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Multiplication is to addition as addition is to what?

HOWARD SPORN

1.  A new operation
When children are first taught about multiplication of the natural

numbers, it is usually presented as repeated addition. Later, learning about
raising to an exponent is presented as repeated multiplication. Then the
following analogy is obvious: addition is to multiplication as multiplication
is to raising to an exponent. An interesting question is to ask what happens if
we go in the other direction. That is, multiplication is to addition as addition
is to what? In this paper, we will answer this question, and show that there
are several possible operations that could be used to answer the question.
Some of them will be presented in connection with algebraic semirings. A
semiring is a set, together with two operations, semiring addition and
semiring multiplication, satisfying certain properties. We will define several
semirings, such that the semiring multiplication is ordinary addition. In each
case, the semiring addition will then be an answer to the question in the title
of this paper.

In the course of our study, we will define the terms semiring, log
semiring, tropical semiring, hyperoperations, and zeration. Much of this
material has been done elsewhere. However, I believe that this is the first
paper in which the various answers to the question in the title of this paper
have been gathered together in one place. Much of this material has already
been used in applied mathematics. Original to this paper will be a proof that
a log semiring can be extended to a field, and that this field is isomorphic to
the field of real numbers under ordinary addition and multiplication. Fields
are important because, among other reasons, they allow the usual four
operations, addition, subtraction, multiplication, and division.

2.  Pre-addition in terms of logarithms
At first, it would appear that there is no operation that answers the

question in the title of this paper. Suppose there were such an operation. Let
us call the operation ‘pre-addition’, and represent it with the symbol . If
repeated pre-addition were ordinary addition, we would expect for all :

⊕
a

3 + a = a ⊕ a ⊕ a (1)

 2 + a = a ⊕ a (2)

 1 + a = a. (3)
This last equation is obviously impossible for ordinary addition. So it
appears that our task is also impossible [1].

However, we do not despair, and instead press on. In a recent blog entry
[2], Kasper Müller takes a slightly different approach to the problem. He
argues that the operation we seek should satisfy a distributive law of
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ordinary addition over pre-addition, analogous to the fact that multiplication
is distributive over addition. That is, we want

a + (b ⊕ c) = (a + b) ⊕ (a + c) . (4)
In addition, Müller reasons that since the natural logarithm changes
multiplication into addition, analogously the natural logarithm ought to
change addition into pre-addition. That is, we want

ln (a + b) = ln a ⊕ ln b. (5)
Furthermore, he argues that the operation should be commutative and
associative. He then introduces the operation:

a ⊕ b = ln (ea + eb) . (6)
where  and b are real numbers.a

First, it is obvious that this operation is commutative, and it is easy to
check that it is also associative. That is , and

.
a ⊕ b = b ⊕ a

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c

The proof of the distributive law (4) is simple:

a + (b ⊕ c) = a + ln (eb + ec) = lnea + ln(eb + ec) = ln[ea(eb + ec)]
= ln(ea+ b + ea+ c) , as desired.= (a + b) ⊕ (a + c)

The logarithm law (5) is easy to prove, but note that it only works if  and
are positive.

a b

Now it is interesting to reconsider the problem discussed above in (1),
(2) and (3). Using (6), and the fact that pre-addition is associative, we find
that

a ⊕ a ⊕ a = ln (ea + ea + ea) = ln (3ea) = ln 3 + a.

Thus ln 3 + a = a ⊕ a ⊕ a.
And analogously, we can show ln 2 + a = a ⊕ a

ln 1 + a = a.

We see that they are similar to (1), (2) and (3), but slightly different.

