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Introduction
Epidemiology is typically defined as the study of the frequency,
distribution and determinants (causes) of health-related states
and events in a defined population. These may include disease,
disorder, symptoms, wellbeing, causes of death, behaviours and
the provision and utilisation of health services.1 Unlike most
other branches of medical science, it is chiefly concerned with
understanding and improving the health and disease status of
populations rather than individuals, though public health inter-
ventions to prevent disease or promote wellbeing may be
targeted at a variety of levels, including the individual (e.g.
smoking cessation programmes, early detection services for
people at risk of psychosis), familial (e.g. parenting interven-
tions for mental, emotional and behavioural problems in chil-
dren and young people) or societal levels (fluoridation of water
supplies to reduce dental caries, folic acid fortification in non-
wholemeal wheat flour to reduce birth defects in children).

The concept of epidemics – from the Greek epi’, meaning
‘upon’; demos, meaning ‘people’ and ic, meaning ‘pertaining
to’ (literally ‘pertaining to what is upon the people’) – dates
back at least to Hippocrates’s writings in 400 BCE,2 who
described the relation of the seasons to various diseases occur-
ring in the population at the time. However, the study or
discourse – logos, in Greek – of epidemics – that is, epidemi-
ology – first arose in the nineteenth century following the
identification of bacteria and subsequent observations that
epidemics were strongly associated with infectious diseases.
Indeed, the study widely credited to be the first epidemi-
ological inquiry of its kind – On the Mode of
Communication of Cholera – famously saw Dr John Snow
remove the pump handle from the Broad Street pump in
Soho, London, on 8 September 1854, following a ground-
breaking investigation that helped prove cholera was transmit-
ted via contaminated water and not through the air – the
prevailing theory at the time.3

It soon became clear that many of the methods used for
tracking infectious diseases, such as accurate case identifica-
tion and determining precisely when and where cases had
occurred, as well as their frequency in different settings, had
a far wider application across population health, extending to

our understanding of non-communicable diseases including
mental health problems.

Cooper and Morgan4 provide a brief overview of the
history of psychiatric epidemiology, and they credit Émile
Durkheim, the French sociologist, as among the first to apply
epidemiological methods in psychiatry, in his studies of sui-
cide. Durkheim examined successive five-year average suicide
rates in different European countries and showed these were
remarkably constant within each country but differed widely
between countries, with the Protestant North European coun-
tries having rates that were three to four times higher than the
Mediterranean and presumably Catholic countries such as
Italy. To test his hypothesis further, Durkheim investigated
how suicide rates varied within just one country, Germany,
where some provinces were strongly Catholic while others
were predominantly Protestant. He showed that the
Protestant provinces (less than 50% Catholic) had a relatively
high mean suicide rate, of 192 per 100,000 population, while
the rate for provinces with 90% or more Catholics had rates
less than half this, at 75 per 100,000. Those provinces that were
50–90% Catholic fell between these values, with 135 suicide
deaths per 100,000 population. Durkheim conducted similar
analyses comparing suicides rates between married and
divorced people or between those who were fertile against
those who were childless and, even without the help of modern
statistical tests, found large differences between these different
social groups. This led him to conclude that suicide, as a
phenomenon, was a collective act, in that it was related to
societal forces, and that the Catholic religion in some way
appeared to offer a degree of protection.

Although the epidemiology of suicidality is complex and
multifaceted,5 (for a comprehensive introduction), recent evi-
dence confirms that suicide rates are influenced by societal and
cultural factors. For example, in Sweden, Hollander et al.6 have
observed that rates of suicides amongst first-generation
migrants were over 60% lower than in the Swedish-born
comparison population, after taking into account differences
in age, natal sex and family income. This suggests that
migrants import a range of protective factors that lower their
risk of death by suicide, including sociocultural and religious
beliefs, behaviours and customs and attitudes to suicide. Most
strikingly, however, in this study, rates of suicide in migrants
were dependent on the length of time lived in Sweden; no
deaths by suicide were reported in migrants living in Sweden

* We are grateful to Matthew Hotopf for allowing us to revise a
previous edition of this chapter.
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for less than five years, while rates then began to increase in a
dose-response manner, with no differences in suicide rates
observed for those who had lived in Sweden for over 21 years.
These findings lend further evidence to suggest that societal
forces to which people are exposed can influence risk of
suicide (and potentially other adverse health outcomes7), as
Durkheim first suspected in the nineteenth century.

