = µ + λν(a),

Q(1�∗ , a) = λν(a)r(a), Q(1�∗ , a−1) = λν(a−1)r(a−1),

for all n ∈ N. This is close to the mechanism of the G-queue; a queue with positive and negative
customers introduced by Gelenbe [14], [15]. With respect to the G-queue, one originality of the
M/M/(F (a), �) queue is that negative and positive customers play symmetrical roles. Another
one is the treatment of the boundary condition.

As the triple (F (a), {a−1, a}, ν) is not plain according to Definition 2.1, the above queue is
not covered by the results of Sections 4 and 5. However, part of the results remain true, and we
come back specifically to this model in Section 6.1 and Section 6.2.4.

As an extension, it is possible to generalize Definition 3.1 in order to define a zero-automatic
queue of type GI/GI/(X, �) and G/G/(X, �). Roughly, the description would go as follows.
The buffering mechanism is kept unchanged; the sequence of interarrival times and classes of
customers is i.i.d. (stationary and ergodic, respectively); the sequence of service times at the
server is i.i.d. (stationary and ergodic, respectively) and independent of the arrivals.

3.1. Comparison with other models in the literature

Under stability condition, we will see that a zero-automatic queue has the ‘Poisson output’
property. Also, a zero-automatic queue is ‘quasi-reversible’, at least in the sense of Chao et al.
[6, Definition 3.4]. There exist many examples of queues with such properties; see for instance
Kelly [17] or Chao et al. [6]. However, zero-automatic queues are quite different from the
existing models. Let us detail the comparison with the model of Chao et al. [6] (see also [5]).
Their model is a wide generalization of Gelenbe’s G-queue with signals, batch arrivals, and
batch departures. In a sense, zero-automatic queues can also be viewed as a wide generalization
of G-queues. Other common features between the models include: nonlinear traffic equations,
an output rate different from the input rate, and subtle boundary conditions to obtain a product
form. Despite these similarities, the models are quite orthogonal. A main advantage of zero-
automatic queues is the possibility that two customers can merge and create a new customer of
a different type. The algebraic foundation of zero-automatic queues is another originality.

It is also worthwhile comparing the zero-automatic queue with another model for queues
introduced by Yeung and Sengupta [28] (referred to as the YS model in the following); see also
He [19]. A common feature between the two models is the structure of the state space: a tree
for the YS model (or the cartesian product of a tree and a finite set), and a more general tree-
like graph for the zero-automatic queue. In particular, both models correspond to multiclass
queues, and the buffer content is coded by a word over the alphabet of classes. A second
common feature is that the effect of a new arrival is either to add, to modify the class of, or to
remove a customer at the back-end of the buffer (in the YS model, the removal/modification
may affect several customers at the back-end of the buffer). The first central difference between
the two models is that departures occur at the front-end of the buffer in the zero-automatic queue
and at the back-end in theYS model. Therefore, the former is a FIFO queue while the latter is a
last-in-first-out (LIFO) queue. We have illustrated the FIFO mechanism of the zero-automatic
queue in Figure 3. The second important difference between the two models concerns the
type of results which are proved. In a stable zero-automatic queue the buffer content has
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front-end
of the buffer

back-end
of the buffer

arrival (b)

departure

Figure 3: The effect of an arrival and a departure on the content of the buffer in a zero-automatic queue
built on the group Z/2Z � Z/3Z.

a ‘product form’ stationary distribution (see Theorem 5.1); whereas, in the YS model it has
only a ‘matrix product form’ stationary distribution (see [28, Section 2]) In the YS model,
obtaining the stronger ‘product form’ stationary distribution requires additional assumptions;
see [28, Section 6]. To conclude the comparison, the original flavor of the zero-automatic queue
comes from the underlying group or monoid structure. It is this algebraic foundation which
accounts for the ability to obtain the strong product form results.

4. Stability condition for a zero-automatic queue

Throughout Sections 4 and 5, we define the model as follows. Let (X, �, ν) be a plain triple.
Fix λ and µ in R

∗+ and r in B. Consider the zero-automatic queue (X, �, ν, r, λ, µ).
Let M = (Mt)t be the queue-content process, and Q the infinitesimal generator. Lemma 4.1

is a direct consequence of the strong connectivity of the graph (�, →) defined in (2.4).

Lemma 4.1. The process M is irreducible.

The aim of this section is to prove Proposition 4.1, which characterizes the stability region
of the zero-automatic queue.

Proposition 4.1. Let γ̂ be the drift of the random walk (X, ν). We have

[λγ̂ < µ] ⇐⇒ M is ergodic,

[λγ̂ = µ] ⇐⇒ M is null recurrent,

[λγ̂ > µ] ⇐⇒ M is transient.
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Consider an excursion of M from the instant t = 0 at which it is assumed to leave state 1�∗ ,
to the instant RM which corresponds to the first return to state 1�∗ . Recall that M is transient
if and only if P{RM = ∞} > 0 and ergodic if and only if E[RM ] < ∞. It is convenient to
use the following representation for M . Let A = (A0 = 0, A1, A2, . . .), where (A1, A2, . . .)

are the time points of a time-stationary Poisson process of rate λ on R+. Let NA = (NA(t))t
be the corresponding counting process and let ND = (ND(t))t be the counting process of
a time-stationary Poisson process of rate µ on R+. Let X̃ = (X̃n)n be a realization of the
random walk (X, ν) viewed as evolving on L(X, �); see (2.5). Assume that A, X̃, and ND

are mutually independent. Let (Xt )t be the continuous-time jump Markov process on the state
space L(X, �) defined by

Xt = X̃n+1 on [An, An+1).

For all t in the interval [0, RM), we have

|Mt |� = |Xt |� − ND(t). (4.1)

Here, Xt is the queue-content at time t if no service has been completed. Observe that the first
letter of Xt corresponds to the front-end of the buffer (the right-end in Figure 1), and the last
letter to the back-end (the left-end in Figure 1).

The counting process of a Poisson process satisfies a strong law of large numbers. We obtain,
a.s.,

lim
t→∞

NA(t)

t
= λ, lim

t→∞
ND(t)

t
= µ. (4.2)

We also have, a.s.,

lim
n→∞

|X̃n|�
n

= γ̂ ,

where γ̂ is the drift of the random walk (X, ν). So we have, a.s.,

lim
n→∞

|Xt |�
t

= lim
t→∞

|Xt |�
NA(t)

× NA(t)

t
= λγ̂ .

We can now prove the following result.

Lemma 4.2. If λγ̂ < µ then M is recurrent. If λγ̂ > µ then M is transient.

Proof. We show the first statement by contraposition. If M is transient then P{RM = ∞} >

0. Using (4.1) and (4.2), we obtain that a.s. on the event {RM = ∞}, we have

lim
t→∞

|Mt |�
t

= λγ̂ − µ.

To avoid a contradiction, we must have λγ̂ − µ ≥ 0. Now assume that λγ̂ > µ. Using
the independence of (Xt )t , and ND , and the regenerative properties of RM , it is easily shown
that P{for all t, |Mt |� > 0} > 0. In particular, P{RM = ∞} > 0 and M is transient. This
completes the proof.

To obtain the stronger results in Proposition 4.1, the idea is to approximate the zero-automatic
queue by a simple queue with a Markov additive arrival process, and then to use standard results
from queueing theory.
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As (Xt )t is transient (Proposition 2.1), there exists an a.s. finite T0 such that, for all t ≥ T0,
|Xt |� ≥ 1. For notational simplicity, we assume that T0 = 0. Define the random variables

Tk = inf{t | for all s ≥ t, |Xs |� ≥ k + 1}, τk = Tk+1 − Tk,

for all k ≥ 1. The RVs, Tk , are a.s. finite because (Xt )t is transient, and we have (T0 = 0) <

T1 < T2 < · · · a.s. By transience, limt Xt is a (random) infinite word on the alphabet �, let
us write it as limt Xt = U0U1U2 · · · . By definition, see Section 2, the law of U1U2 · · · is the
harmonic measure ν∞ of the random walk (X, ν). Observe that

XT −
k

= U0 · · · Uk−1 for all t ≥ Tk, Xt = U0 · · · Uk−1Yt , Yt ∈ L(X, �) \ {1�∗}.