Since our pre-addition operation is commutative and associative, a
natural question to ask next is whether there is an identity element. Assume
there is an identity element, and call it . Then, for all , . By (6),
this becomes . Raising  to both sides, we get , and
therefore . However, there is no real number  satisfying this. Thus,
if we want an identity element, we must extend the real numbers to include
the ‘number’ , since . Then the identity element of  is .

k a a ⊕ k = a
ln(ea + ek) = a e ea + ek = ea

ek = 0 k

−∞ e−∞ = 0 ⊕ −∞
Of course, the base of the natural logarithm is the number . We can

generalise what Müller did, and define a pre-addition operation using any
legal base of logarithm. That is, if  and  are real numbers, and  is a

e

a c b ≠ 1

https://doi.org/10.1017/mag.2023.11 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2023.11


86 THE MATHEMATICAL GAZETTE

positive real number, we define  by⊕b

a ⊕b c = logb (ba + bc) . (7)

It is easy to show that this operation is commutative and associative, and
that it satisfies the analogues of (4) and (5):

a + (c ⊕b d) = (a + c) ⊕b (a + d) . (8)

 logb (a + c) = logb a ⊕ logb c if a, c > 0. (9)
Again the question of an identity element arises. It turns out that if
then the identity element of  is , and if  then the identity
element is . Both are easy to show.

b > 1
⊕b −∞ 0 < b < 1

∞

3.   Rings, semirings and fields
At this point, let us pause, review the definitions of field and of ring,

and introduce the definition of semiring. A ring [3, p. 34] is a set of
elements along with two binary operations, the ring addition and the ring
multiplication, such that it is an abelian group under the addition (therefore
addition is commutative and associative, there is an additive identity
element, and every element has an additive inverse), the multiplication is
associative, there is a multiplicative identity element, and the multiplication
is distributive over the addition. An example of a ring is the set of integers
under ordinary addition and multiplication.

A semiring [4, 5, 6] is similar to a ring, except that not every element
needs to have an additive inverse. Thus the addition is commutative,
associative, and has an identity element, the multiplication is associative and
has an identity element, and the multiplication is distributive over the
addition. Furthermore, the additive identity annihilates any element of the
semiring; that is, if  is any element of the semiring and 0 is the additive
identity, then . Two examples of semirings are the non-
negative integers and the non-negative real numbers, both under ordinary
addition and multiplication.

a
a · 0 = 0 · a = 0

A field [3, p. 83] is a ring in which the multiplication is commutative
and every element except the additive identity has a multiplicative inverse.
Therefore, the field with the additive identity removed is an abelian group
under the multiplication. Two examples of fields are the real numbers and
the complex numbers, both under ordinary addition and multiplication.

In general, we will use the symbol ⊕ to represent the ring (or semiring, or
field) addition, and ⊗ to represent the ring (or semiring, or field)
multiplication. We will use the symbol  to represent the set of real numbers.R

4.  Log semiring
Let us return to the pre-addition operation defined by (7). It turns out

that it was known prior to Müller's re-discovery. If we take the set
, our pre-addition operation , and ordinary addition +, weR ∪ {−∞, ∞} ⊕b
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get a log semiring. [7] Our log semiring's ‘addition’ is our pre-addition, ,
and our log semiring's ‘multiplication’, , is ordinary addition, +, extended
so that for any real number  we have , analogous to the
fact that . If , the ‘additive’ identity is  (the identity for
pre-addition), and if , the ‘additive’ identity is . The
‘multiplicative’ identity is 0 (the identity for ordinary addition).

⊕b
⊗

a a + (±∞) = ±∞
a · 0 = 0 b > 1 −∞

0 < b < 1 ∞

Unless otherwise stated, we will assume that , and that therefore
the ‘additive’ identity element is . In that case, we can actually remove
from the log semiring. Results for the case of  are analogous,
and can be derived by the reader.

b > 1
−∞ ∞

0 < b < 1

Log semirings are used in such applications as speech recognition and
computational biology [8, 9, 10].