According to Theorem 2.1, we have

P{U0 · · · Uk−1 = u0 · · · uk−1} = r̂(u0)

r̂(Next(u0))
· · · r̂(uk−2)

r̂(Next(uk−2))
r̂(uk−1)

= r̂(u0)
r̂(u1)

r̂(Next(u0))
· · · r̂(uk−1)

r̂(Next(uk−2))
,

for all u0 · · · uk−1 ∈ L(X, �). It follows that (Uk)k is a Markov chain with initial distribution
r̂ and transition matrix P given by

Pa,b =
⎧⎨
⎩

r̂(b)

r̂(Next(a))
if b ∈ Next(a),

0 otherwise,

for all a, b ∈ �. The matrix P is irreducible as a direct consequence of the strong connectivity of
the graph of successors (�, →); see (2.4). Letπ be the stationary distribution ofP characterized
by πP = π . In general, the Markov chain (Uk)k is not stationary, i.e. r̂ is different from π .
(See [23, Proposition 3.6] for a sufficient condition on (X, ν) ensuring that r̂ = π .)

Consider now the sequence (U, τ) = ((Uk, τk))k . A consequence of the above is that (U, τ)

is a Markov chain with transition function depending only on the first coordinate. According
to the classical terminology, the sequence (Tk)k is a Markov additive process (MAP).

Consider the simple queue of type MAP/M/1 with arrival process (Tk)k , and a service process
driven by N . Let (σk)k be the corresponding sequence of service times. We deduce from (4.2),
a.s. and in L1, that

lim
n→∞

1

n

n∑
i=1

(σi − τi) = 1

µ
− 1

λγ̂
.

Let Z = (Zt )t be the queue-length process of this queue. Let RZ be the first instant of return
to zero for the process Z. Applying standard results for MAP/GI/1 queues, see for instance
[2, Proposition 4.2, Chapter X], we obtain

[λγ̂ < µ] �⇒ [E[RZ] < ∞], (4.3)

[λγ̂ = µ] �⇒ [RZ a.s. finite, E[RZ] = ∞]. (4.4)

Concentrating on the mechanism of the zero-automatic queue, it is not difficult to see that

[Tk ≤ RZ < Tk+1] �⇒ [Tk ≤ RZ ≤ RM < Tk+1].
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Hence, the queue MAP/M/1 is a good approximation of the zero-automatic queue. In particular,
the two implications in (4.3)–(4.4) also hold for RM . In view of Lemma 4.2, this completes the
proof of Proposition 4.1.

Remark. The above proof does not rely in an essential way on the Markovian assumption. For
instance, an analog of Proposition 4.1 can clearly be written for a zero-automatic queue of type
GI/GI/(X, �).

5. Stationary distribution of a stable queue

5.1. The twisted traffic equations

The traffic equations, see Definition 2.2, play a central role in studying the random walk.
We now introduce equations which play a similar role for the queue.

Definition 5.1. (Twisted traffic equations.) The Twisted traffic equations (TTE) associated with
(X, �, ν, λ, µ) are the equations of the variables (η, x), where η ∈ R

∗+ and x =
(x(a))a∈� ∈ R

�+, defined by

η(λ + µ)x(a) = η2µx(a) + λν(a)x(Next(a)) + ηλ
∑

b∗d=a

ν(b)x(d) (5.1)

+ η2λ
∑

d∈Next(a)
b∗d=1X

ν(b)
x(d)

x(Next(d))
x(a).

To indicate the future role of the TTE we examine the case (X, �) = ({a}∗, {a}) considered at
the end of Section 3. Recall that there is only one possible variant for the queue M/M/({a}∗, {a})
which is equivalent to the simple M/M/1 queue. By simplifying (5.1), we obtain

ρ(λ + µ) = ρ2µ + λ. (5.2)

Compare this with the global balance equations of the M/M/1 queue, we obtain

π(n)(λ + µ) = π(n − 1)λ + π(n + 1)µ. (5.3)

By substituting π(n) = π(0)ρn in (5.3) and simplifying, we obtain (5.2).
According to Proposition 2.2, there is a unique admissible solution to the traffic equations,

which we denote by r̂ = (r̂(a))a∈� . We denote by γ̂ the drift of the random walk (X, ν).
Consider x ∈ B. Define

A(x) =
∑
a∈�

ν(a)
∑

b∈Next(a)

x(b), B(x) =
∑

a∗b∈�

ν(a)x(b), C(x) =
∑

a∗b=1X

ν(a)x(b).

It is easy to check that
A(x) + B(x) + C(x) = 1. (5.4)

This point was the crux of the argument in proving Proposition 2.4 in [22]. Observe that a
simple rewriting of (2.9) gives

γ̂ = A(r̂) − C(r̂). (5.5)

Let us investigate some properties of the solutions to the twisted traffic equations. First, if
(ρ, r) is a solution to the TTE with r ∈ B, then r belongs to B. This follows directly from the
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shape of the TTE and from the strong connectivity of the graph (�, →); see (2.4). Second, if
we set η = 1 in the TTE (5.1) and perform the obvious simplifications, then we obtain the TE
(2.7). This implies that (1, r̂) is a solution to the TTE for all λ and µ.

Lemma 5.1. Let (ρ, r), ρ ∈ R
∗+ and r ∈ B, be a solution to the TTE. We have either

(ρ, r) = (1, r̂) or

ρ = λ
∑

a∈� ν(a)r(Next(a))

µ + λ
∑

a∗b=1X
ν(a)r(b)

= λA(r)

µ + λC(r)
. (5.6)

Proof. By summing all the equations of (5.1), we obtain

ρ(λ + µ) = ρ2µ + λ
∑
a∈�

ν(a)r(Next(a)) + ρλ
∑

a∗b∈�

ν(a)r(b)

+ ρ2λ
∑

d∈Next(a)
b∗d=1X

ν(b)
r(d)

r(Next(d))
r(a)

= ρ2µ + λA(r) + ρλB(r) + ρ2λC(r).

Replacing B(r) by 1 − A(r) − C(r) in the above, we obtain

(ρ − 1)[(µ + λC(r))ρ − λA(r)] = 0.

If ρ = 1, we have seen that the TTE reduces to the TE which implies, by Proposition 2.2, that
(ρ, r) = (1, r̂). Otherwise, we must have (µ + λC(r))ρ − λA(r) = 0. This completes the
proof.

The relevant solutions to the TTE will turn out to be the ones satisfying (5.6). This leads us
to the next definition.

Definition 5.2. A solution (ρ, r) to the TTE is called an admissible solution if ρ ∈ R
∗+, r ∈ B,

and if (5.6) is satisfied.

Lemma 5.2. If λγ̂ = µ, then (1, r̂) is an admissible solution to the TTE. If (1, r) is an
admissible solution to the TTE, then r = r̂ and λγ̂ = µ.

Proof. Assume that λγ̂ = µ. We know that (1, r̂) is a solution to the TTE but we need to
check that it is admissible. By definition, it is admissible if

1 = λA(r̂)

µ + λC(r̂)
⇐⇒ λ(A(r̂) − C(r̂)) = µ.

We conclude by recalling that γ̂ = A(r̂) − C(r̂); see (5.5). Assume now that (1, r) is an
admissible solution to the TTE. As ρ = 1, the TTE reduces to the TE implying that r = r̂ .
Now replacing (ρ, r) by (1, r̂) in (5.6) yields λγ̂ = µ. This completes the proof.

More generally, admissible solutions always exist.

Lemma 5.3. There exists an admissible solution to the TTE.
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Proof. Replace η by λA(x)/(µ+λC(x)) in (5.1). The resulting equations in x can be viewed
as a fixed point equation of the type �(x) = x. The corresponding application � : (R∗+)� −→
(R∗+)� has the following form:

�(x)(a) = 1

λ + µ

[
λA(x)

µ + λC(x)

[
µx(a) + λ

∑
d∈Next(a)
b∗d=1X

ν(b)
x(d)

x(Next(d))
x(a)

]

+ λ
∑

b∗d=a

ν(b)x(d) + µ + λC(x)

A(x)
ν(a)x(Next(a))

]
, (5.7)

for a ∈ � and for x ∈ (R∗+)� . Consider x ∈ B. By summing the equations in (5.7) and using
(5.4), we obtain

∑
a∈�

�(x)(a) = 1

λ + µ
[λA(x) + λB(x) + µ + λC(x)] = 1.

Thus, we have proved that �(B) ⊂ B. The end of the proof follows very closely the proof of
Theorem 4.5 of [22]. For the sake of completeness, we recall the argument. To use a fixed point
theorem, we need to define � on a compact and convex set. The set B, which is the closure
of B, is a compact and convex subset of R

� . But the map � cannot in general be extended
continuously on B. More precisely, �(x), x ∈ B \ B, can be defined unambiguously if and
only if x(Next(u)) �= 0 for all u. For x ∈ B \ B, let �(x) ⊂ B be the set of possible limits
of �(xn), xn ∈ B, xn → x. We have extended � to a correspondence � : B � B. Clearly
this correspondence has a closed graph and nonempty convex values. Therefore, we are in the
domain of application of the Kakutani–Fan–Glicksberg theorem (see [1, Chapter 16]). The
correspondence has at least one fixed point, i.e. there exists an r ∈ B such that r ∈ �(r). Now
using the shape of the equations in (5.7) and the strong connectivity of the graph of successors
(�, →), we obtain an r ∈ B (see [22, Theorem 4.5] for details). Let ρ = λA(r)/(µ+λC(r)).
The pair (ρ, r) is an admissible solution to the TTE.

5.2. The main results

Lemma 5.4 begins to establish the link between the twisted traffic equations and the queue
M/M/(X, �).

Lemma 5.4. Let (ρ, r) be an admissible solution to the TTE. Consider the zero-automatic
queue of type (X, �, ν, r, λ, µ). Let Qr be the infinitesimal generator of the queue-content
process. Consider the measure pρ,r on L(X, �) defined by

pρ,r (an · · · a1) = ρn r(an)

r(Next(an))
· · · r(a2)

r(Next(a2))
r(a1) for all an · · · a1 ∈ L(X, �). (5.8)

We have pρ,rQr = 0. Conversely, assume there exist a ρ ∈ R
∗+ and an r ∈ B such that the

measure pρ,r defined by (5.8) satisfies pρ,rQr = 0. Then (ρ, r) is an admissible solution to
the TTE.

Proof. We have pρ,rQr = 0 if and only if, for all u ∈ L(X, �),∑
v∈L(X,�)

v �=u

pρ,r (u)Qr(u, v) =
∑

v∈L(X,�)
v �=u

pρ,r (v)Qr(v, u). (5.9)
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Denote the left- and right-hand side of the above equality by L and R, respectively. Define

Noact(a) = {b ∈ � | b ∗ a = a}.

The left-hand side of (5.9) is then given by

L =
⎧⎨
⎩

∑
a∈�

λν(a)r(Next(a)) = λA(r) if u = 1�∗ ,

pρ,r (u)(λ(1 − ν(Noact(an))) + µ) otherwise.

For u = 1�∗ , the right-hand side of (5.9) is given by

R =
∑
a∈�

ρr(a)

[
µ + λ

∑
b∗a=1X

ν(b)

]
= ρ(µ + λC(r)),

and, for u = an · · · a1, n ≥ 1,

R = λν(an)pρ,r (an−1 · · · a1) +
∑
d �=an

b∗d=an

λν(b)pρ,r (dan−1 · · · a1)

+
∑

b∈Next(an)
a∗b=1X

λν(a)pρ,r (ban · · · a1) +
∑

b∈Next(a1)

pρ,r (an · · · a1b)µ

= pρ,r (an · · · a1)

[
1

ρ

r(Next(an))

r(an)
λν(an) +

∑
d �=an

b∗d=an

r(d)

r(Next(d))

r(Next(an))

r(an)
λν(b)

+
∑

b∈Next(an)
a∗b=1X

ρλν(a)
r(b)

r(Next(b))
+

∑
b∈Next(a1)

ρ
r(b)

r(Next(a1))
µ

]
.

Now recall that b ∗ d ∈ � implies that Next(b ∗ d) = Next(d). Thus, we obtain

R = pρ,r (an · · · a1)

[
1

ρ

r(Next(an))

r(an)
λν(an) +

∑
b∗d=an

r(d)

r(an)
λν(b) − λν(Noact(an))

+
∑

b∈Next(an)
a∗b=1X

ρλν(a)
r(b)

r(Next(b))
+ ρµ

]
.

We see that for u �= 1�∗ , the equality L = R is precisely equivalent to the fact that (ρ, r)

is a solution to the TTE. For u = 1�∗ , the equality L = R is precisely equivalent to the fact
that ρ and r satisfy (5.6). Therefore, the equality L = R is precisely equivalent to the fact that
(ρ, r) is an admissible solution to the TTE. This completes the proof.

We now have all the ingredients to prove the central results of the paper.
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Theorem 5.1. Let (X, �, ν) be a plain triple. Fix λ and µ in R
∗+. Let (ρ, r) be an admissible

solution to the TTE. Consider the zero-automatic queue (X, �, ν, r, λ, µ). Denote by Mr =
(Mr(t))t the queue-content process and by Qr its infinitesimal generator. We have

[ρ < 1] ⇐⇒ [λγ̂ < µ] ⇐⇒ Mr is ergodic,

[ρ = 1] ⇐⇒ [λγ̂ = µ] ⇐⇒ Mr is null recurrent,

[ρ > 1] ⇐⇒ [λγ̂ > µ] ⇐⇒ Mr is transient.

Assume that λγ̂ < µ. The stationary distribution πρ,r of the process Mr is given by

πρ,r (an · · · a1) = (1 − ρ)pρ,r (an · · · a1) = (1 − ρ)ρnq(an) · · · q(a2)r(a1), (5.10)

for all an · · · a1 ∈ L(X, �), where q(a) = r(a)/r(Next(a)) for all a ∈ �.

Proof. Let (ρ, r) be an admissible solution to the TTE. Let pρ,r be the measure defined in
(5.8). Using the fact that

∑
a∈� r(a) = 1, we have∑

u∈L(X,�)

pρ,r (u) =
∑
n∈N

∑
u∈L(X,�)

|u|�=n

pρ,r (u) =
∑
n∈N

ρn.

Hence,
∑

u pρ,r (u) < ∞ if and only if ρ < 1. Now recall that pρ,rQr = 0 from Lemma 5.4.
It is standard (see, for instance, [4, Chapter 8]) that the process Mr is ergodic if and only if∑

u pρ,r (u) < ∞. Now, according to Proposition 4.1, Mr is ergodic if and only if λγ̂ < µ.
By combining the three equivalences, we obtain

[ρ < 1] ⇐⇒ [Mr is ergodic] ⇐⇒ [λγ̂ < µ].
The result in (5.10) holds as a direct consequence of Lemma 5.4.