The reason that  is a semiring, not a ring, is that no
element other than  has a pre-additive inverse, i.e. an inverse under . If
we attempt to find the inverse  of a real number , we get

〈R ∪ {−∞} , ⊕b, +〉
−∞ ⊕b

c a

a ⊕b c = −∞

logb (ba + bc) = −∞

ba + bc = b−∞

ba + bc = 0

bc = −ba. (10)
This last equation is true if . However, if  and  are real
numbers, then the right side of (10) is negative, and left side is positive,
which is impossible.

a = c = −∞ a c

5.   Turning a log semiring into a group
Nevertheless, let us see if we can construct a group that uses pre-

addition as the group operation. I have not seen this discussed in the
literature. To solve (10) for , we will attempt to take the logarithm of both
sides of the equation:

c

logb (bc) = logb (−ba)
c = logb (−ba) . (11)

The right side of (11) involves taking the logarithm of a negative number.
That is not possible if we are restricted to the real numbers. However, it
possible if we use complex numbers.  Therefore, we will extend
so that it includes some complex numbers.

is
R ∪ {−∞}

Of course, we know that in C, the set of complex numbers, the
logarithm of a number can have more than one value. Specifically, since 

−1 = eiπ + 2inπ = exp (iπ + 2inπ) ,
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where  is any integer, (11) becomesn

c = logb (−ba)

= logb (−1) + logb ba

= logb (exp (iπ + 2inπ)) + a

=
ln (exp (iπ + 2inπ))

ln b
+ a, by the change-of-base formula

c =
iπ + 2inπ

ln b
+ a.

Thus a single number  has an infinite number of pre-additive inverses.

However, we can take addition to be modulo . Then , and the

pre-additive inverse of  is

a
2iπ
ln b

2iπn
ln b

= 0

a

c =
iπ

ln b
+ a. (12)

Note then that we have

logb (−1) =
iπ

ln b
(13)

and

logb (0) = logb b−∞ = −∞. (14)
Using (13), we also have

b(iπ/ ln b) = −1, (15)
which will be useful.

We now claim that 

〈{a +
miπ
ln b

| a ∈ R, m ∈ {0,1}} ∪ {−∞} , ⊕b〉
is an abelian group. First, it is obvious from (7) that pre-addition is
commutative. Showing that pre-addition is associative is easy, and is left as
an exercise.

Next, we need to show closure. Let  and  be real numbers. It is easy to
see that  is also a real number, and is therefore in the
group.

a c
a ⊕b c = logb (ba + bc)

Next we consider . This equalsa ⊕b (c +
iπ

ln b)
logb (ba + bc + (iπ/ ln b)) = logb (ba + bcbiπ/ ln b) = logb (ba − bc) ,

in which we have used (15).
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If , and remembering that we are considering the case for which
, then  is a real number and is thus in the group.
a > c

b > 1 logb (ba − bc)
If  then ,

where we have used (13), and this is of the form , where  is a real

number. It is thus in the group.

a < c logb(ba − bc) = logb[−1(bc − ba)] =
iπ
lnb

+ ln(bc − ba)

d +
iπ

ln b
d

If  then , by (14), and is thus in
the group.

a = c logb (ba − bc) = logb (0) = −∞

Showing that  is in the group is analogous.

And so we have closure.
(a +

iπ
ln b)  ⊕b (c +

iπ
ln b)

The group identity element is . If  is a real number, then−∞ a

a ⊕b −∞ = logb (ba + b−∞) = logb (ba + 0) = a,
as desired. Furthermore,

(a +
iπ
lnb)⊕b−∞ = logb(ba+(iπ/ ln b) + b−∞) = logb(−ba + 0) = a +

iπ
lnb

,

by (15) and (13), as desired.
Next,

−∞ ⊕b −∞ = logb (b−∞ + b−∞) = logb(0 + 0) = logb0 = −∞, (16)
by (14), as desired.