Now let us turn our attention to the null recurrent case. Assume that ρ = 1. Using Lemma 5.2
and Proposition 4.1, we have

[ρ = 1] �⇒ [λγ̂ = µ] ⇐⇒ Mr is null recurrent. (5.11)

Let (ρ̃, r̃) be an admissible solution to the TTE. Using the argumentation in the forthcoming
proof of Theorem 5.2, we deduce that we must have ρ̃ = ρ = 1. Hence, we have an equivalence
on the left of (5.11). This completes the proof.

Assume that λγ̂ = µ. It follows immediately from Lemma 5.2 and Theorem 5.1 that (1, r̂)

is the unique admissible solution to the TTE. We now prove a more interesting result in the
same vein.

Theorem 5.2. Consider the same model as in Theorem 5.1. Assume that λγ̂ < µ. Then the TTE
have a unique admissible solution. In particular, there is only one variant of the zero-automatic
queue M/M/(X, �) with a product form distribution.

Proof. Let (ρ, r) and (ρ̃, r̃) be two admissible solutions to the TTE. According to
Theorem 5.1, we have ρ < 1 and ρ̃ < 1. Let π and π̃ be the respective stationary distributions
of Mr and Mr̃ . We now use the following classical result of ergodic Markov processes (see, for
instance, [4, Chapter 8, Theorem 5.1]): the stationary distribution is proportional to the time
spent in each state in an excursion of the process from s to s, for some arbitrary state s. Assume

https://doi.org/10.1239/aap/1183667618 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667618


Zero-automatic queues and product form 447

that the queue-content is 1�∗ at instant 0. Let T and T̃ be the first instant of jump of Mr and
Mr̃ , respectively. Let R and R̃ be the first return instant to 1�∗ of Mr and Mr̃ , respectively. For
all u ∈ L(X, �), we have

π(u) ∼ E

[∫ R

0
1{Mr(t)=u} dt

]
, π̃(u) ∼ E

[∫ R̃

0
1{Mr̃(t)=u} dt

]
,

where ‘∼’ stands for ‘proportional to’. For all u ∈ L(X, �) and u �= 1�∗ , it follows that

π(u) ∼ E

[∫ R

T

1{Mr(t)=u} dt

]
, π̃(u) ∼ E

[∫ R̃

T̃

1{Mr̃(t)=u} dt

]
.

And, conditioning by the values of Mr(T ) and Mr̃(T̃ ), respectively, we have, for all
u ∈ L(X, �) and u �= 1�∗ ,

π(u) ∼
∑
a∈�

ν(a)r(Next(a)) E

[
1{Mr(T )=a}

∫ R

T

1{Mr(t)=u} dt

]
,

π̃(u) ∼
∑
a∈�

ν(a)r̃(Next(a)) E

[
1{Mr̃(T̃ )=a}

∫ R̃

T̃

1{Mr̃(t)=u} dt

]
.

Observe that the generators Qr and Qr̃ differ only in the line indexed by 1�∗ . In other words,
the conditional law of (Mr(t))t∈[T ,R] on the event {Mr(T ) = a} is equal to the conditional
law of (Mr̃(t))t∈[T̃ ,R̃] on the event {Mr̃(T̃ ) = a}. Therefore, π and π̃ are obtained as linear
combinations of the same measures pa defined by

pa(u) = E

[
1{Mr(T )=a}

∫ R

T

1{Mr(t)=u} dt

]
= E

[
1{Mr̃(T̃ )=a}

∫ R̃

T̃

1{Mr̃(t)=u} dt

]
.

For n ∈ N
∗, set π(n) = π{u ∈ L(X, �) | |u|� = n}. Define π̃(n) and pa(n) accordingly.

Using the above, for all n ∈ N
∗, we have

π(n) ∼
∑
a∈�

ν(a)r(Next(a))pa(n), π̃(n) ∼
∑
a∈�

ν(a)r̃(Next(a))pa(n). (5.12)

Besides, according to (5.10) we have π(n) ∼ ρn and π̃(n) ∼ ρ̃n. In view of (5.12), we easily
conclude that we must have ρ = ρ̃. It remains to prove that r = r̃ . Let us first show that

[for all a ∈ �, q(a) = q̃(a)] �⇒ [for all a ∈ �, r(a) = r̃(a)].
We have q(a) = r(a)/r(Next(a)), for all a. We can reinterpret this as Mr = r , with r being
viewed as a column vector and with M being the matrix of dimension � × � defined by

Ma,b =
{

q(a) if b ∈ Next(a),

0 otherwise,

for all a, b ∈ �. Consequently, the matrix M is irreducible. As r has all positive entries, the
Perron–Frobenius theorem asserts that r is necessarily the Perron eigenvector of the matrix M ,
i.e. the unique (up to a multiplicative constant) eigenvector associated with the spectral radius.
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However, we also have Mr̃ = r̃ and
∑

a r(a) = ∑
a r̃(a) = 1. By uniqueness of the Perron

eigenvector, we conclude that r = r̃ .
It remains to prove that q(a) = q̃(a) for all a ∈ �. Define C(X, �) ⊂ L(X, �) by

C(X, �) = {u1 · · · uk ∈ L(X, �) | u1 ∈ Next(uk)}.

Observe that [u ∈ C(X, �)] implies that [un ∈ C(X, �) for all n]. For u = u1 · · · uk ∈
C(X, �), let q(u) = q(u1) · · · q(uk). Define q̃(u) analogously. Using (5.10), for all n ∈ N

∗
and for some constants C1, C2, we have

π(un) = C1ρ
n|u|�q(u)nr(Next(uk)), π̃(un) = C2ρ

n|u|� q̃(u)nr̃(Next(uk)). (5.13)

Moreover,

π(un) = C3

∑
a∈�

ν(a)r(Next(a))pa(u
n) and π̃(un) = C4

∑
a∈�

ν(a)r̃(Next(a))pa(u
n),

for some constants C3, C4. Therefore, π(un) and π̃(un) must grow at the same exponential
rate as a function of n. In view of (5.13), we must have

q(u1) · · · q(uk) = q̃(u1) · · · q̃(uk). (5.14)

For the remaining step, the argument depends on the form ofX. LetX = X1�· · ·�XK�XK+1�F ,
with XK+1 = �∗

K+1 (|�K+1| ≥ 0), F = F(�K+2) (|�K+2| ≥ 0), Xi being finite monoids

for 1 ≤ i ≤ K , and � = �−1
K+2 �1≤i≤K+2 �i , where �i = (Xi \ {1Xi

}) for 1 ≤ i ≤ K . For
a ∈ �i and 1 ≤ i ≤ K , Next(a) = � \ �i . For b ∈ �K+1, Next(b) = �. For c ∈ �K+2,
Next(c) = � \ {c−1}.

We first treat the case in which |�K+1|+|�K+2| ≥ 1. Then there exists an i ∈ {K+1, K+2}
such that |�i | ≥ 1. Set Gen = �K+1 � �K+2 � �−1

K+2. For all a ∈ Gen, a ∈ Next(a); thus,
we have q(a)2 = q̃(a)2. This implies that q(a) = q̃(a). Consider b ∈ � \ Gen and a ∈ Gen,
we have b ∈ Next(a), so, according to (5.14), q(b)q(a) = q̃(b)q̃(a). Hence, q(b) = q̃(b). So
q(c) = q̃(c) for all c ∈ �.

We now consider the case in which |�K+1| + |�K+2| = 0. Assume that K ≥ 3. Consider
a ∈ �1, b ∈ �2, and c ∈ �3. We have Next(a) = � \ �1, Next(b) = � \ �2, and
Next(c) = �\�3. Therefore, abc ∈ C(X, �) and bc ∈ C(X, �). Using (5.14), we deduce that
q(a)q(b)q(c) = q̃(a)q̃(b)q̃(c) and q(b)q(c) = q̃(b)q̃(c). Thus, we conclude that q(a) = q̃(a)

for all a ∈ �.
Assume now that K = 2. The above argument no longer holds. First of all, we want to

prove that
r(a)

r(�i)
= r̃(a)

r̃(�i)
for all a ∈ �i. (5.15)

Consider a, b ∈ �1 and c ∈ �2. We have Next(a) = Next(b) = �2 and Next(c) = �1.
Hence, ac ∈ C(X, �) and bc ∈ C(X, �). Using (5.14), we have q(a)q(c) = q̃(a)q̃(c) and
q(b)q(c) = q̃(b)q̃(c). This implies that q(a)/q(b) = q̃(a)/q̃(b), which is equivalent to (5.15).
Let

R(a) = r(a)

r(�i)
= r̃(a)

r̃(�i)
if a ∈ �i.
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Now we sum the TTE corresponding to all the elements of �1 and perform the simplifications
implied by (5.15). For instance, for (ρ, r), we obtain

ρ(λ + µ)r(�1) = ρ2µr(�1) + λν(�1)r(�2) + ρλ
∑

a∗b∈�1

ν(a)r(b)

+ ρ2λ
∑
a∈�1

∑
b,d∈�2

b∗d=1X2

ν(b)
r(d)

r(�1)
r(a)

= ρ2µr(�1) + λν(�1)r(�2) + ρλr(�1)
∑

a∗b∈�1

ν(a)R(b)

+ ρ2λr(�2)
∑

b,d∈�2
b∗d=1X2

ν(b)R(d).

Let B1 = ∑
a∗b∈�1

ν(a)R(b) and C2 = ∑
a,b∈�2, a∗b=1X2

ν(a)R(b). Using the fact that
r(�2) = 1 − r(�1), we obtain

r(�1) = λν(�1) + ρ2λC2

ρ(λ + µ) − ρ2µ + λν(�1) − ρλB1 + ρ2λC2
. (5.16)

All the terms on the right-hand side of (5.16) are unchanged when we write the corresponding
equation for r̃ . Thus, r(�1) = r̃(�1). In view of (5.15), we deduce that r(a) = r̃(a) for all
a ∈ �. This completes the proof.

When the triple is not plain, the TTE may have several admissible solutions. This is, for
instance, the case for the triple (F (a), {a, a−1}, { 1

2 , 1
2 }) as discussed in Section 6.2.4.

Remark 5.1. In the case ρ < 1, if the boundary condition is chosen according to r ′, where
(ρ, r ′) is not a solution to the TTE, then the stationary distribution of Mr ′ exists (Proposition 4.1).
However, we do not know how to compute it exactly. See Remark 3.1 for a justification of the
form of the boundary condition.

5.2.1. Poisson departure processes. The celebrated Burke’s theorem states that the departure
process from a stable M/M/1 queue is a Poisson process of the same rate as the arrival process. A
nice consequence of Theorem 5.1 is that an analog of Burke’s theorem holds for zero-automatic
queues.

In a zero-automatic queue, ‘departures’ occur both at the front-end and at the back-end of
the buffer. Here we consider only the front-end departures, i.e. the ones corresponding to
service completions and not to buffer cancellations. Let M = (M(t))t be the queue-content
process of some zero-automatic queue M/M/(X, �). A departure is an instant of jump of M

corresponding to a jump of the type un · · · u1 → un · · · u2 for u = un · · · u1 ∈ L(X, �)\{1�∗}.
When u = an, a ∈ � and n ≥ 1 (the case (3.1)–(3.3) in Definition 3.1), special care must be
taken to define departures. The jumps of type an → an−1 which are departures occur at a rate
µ. The departure process is the point process of departures.

Theorem 5.3. The model is the same as in Theorem 5.1. Assume that λγ̂ < µ. Let (ρ, r)

be an admissible solution of the TTE. Consider the zero-automatic queue (X, �, ν, r, λ, µ).
The stationary departure process is a Poisson process of rate ρµ. Furthermore, for all t , the
queue-content at time t is independent of the departure process up to time t .
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Proof. The simplest proof of Burke’s theorem uses reversibility and is due to Reich; see,
e.g. [17] for details. We use a similar argument here.

Let Mr be the stationary queue-content process. Its marginal distribution at a given instant
is πρ,r given in (5.10). Let D be the corresponding departure process. By definition, the
instantaneous rate of D is c(t) = µ if Mr(t) �= 1�∗ and c(t) = 0 otherwise.

Now let us consider the time-reversed point process D̃. The process D̃ corresponds to the
instants of ‘right-increase’ of the time-reversed process (M̃r (t))t . Therefore, the instantaneous
rate c̃(t) of D̃ is as follows. If M̃r(t) = an · · · a1 ∈ L(X, �) \ {1�∗}, we have

c̃(t) =
∑

a∈Next(a1)

πρ,r (an · · · a1a)

πρ,r (an · · · a1)
µ =

∑
a∈Next(a1)

ρr(a)

r(Next(a1))
µ = ρµ, (5.17)

and if M̃r(t) = 1�∗ , we have

c̃(t) =
∑
a∈�

πρ,r (a)

πρ,r (1�∗)
µ =

∑
a∈�

ρr(a)µ = ρµ.

We conclude that D̃ is a Poisson process of rate ρµ. As Poisson processes are preserved by
time-reversal, D is also a Poisson process of rate ρµ. Also, using the Markov property of
Poisson processes, M̃r(t) is independent of the process D̃ after time t . Under time-reversal,
this translates as Mr(t) is independent of the departure process D up to time t . This completes
the proof.

Here are some additional comments on Theorem 5.3.

(1) The infinitesimal generator of the time-reversed process M̃r is certainly not the infinites-
imal generator of a zero-automatic queue. This was already the case for the G-queue.
However, this is in contrast with the situation for the M/M/1 queue.

(2) For a ∈ �, the departure process Da of customers of class a is not a Poisson process.

(3) Equation (5.17) corresponds to the condition defining ‘quasi-reversibility’ in Chao et al.
[6, Definition 3.4].

(4) The saturation principle of Baccelli and Foss [3] holds for many classical queueing
systems. We provide a brief outline of it here.

Consider a queueing system with an infinite capacity buffer. Let µ0 be the departure
rate in the saturated system in which an infinite number of customers are stacked in the
buffer. Now, if the actual arrival rate in the system is λ < µ0, then the system is stable,
and the departure rate is λ. A dual presentation of the same principle is as follows. Let
λ0 be the growth rate of the buffer in the blocked system where the server has been shut
down. If the actual service rate in the system is µ > λ0, then the system is stable, and
the departure rate is λ0.

Zero-automatic queues do not satisfy the saturation principle. This can be viewed
using the following inequalities (to be deduced from Theorem 5.3):

λγ̂ ≤ ρµ < µ,

where ρµ is the actual equilibrium departure rate µ is the departure rate from the saturated
system, and λγ̂ is the growth rate of the buffer in the blocked system.
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5.3. Quasi-birth-and-death processes

Quasi-birth-and-death (QBD) processes appear naturally in the modelling of several queue-
ing and communication systems. As such, they have been extensively studied; see, for instance,
the monographs [20], [24]. The results in Section 5.2 can be put in perspective by considering
the relation between zero-automatic queues and QBD processes. To this end, we define an
‘approximated’ and quite simplified version of the zero-automatic queue. The idea is to keep
track of the queue-content only through the number of customers and the class of the back-end
customer. Clearly a difficulty arises: if a cancellation occurs at the back-end of the buffer,
there is no way to retrieve the class of the new back-end customer. This missing information
is compensated as follows: the class is chosen at random according to the relevant conditional
law.