Lastly, we want to show the existence of inverse elements. We claim

that if  is real then its inverse is . Note thata a +
iπ

ln b

a ⊕b (a +
iπ
lnb) = logb(ba + ba+(iπ/ ln b)) = logb(ba − ba) = logb0 = −∞,

as desired, where we have used (15) and (14). By commutativity, we also

have that the inverse of  is . Finally, from (16), the inverse of

is itself.

a +
iπ

ln b
a −∞

We have now shown that

〈{a +
miπ
ln b

| a ∈ R, m ∈ {0,1}} ∪ {−∞} , ⊕b〉
is an abelian group. Note, too, that the logarithm law analogous to (5),

 is now satisfied even if  or  or both are
negative or 0.
logb (a + c) = (logb a) ⊕b (logb c) a c
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6.  Turning a log semiring into a field
Next, we will see if we can turn our group into a field by including

ordinary addition modulo  as the field ‘multiplication’.
2iπ
ln b

So we examine

〈{a +
miπ
ln b

| a ∈ R, m ∈ {0,1}} ∪ {−∞} , ⊕b, + (mod
2iπ
ln b)〉 ,

where .b > 1
We know from above that this is a group under the ‘addition’ operation

. To show it is a field, we need to show that the field ‘multiplication’,

which is addition modulo , satisfies closure, is commutative, associative,

and has an identity element, that the ‘multiplication’ is distributive over the
‘addition’, and that every element except the ‘additive’ identity has a
‘multiplicative’ inverse.

⊕b
2iπ
ln b

Obviously addition  is commutative and associative. Next, we

see if we have closure.

mod
2iπ
ln b

The sum of two real numbers is a real number. The sum of two complex

numbers of the form  and  is the real number ,

modulo . The sum of a real number  and a complex number  is

the complex number , which is in our field. Finally, if we

define , then the sum of any element of the field with

 is , which is in the field. This is analogous to the fact that the product
of any real number with 0 is 0.

a +
iπ

ln b
c +

iπ
ln b

a + c

2iπ
ln b

a c +
iπ

ln b
(a + c) +

iπ
ln b

iπ
ln b

+ (−∞) = −∞

−∞ −∞

There is an identity element for ordinary addition, namely 0. As for
inverse elements, the additive inverse of a real number  is of course .

The additive inverse of  is . Observe that

does not have an additive inverse, but that is fine, as it is analogous to the
fact that 0 has no multiplicative inverse.

a −a

a +
iπ

ln b
−a +

iπ
ln b (mod

2iπ
ln b) −∞

Lastly, we have the distributive law (8) above. Thus,

〈{a +
miπ
ln b

| a ∈ R, m ∈ {0,1}} ∪ {−∞} , ⊕b, + (mod
2iπ
ln b)〉

is a field.
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7. The field is isomorphic to the real numbers under ordinary addition and
multiplication

Furthermore, this field is actually isomorphic to , the field of
the real numbers under ordinary addition and multiplication. Given two
fields,  and , with addition and multiplication operations , ,  and

, and with multiplicative identity elements  and , a field isomorphism
is a map  such that for any , we have

〈R, +,  · 〉

F G +F +G ·F
·G 1F 1G

f : F → G x, y ∈ F

f (x) +G f (y) = f (x +F y) , (17)

 f (x) ·G f (y) = f (x ·F y) , (18)

 and  f (1F) = 1G (19)
and such that  is bijective, that is, one-to-one and onto, [3, p. 353].f

The isomorphism , takes elements  off (x) = bx a +
miπ
ln b

{a +
miπ
ln b

| a ∈ R, m ∈ {0,1}}
and sends them to real numbers . It sends the pre-additive
identity  to , the additive identity.

ba + (miπ/ ln b)