Consider a zero-automatic queue. The notations and assumptions are the same as those in
Theorem 5.1. In particular (ρ, r) is an admissible solution to the TTE. We assume that λγ̂ < µ.
Recall that Qr is the infinitesimal generator of the queue-content on the state space L(X, �),
and that πρ,r given by (5.10) is its stationary distribution. Consider the following application:

f : L(X, �) −→ {0} ∪ (N∗ × �),

un · · · u1 �−→ (n, un),

1�∗ �−→ 0.

Define the infinitesimal generator Q̃r on the state space {0} ∪ (N∗ × �) by

Q̃r (x, y) =
∑

u∈f −1(x)

πρ,r (u)

πρ,r (f −1(x))

∑
v∈f −1(y)

Qr(u, v).

Using (5.10) and simplifying, we obtain

Q̃r ((n, a); (n − 1, b)) = λ
∑

c∗a=1X

ν(c)
r(b)

r(Next(a))
1{b∈Next(a)} .

Define a total order on {0}∪ (N∗ ×�) as follows: 0 is the smallest element and (n, a) ≤ (m, b)

if n < m or (n = m, a � b), where ‘�’ is some total order on �. A couple of lines of
computation is required to check the following. If rows and columns are ranked according to
the above order, then the infinitesimal generator Q̃r is block tridiagonal of the form

Q̃r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a A(r) 0 0

B A1 A0 0
. . .

0 A2(r) A1 A0
. . .

0 0 A2(r) A1
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where a is of dimension 1 × 1, A(r) is of dimension 1 × �, B is of dimension � × 1, and
A0, A1, and A2(r) are of dimension � × �. Furthermore, the entries of B, A0, and A1 can be
expressed as a function of λ, µ, and ν, and the entries of A(r) and A2(r) can be expressed as a
function of λ, µ, ν, and r .
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According to the terminology in Neuts [24], Q̃r is the infinitesimal generator of a QBD
process with complex boundary behavior. For any such ergodic process, the shape of the
stationary distribution is known; see, e.g. [24, Chapter 1.5]. Thus, we assume that Q̃r is
ergodic and we apply the general results to obtain the stationary distribution π̃ , given by

π̃(0) = y, for all n ≥ 1, for all a ∈ �, π̃(n, a) = (xRn−1)(a), (5.18)

where

A0 + RA1 + R2A2(r) = 0, (5.19)

ay + xB = 0, yA(r) + x(A1 + RA2(r)) = 0, (5.20)

y + x(I − R)−1(1, . . . , 1)T = 1. (5.21)

In (5.19)–(5.21), R is a matrix of dimension � × � and is the minimal nonnegative solution to
the first equation. The pair (y, x), where y is a scalar and x is a row vector of dimension �, is
the unique positive solution to (5.20) and (5.21).

The stationary distribution π̃ given in (5.18) has a matrix product form. This matrix product
form is said to be a product form (this is called level-geometric with parameter 0 in [10]) if
π̃(n, a) = ηn−1π̃(1, a) = ηn−1x(a), for some η ∈ (0, 1). Clearly, a necessary and sufficient
condition for this to hold is xR = ηx. Assume that this last equality holds. By multiplying
(5.19)–(5.21) by x, and by simplifying the equations, we obtain

x(A0 + ηA1 + η2A2(r)) = 0, (5.22)

ay + xB = 0, yA(r) + x(A1 + ηA2(r)) = 0, (5.23)

y + (1 − η)−1x(1, . . . , 1)T = 1. (5.24)

Now let us replace x by cr , where c ∈ R, and η by ρ in (5.22)–(5.24). Equation (5.22) yields
precisely the TTE (5.1) for the pair (ρ, r). The other equations in (5.23) and (5.24) yield exactly
y = 1 − ρ and c = ρ(1 − ρ). We conclude that the stationary distribution of Q̃r is given by

π̃(0) = 1 − ρ, for all n ≥ 1, for all a ∈ �, π̃(n, a) = (1 − ρ)ρnr(a). (5.25)

This is coherent with the form of πρ,r given in (5.10). Thus, the above provides an a posteriori
and partial justification for the shape of πρ,r . It also provides further insight into the central
role of the TTE.

Classically in QBD theory [20], [10], the boundary condition is modified to obtain a product
form stationary distribution. Here, the situation is more complex as both the boundary condition
and the A2 matrix are modified in the quest for the product form. Observe also that the result
of Theorem 5.1 is much deeper than (5.25). In particular, there is a priori no way to retrieve
the result on Qr from the one on the simplified generator Q̃r .

6. Extension and examples

6.1. Zero-automatic queues built on zero-automatic pairs

All the results in Sections 4 and 5 are derived for queues built on plain monoids not isomorphic
to Z (Definition 2.1). However, the zero-automatic queue built on Z is interesting in itself
(it corresponds to Gelenbe’s G-queue, see Section 3) and exhibits new phenomena. It is therefore
worthwhile to determine a subset of the above results which remain true for this queue. In
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fact, we define a more general framework and introduce the notion of zero-automatic triples,
extending the plain triples of Definition 2.1.

Let (X, ∗) be a group or monoid with a set of generators �. Denote by π : �∗ → X the
monoid homomorphism which associates to a word a1 · · · ak of �∗ the element a1∗· · ·∗ak of X.
A language L of �∗ is a cross-section of X if the restriction of π to L is a bijection. The inverse
map � : X → L is then called the normal form map. Define the language L(X, �) ⊂ �∗ as
in (2.2). Define the sets

Left(a) = {b ∈ � | b ∗ a /∈ � ∪ {1X}}, Right(a) = {b ∈ � | a ∗ b /∈ � ∪ {1X}},
for all a ∈ �. In the case of a plain monoid with natural generators, we have Left = Right =
Next; see (2.3).

Definition 6.1. Let (G, ∗) be a group with a finite set of generators �. We say that the pair
(G, �) is zero-automatic if L(G, �) is a cross-section of G.

Such pairs were first considered by Stallings [27] under another name. It can be proved,
using the results from Stallings, that G is necessarily isomorphic to a plain group. However,
the set � may be larger than a natural (see Section 2.2) set of generators of the plain group.
Now let us extend the notion to monoids. To obtain good properties it is necessary to choose a
more complex definition, first proposed in [22] and recalled below.

Definition 6.2. Let (M, ∗) be a monoid with a finite set of generators �. Assume that L(M, �)

is a cross-section. Let � : M → L(M, �) be the corresponding normal form map. Assume,
for all u ∈ M such that �(u) = u1 · · · uk and for all a ∈ �, that

�(u ∗ a) =

⎧⎪⎨
⎪⎩

u1 · · · uk−1 if uk ∗ a = 1M,

u1 · · · uk−1v if uk ∗ a = v ∈ �,

u1 · · · uka otherwise,

�(a ∗ u) =

⎧⎪⎨
⎪⎩

u2 · · · uk if a ∗ u1 = 1M,

vu2 · · · uk if a ∗ u1 = v ∈ �,

au1 · · · uk otherwise.

(6.1)

Furthermore, for all a, b ∈ � such that a ∗ b ∈ �, assume that

Left(a ∗ b) = Left(a), Right(a ∗ b) = Right(b). (6.2)

Then we say that the pair (M, �) is zero-automatic.

In the group case M = G, (6.1) and (6.2) are implied by the fact that the language L(G, �)

is a cross-section.
The pairs formed by a plain monoid and natural generators are zero-automatic. However,

in contrast with the group case, plain monoids do not exhaust the family of monoids appearing
in zero-automatic pairs. For instance, (M = 〈a, b | ab = 1〉, {a, b}) is a zero-automatic pair,
but the monoid M is not isomorphic to a plain monoid. This example is studied further in
Section 6.2.

Definition 6.3. A triple (X, �, ν) is said to be zero-automatic if

(i) (X, �) is a zero-automatic pair with X infinite;

(ii) ν is a probability measure whose support is included in � and generates X.
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Any plain triple, see Definition 2.1, is zero-automatic. Observe that (X, ν) may not be
transient in a zero-automatic triple. Also, the graph of succesors (�, →) defined in (2.4) may
not be strongly connected.

Consider a zero-automatic triple (X, �, ν), λ, µ ∈ R
∗+, and r ∈ B (see (2.6)). The zero-

automatic queue of type (X, �, ν, r, λ, µ) is defined exactly as in Definition 3.1. However, the
definition of the TE is modified as follows:

x(a) = ν(a)x(Right(a)) +
∑

b∗d=a

ν(b)x(d) +
∑

d∈Left(a)
b∗d=1X

ν(b)
x(d)

x(Right(d))
x(a).

The definition of the TTE is also modified as follows:

η(λ + µ)x(a) = η2µx(a) + λν(a)x(Right(a)) + ηλ
∑

b∗d=a

ν(b)x(d)

+ η2λ
∑

d∈Left(a)
b∗d=1X

ν(b)
x(d)

x(Right(d))
x(a).

We use the convention described after (2.6) to define a solution to the TTE belonging to B. The
TE do not necessarily have a unique solution, in contrast with Proposition 2.2. The TTE also
do not necessarily have a unique solution and a solution r ∈ B to the TTE does not necessarily
belong to B. This is in contrast with Theorem 5.2. An analog of Lemma 5.1 holds: if (ρ, r),
r ∈ B, is a solution to the TTE then either (ρ, r) = (1, r) and r is a solution to the TE, or

ρ = λA(r)

µ + λC(r)
. (6.3)

We can now state the following result. Observe in particular that there may be several variants
(corresponding to different rs) of the zero-automatic queue with a product form.

Proposition 6.1. Let (X, �, ν) be a zero-automatic triple. Let (ρ, r), r ∈ B, be a solution to
the TTE satisfying (6.3). Assume that r(a) > 0 implies that r(Right(a)) > 0, for all a ∈ �.
Define �̃ = {a ∈ � | r(a) > 0} and L̃ = L(X, �) ∩ �̃∗. Consider the zero-automatic queue
of type (X, �, ν, r, λ, µ). Let Qr be the infinitesimal generator of the queue-content process
Mr . Consider the measure pρ,r on L̃ defined by

pρ,r (an · · · a1) = ρn r(an)

r(Right(an))
· · · r(a2)

r(Right(a2))
r(a1),

for all an · · · a1 ∈ L̃. We have pρ,rQr = 0. Besides, we have

[λγ̂ < µ] �⇒ [ρ < 1] �⇒ Mr is ergodic on L̃,

[λγ̂ > µ] �⇒ [ρ > 1] �⇒ Mr is transient on L̃.

When λγ̂ < µ, the stationary distribution of Mr is πρ,r = (1 − ρ)pρ,r . The corresponding
stationary departure process is a Poisson process of rate ρµ.

The proofs of Lemma 5.4, Theorem 5.1, and Theorem 5.3 are easily adapted to obtain
Proposition 6.1.
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6.2. Five illustrating examples

We study five particular zero-automatic queues to illustrate the above results. We focus on
three aspects: the stability region, the value of the load ρ, and the existence of several stationary
regimes (for the queues built on zero-automatic triples instead of plain triples). When the model
is simple enough, the TTE can be solved explicitly to obtain closed form formulas as for the
group Z/3Z � Z/3Z discussed below. In all cases, and like any set of algebraic equations, the
TTE can be solved with any prescribed precision.

In this section we also aim to convey the idea that zero-automatic queues ought to be pertinent
in several modeling contexts, due to the flexibility in their definition. The five examples below
should be interpreted having in mind the different ‘types’ of tasks detailed in the introduction
(classical, positive/negative, ‘one equals many’, and ‘dating agency’).

6.2.1. The free product Z/3Z � Z/3Z. Consider the plain triple (Z/3Z � Z/3Z, � =
{a, a2, b, b2}, ν), where ν(a) = ν(b) = p and ν(a2) = ν(b2) = q = 1

2 − p, for p ∈ (0, 1
2 ).

In [23, Section 4.2], the drift was computed and is given by

γ̂ = − 1
4 + 1

4

√
16p2 − 8p + 5.

According to Theorem 5.2, in the stable case, the associated TTE have a unique admissible
solution that we denote by (ρ, r). Solving the TTE, we obtain

r̂(a) = r̂(b) = 4λp2 − 2λp + 4pµ + λ

4(4λp2 − 2λp + µ + λ)
= −4pqλ + λ + 4pµ

4(−4pqλ + λ + µ)
,

r̂(a2) = r̂(b2) = 1
2 − r̂(a),

ρ = 2
4λ2p2 − 2λ2p + λµ + λ2

4λ2p2 − 2λ2p + 4λµ + λ2 + 4µ2 .

In Figure 4(a), we show the stability region of the queue. The abscissa is p and the ordinate is
λ/µ. In Figure 4(b), we plot the load ρ as a function of p and t = λ/µ, for p ∈ (0, 1

2 ) and
λ/µ ∈ (0, min(1/γ̂ , 6)). Hence, ρ is always smaller or equal to 1; see Theorem 5.1.

1.0

0.8

0.6

0.4

0.2

0.0
0.5 0.4 0.3 0.2 0.1 5 4 3 2 1 0

ρ

p t

(b)(a)
6

5

4

3

2

1

0.0
0

0.1 0.2 0.3 0.4 0.5
p

λ
µ

Unstable zone

Zone of stability

Figure 4: Z/3Z � Z/3Z: The stability region (a) and the load ρ (b).
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Figure 5: The queue M/M/(N � B, �) with a in white and b in dark gray.
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Figure 6: N � B: The stability region (a) and the load ρ (b).

6.2.2. The free product N � B. Consider the plain triple ({a}∗ � 〈b | b2 = b〉, � = {a, b}, ν),
where ν(a) = p and ν(b) = 1 − p for p ∈ (0, 1). In Figure 5, we illustrate the corresponding
buffering mechanism. The unique solution r̂ of the TE is r̂(c) = p, r̂(b) = 1 − p. The drift
of the random walk is γ̂ = (2 − p)p. According to Theorem 5.2, the associated TTE have
a unique admissible solution that we denote by (ρ, r). Solving the TTE, we find that ρ is a
solution of f (Y ) = 0, where

f (Y ) = µ2Y 3 + (µ2 + µλ + λµp)Y 2 + (λ2p + λµp)Y − λ2p2 + λ2p.

The relation between r(b) and ρ is given by ρ = [r(b)(1 − p) + p]λ/µ.
In Figure 6(a), we show the stability region of the queue. The abscissa is p and the ordinate

is λ/µ. In Figure 6(b), we plot the load ρ as a function of p and t = λ/µ, for p ∈ (0, 1) and
λ/µ ∈ (0, min(1/γ̂ , 3)). Hence, ρ is always smaller or equal to 1; see Theorem 5.1.

6.2.3. The free product N � Z � B. Consider the queue associated with the plain triple ({a}∗ �

F (b) � 〈c | c2 = c〉, � = {a, b, b−1, c}, ν), where ν(a) = p, ν(b) = ν(b−1) = q/2, and
ν(c) = 1 − p − q with p, q, p + q ∈ (0, 1). The unique solution r̂ of the associated TE is

r̂(b) = r̂(b−1) = 1

2
−

√
1 − q2

2(1 + q)
, r̂(a) = p(1 − r̂(b))

1 − r̂(b) − qr̂(b)
, r̂(c) = 1−r̂(a)−2r̂(b).
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Figure 7: Stability region of the M/M/1/(N � Z � B, �) queue.

Applying Theorem 2.1, the drift of the random walk is given by γ̂ = p + (1−p −q)(1− r̂(c))

+ q(1 − 2r̂(b)). We obtain the plot in Figure 7 in which the stability region is the region below
the surface.