−∞ b−∞ = 0
First, we need to show (17). Let  denote . We need to show thatb∧ (x) bx

f (a +
niπ
ln b) + f (c +

miπ
ln b ) = f ⎡⎢⎣(a +

niπ
ln b) ⊕b (c +

miπ
ln b )⎤⎥⎦ ,

i.e.  b∧(a +
niπ
lnb ) + b∧(c +

miπ
lnb ) = b∧⎡⎢⎣(a +

niπ
lnb )⊕b (c +

miπ
lnb )⎤⎥⎦, (20)

where  and  are real numbers, and  and  take on the values 0 or 1. The
right side of (20) is

a c n m

b∧⎡⎢⎣(a +
niπ
lnb )⊕b (c +

miπ
lnb )⎤⎥⎦ = b∧⎡⎢⎣

logb  ⎡⎢⎣
b∧(a +

niπ
lnb ) + b∧(c +

miπ
lnb )⎤⎥⎦ ⎤⎥⎦

= b∧(a +
niπ
lnb ) + b∧(c +

miπ
lnb ),

which is the left side of (20), as desired.

We also need , i.e.f (a +
niπ
ln b) + f (−∞) = f ⎡⎢⎣(a +

niπ
ln b) ⊕b (−∞)⎤⎥⎦

b∧ (a +
niπ
ln b) + b∧ (−∞) = b∧ ⎡⎢⎣(a +

niπ
ln b) ⊕b (−∞)⎤⎥⎦

,

which is easy to show, and

f (−∞) + f (−∞) = f [(−∞) ⊕b(−∞)] , i.e. b∧(−∞) + b∧(−∞) = b∧[(−∞) ⊕b(−∞)] ,
which is also easy to show.
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Next, we need to show (18), i.e. that

f (a +
niπ
lnb ) · f (c +

miπ
lnb ) = f ⎡⎢⎣(a +

niπ
lnb ) + (c +

miπ
lnb ) mod

2iπ
lnb

⎤⎥⎦
,

i.e. b∧(a +
niπ
lnb ) · b∧(c +

miπ
lnb ) = b∧⎡⎢⎣(a +

niπ
lnb ) + (c +

miπ
lnb ) mod

2iπ
lnb

⎤⎥⎦
.  (21)

If  and  are both 0, then (21) is obvious. Now consider the case for which
 and . In that case, (21) becomes

n m
n = 0 m = 1

(b∧a)  · b∧ (c +
iπ

ln b) = b∧ ⎡⎢⎣
(a) + (c +

iπ
ln b)⎤⎥⎦ . (22)

The left side of (22) becomes , where we have used
(15), and it is clear that the right side of (22) gives the same quantity.
Proving (21) for the case for which  is similarly easy.

ba · (−bc) = −b∧ (a + c)

n = m = 1
Showing the analogue of (21) for which one or both arguments are

is also easy.
−∞

We need to show (19), that is, . That is obvious since .f (0) = 1 f (x) = bx

Now we need to show that  is bijective, i.e. one-to-one and onto. First,
 from  to , the positive real numbers, is bijective.

Analogously,  from  to , the negative real

numbers, is bijective. Lastly  sends  to 0. This completes the
proof, and it concludes the material that is original to this paper.

f
f (x) = bx R R+

f (x) = bx {a +
iπ

ln b
| a ∈ R} R−

f (x) = bx −∞

8.   Tropical mathematics
Let us return to the log semiring , where

. We can use this to generate two more pre-addition
operations.

〈R ∪ {−∞} . ⊕b, +〉
a ⊕b c = logb (ba + bc)

Let  and  be two non-negative real numbers. Consider the obvious
inequality, , [11]. Let  and ,
where . Then we have . We
can take a logarithm with base  of each side, and the inequality still holds,
because the logarithm function is increasing. We get

x y
max(x, y) ≤ x + y ≤ 2 max(x, y) x = ba y = bc

b > 1 max (ba, bc) ≤ ba + bc ≤ 2 max (ba, bc)
b

max (a, c) ≤ a ⊕b c ≤ logb 2 + max (a, c) .
Now, if we take the limit of each side as  approaches infinity,
approaches 0, and so by the squeeze theorem or sandwich theorem, we have