6.2.4. The free group Z and the free product N � Z. Consider the zero-automatic queue
(F (a), {a, a−1}, ν, r, λ, µ), where ν is a nondegenerate probability measure on � = {a, a−1}.
In Figure 8, we illustrate the corresponding buffering mechanism. Such a mechanism is
similar to the one of Gelenbe’s G-queue. The underlying triple (F (a), {a, a−1}, ν) is not plain
(Definition 2.1), but it is zero-automatic (Definition 6.3). Here the graph of successors (�, →),
see (2.4), is not connected. Also, the random walk (X, ν) is not transient but is null-recurrent
when ν(a) = ν(a−1) = 1

2 . The drift of the random walk is easily computed and given by

γ̂ = |ν(a) − ν(a−1)|.
Assume first that ν(a) = ν(a−1). Solving the TTE, we find that (λ/(2µ + λ), r) is a solution
for all r ∈ B. This means that the queue is stable and has a product form distribution under any
boundary condition. This interesting behavior can be traced back to the fact that the random
walk (X, ν) is not transient.

Now assume that ν(a) �= ν(a−1). There are two possible solutions for the TTE, given by

(ρ1, r1) =
(

λν(a)

µ + λν(a−1)
; (1, 0)

)
, (ρ2, r2) =

(
λν(a−1)

µ + λν(a)
; (0, 1)

)
. (6.4)

Figure 8: The M/M/1/(F (a), �) queue with a in white and a−1 in light gray.
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Figure 9: F(a) and F(a) � {c}∗: the loads ρ, ρ, and ρ plotted as a function of λ/µ.

The two solutions correspond to extremal values for r , which means that in the buffer there is
only one type of customer with probability 1, i.e. if r1 = (1, 0) then there is only a in the buffer,
if r2 = (0, 1) then there is only a−1 in the buffer. Here we recover a model very close to the
classical G-queue. Let ρ = min{ρ1, ρ2} and ρ = max{ρ1, ρ2}, and define r and r accordingly.
We have

ρ < 1, [ρ < 1] ⇐⇒ [λγ̂ < µ].
The stationary distribution of the zero-automatic queue (F (a), �, ν, r, λ, µ) is

πr(1�∗) = 1 − ρ, πr(x
n) = (1 − ρ)ρn, for all n ≥ 1, (6.5)

where x = a if ν(a) < ν(a−1), and x = a−1 if ν(a) > ν(a−1). When λγ̂ < µ, the zero-
automatic queue (F (a), �, ν, r, λ, µ) also has a product form stationary distribution of the
form (6.5) with ρ instead of ρ.

Consider now a boundary condition r ∈ B. In particular, r �= r1, r �= r2, so that the
stationary distribution is not of product form. However, if λγ̂ < µ, then the stationary
distribution πr can still be determined explicitly by solving the global balance equations. It is
given by

πr(1�∗) =
(

1 + r(a)
ρ1

1 − ρ1
+ r(a−1)

ρ2

1 − ρ2

)−1

,

πr(a
n) = πr(1�∗)r(a)ρn

1 , πr(a
−n) = πr(1�∗)r(a−1)ρn

2 , (6.6)

where ρ1 and ρ2 are defined in (6.4). The expression in (6.6) is ‘almost’ of product form. So,
why do we prefer an expression like the one in (6.5)? The point is that the departure process
associated with a stationary distribution of type (6.6) is not Poisson, as opposed to the one
associated with (6.5). Having a Poisson departure process is crucial to build product form
networks; see [9].

To summarize, when λγ̂ < µ, there are two variants of the zero-automatic queue with a
product form. We would like to argue that one of the two makes more ‘physical’ sense. To
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this end, consider the plain triple (F (a) � {c}∗, {a, a−1, c}, ν) with 0 < ν(c) � 1. According
to Theorem 5.2, there exists a single variant of the queue with a product form. Let ρ be the
corresponding load. We want to determine which one of the two solutions in (6.4) is recovered
when letting ν(c) tend to zero. As the TTE are difficult to solve explicitly, we content ourselves
with numerical evidence. In Figure 9, we plot ρ, ρ, and ρ as functions of λ/µ, for ν(c) = 0.01
and ν(a) = p = 3

5 . We see that ρ tends to the larger solution ρ. The two vertical lines delimit
two stability regions (with and without {c}). They have an abscissa equal to the inverse of the
drift γ̂ −1 for the random walk on F(a) � {c}∗ and F(a) respectively.

6.2.5. The monoid M = 〈a, b | ab = 1〉. Consider the bicyclic monoid M = 〈a, b | ab = 1〉.
Here we have a new ‘type’of task. It is close to the positive/negative type but with no symmetry
between the positive and negative customers. Consider the triple (M, � = {a, b}, ν), with
ν(a) = p ∈ (0, 1), ν(b) = 1 − p. This is a zero-automatic triple but not a plain triple. In
particular, the graph of successors (�, →) is not strongly connected. The drift of the random
walk is easily computed and given by γ̂ = |1 − 2p|. Solving the associated TTE, we find that
there is one solution if p ≤ 1

2 and two solutions if p > 1
2 . More precisely, these two solutions

are

(ρ1, r1) =
(

λ(1 − p)

µ + λp
; (0, 1)

)
for all p,

(ρ2, r2) =
(

λp

µ + λ(1 − p)
;
(

2p − 1

p
,

1 − p

p

))
if p >

1

2
.

We have

if p ≤ 1
2 , [ρ1 < 1] ⇐⇒ [λγ̂ < µ],

if p > 1
2 , and if ρ1 < 1, [ρ2 < 1] ⇐⇒ [λγ̂ < µ].

In Figure 10, we show the solutions to the TTE as a function of p and λ/µ.

λ
µ

ρ
2>1

ρ
1<1

ρ
1<1

ρ
2 1<

ρ
1<1

>ρ
1 1

10

8

6

4

2

0.2 0.4 0.6 0.8 1.0
0
0.0

p

Figure 10: F(a): the solutions to the TTE.
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Figure 11: 〈a, b | ab = 1〉 and 〈a, b | ab = 1〉�{c}∗: the loads ρ and ρ1 (part (a)) and ρ and ρ2 (part (b))
plotted as functions of ν(a) and t = λ/µ.

To discriminate between (ρ1, r1) and (ρ2, r2), we proceed as for F(a). Consider X =
〈a, b | ab = 1〉 � {c}∗. Let ν(a) = p, ν(b) = q, and ν(c) = 1 − p − q with p, q > 0,
p + q < 1. The triple (X, {a, b, c}, ν) is zero-automatic. The TE can be solved explicitly. It
turns out that there is a unique solution r̂ which is determined by

r̂(a) = p(1 − r̂(b))

1 − pr̂(b)
, r̂(b) = 1 − √

1 − 4pq

2p
, r̂(c) = 1 − p − q

1 − pr̂(b)
.

According to Theorem 2.1, the corresponding drift is γ̂ = √
1 − 4pq. Now, solving the TTE,

we find a unique admissible solution (ρ, r) given by

ρ = λ(1 − pr(b))

µ + λpr(b)
, r = r̂ .

We have ρ < 1 if and only if µ > λγ̂ = λ
√

1 − 4pq. Let us observe what happens when
ν(c) tends to zero. When p < 1

2 , there is only one solution (ρ1, r1) to the TTE of the first case
(without {c}). And, as expected, (ρ, r) tends to (ρ1, r1) when ν(c) → 0. When p > 1

2 , there
are two possible solutions (ρ1, r1) and (ρ2, r2) to the TTE of the first case. In this case, (ρ, r)

tends to (ρ2, r2) when ν(c) → 0. In Figure 11(a), we plot ρ and ρ1 as functions of p and λ/µ,
for ν(c) = 0.01. In Figure 11(b), we plot ρ and ρ2.
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