. Analogously, one can show that, for

, .

b logb 2

lim
b → ∞

(a ⊕b c) = max (a, c)
0 < b < 1 lim

b → 0+
(a ⊕b c) = min (a, c)

Using these results, we can define two new semirings. The max-plus
semiring is , where the semiring addition is the max
operation, , and the semiring multiplication is standard
addition, . Analogously, we have the min-plus semiring,

〈R ∪ {−∞} , ⊕, ⊗〉
a ⊕ b = max (a, b)

a ⊗ b = a + b
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, where , and . Together,
these two semirings are called the tropical semirings [12]. The word
‘tropical’ was chosen to honour the Brazilian mathematician Imre Simon,
since Brazil is a tropical country. Obviously in both cases the tropical
‘multiplication’ is associative and has an identity element, 0. It is also
obvious that the tropical ‘addition’ is commutative. It is left as an exercise
for the reader to show that the ‘addition’ is associative, that it has an identity
element (either  or ), and that the ‘multiplication’ is distributive over
the ‘addition’. It is clear why we have semirings rather than rings. Most
elements of the max-plus semiring do not have ‘additive inverses’, because
if  then the equation  has no solution for .

〈R ∪ {∞} , ⊕, ⊗〉 a ⊕ b = min (a, b) a ⊗ b = a + b

−∞ ∞

a ≠ −∞ a ⊕ x = max(a, x) = −∞ x
So the maximum and minimum operations are two more answers to the

question in the title of this paper.
Tropical mathematics has many applications, both within mathematics

and beyond. It is used in geometric combinatorics, algebraic geometry,
number theory, symplectic geometry, mathematical physics, computational
biology, and more [12].

It is interesting to compare visually the addition operation in a log
semiring with tropical addition. We compare the graph of the log semiring
addition function  with the graph of the tropical
addition function . See Figure 1.

y = x ⊕e 3 = ln (ex + e3)
y = x ⊕  3 = max(x, 3)

10

5

0

-10

-5

5 10-5-10

FIGURE 1: Graph of  and . The graph of the
latter is the smooth curve.

y = max (x, 3) y = ln (ex + e3)
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9.   Zeration
There is yet another way of answering the question in the title of this

Article. We introduce hyperoperations  [13], such thatHn (a, b)

H1 (a, b) = a + b

H2 (a, b) = a · b

H3 (a, b) = ab.
Then the operation zeration [13] is the successor operation given by

.H0 (a, b) = b + 1
Note that repeated zeration gives ordinary addition. Furthermore,

addition is distributive over zeration; it is easy to check that 

a + H0 (b, c) = H0 (a + b, a + c) .
On the other hand, zeration is neither commutative nor associative, and there
is no identity element for it.

A more sophisticated zeration operation [14] can be defined by

a � b = ( . (23)
a + 1 if a > b
b + 1 if a < b

a + 2 = b + 2 if a = b

Note that if , then zeration is closely linked to the operation of finding
a maximum, so we see a similarity to the tropical mathematics described
above. Specifically, .

a ≠ b

a � b = max (a, b) + 1
This version of zeration is commutative, but is still not associative. It is

easy to show that 

a � a = a + 2,

a � a � a = a + 3,
and so forth, in analogy with (1) and (2).

It satisfies a distributive law of addition over zeration. It is easy to show
that .a + (b � c) = (a + b) � (a + c)

10.   Summary
We have shown that there are several different operations that answer

the question ‘Multiplication is to addition as addition is to what?’. They
include the log semiring addition operation, , the
tropical addition operations,  and ,
and the zeration operations, given by  and by (23). We
have also shown that the log semiring can be extended to a field, and that
this field is isomorphic to the field of real numbers under ordinary addition
and multiplication.

a ⊕b c = logb (ba + bc)
a ⊕ b = max (a, b) a ⊕ b = min (a, b)

H0 (a, b) = b + 1
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