In the early twentieth century, in the southern United
States, there was an alarming rise in the prevalence of pellagra,
a debilitating neuropsychiatric disease presenting with neuras-
thenic symptoms, occasionally psychoses and dementia, as well
as skin rashes. It was thought the cause was a specific commu-
nicable disease, possibly because of its known association with
unsanitary conditions. In 1914, the US public health authority
appointed Joseph Goldberger to investigate the cause of pel-
lagra. Goldberger first observed that, in institutions where
pellagra was rife, all the cases seemed to occur only among the
inmates, and none of the staff were affected. He wrote that ‘this
pattern seemed to be no more comprehensible on the basis of
an infection than is the absolute immunity of the asylum
employees’.8 Furthermore, new cases seemed to occur among
inmates who had been there for a long time and who had little
contact with the outside world rather than amongst new
arrivals who had recent contact with the outside world. In a
more detailed survey of an orphanage in Jackson, Mississippi,
Goldberger found that the pellagra cases seemed to be confined
to those aged 6–12 years. He noted that the younger children
(below 6 years old) received a daily ration of fresh milk, while
most of those aged 12 years or over were sent out to work on the
farms, where they received supplementary food. Meanwhile,
those aged 6–12 years subsisted only on the orphanage diet.
To confirm his hypothesis that a dietary deficiency was respon-
sible, Goldberger then conducted a dietary survey of house-
holds in seven villages in South Carolina, where the prevalence
of pellagra was known to be very high. There were no cases of
pellagra in households consuming more than 19 quarts of fresh
milk per fortnight, but there was a 22.5% rate among house-
holds consuming less than one quart per fortnight. A similar
pattern was found for the consumption of fresh meat.

This simple but well-designed survey, based only on good
case identification and the ascertainment of the age and occu-
pational distribution of cases and non-cases followed by a basic
dietary survey, led to the identification of the probable cause of
pellagra as a specific dietary deficiency. The disease was then
easily prevented by ensuring an adequate supply of fresh milk
and meat protein, and all this was clarified long before labora-
tory scientists had isolated vitamin B6 and identified its defi-
ciency as the definitive biochemical cause of pellagra.

There are two main branches of epidemiology. The first
branch provides a framework to describe diseases (or, more
correctly for psychiatry, disorders, syndromes or dimensions)
as they arise in the population. This branch encompasses
studies that characterise the frequency and distribution of
disorders such as psychotic disorders, anorexia or depression,
or suicide rates as in Durkheim’s studies. It is important to

know whether disorders are on the increase or in decline and
whether they vary dramatically between countries or regions.
Having this knowledge allows services to be planned but also
helps develop hypotheses about possible causes. Further, it is
especially important for patients and their families that their
clinical team is able to describe the prognosis of disorders.
How many people with first-episode psychosis make a full
recovery and never require psychiatric treatment again? How
many will develop severe symptoms and require psychiatric
care for the rest of their lives?

The second main branch of epidemiology deals with identi-
fying and establishing the determinants of a disorder, using
analytic study methods. It is centrally concerned with establish-
ing whether a putative risk (or protective) factor is causally
related to changes in the risk of experiencing a disorder or disease
characteristic under study at the population level. Does removal
or prevention of exposure to a given risk factor, such as high-
potency cannabis, reduce the risk of a disorder, such as psych-
osis? The studies by Goldberger on pellagra described earlier are
one early example of analytic studies in epidemiology. Such
analytic studies test hypotheses that exposures (or risk factors)
cause disorders or, once the disorder is established, examine
whether the exposure (such as different forms of health care or
treatment interventions) causes better or worse outcomes.
As such, randomised controlled trials, which primarily assess
whether an intervention (typically a therapeutic intervention but
sometimes extending to social interventions) improve health
outcomes, are a special type of analytic study design used in
epidemiology. These experimental study designs (see
‘Randomised Controlled Trials (RCTs)’ later in the chapter) are
differentiated from observational studies in epidemiology based
on how the exposure is assigned to the population under study.
In experimental designs, the investigator assigns the exposure
(often randomly); in all other observational designs, the exposure
is not assigned by the investigator, who instead observeswhat has
occurred (or will occur) in the population under study. Inferring
causal effects from observational studies requires great care,
because of hidden differences that are often present between
those who are, and are not exposed to a given risk factor under
study.Wewill explore this critical issue in greater detail through-
out this chapter.

As common to many scientific disciplines, analytic
epidemiology is centrally concerned with establishing whether
an association between two measured variables (typically
referred to as exposures and outcomes) is causal. As in all
quantitative disciplines, such associations are estimated statis-
tically, but as the old adage goes, correlation does not imply
causation, and special causal inference techniques are required
to evaluate the likelihood that any given relationship is causal.
While a vital issue for all analytic studies, causal inference is a
particular challenge in observational epidemiology due to the
inherent limitations of different study designs along with the
(often hidden) roles played by various biases, which can nullify
or even reverse apparently causal relationships between a risk
factor and disorder. Later in this chapter, we provide an
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overview of both traditional and contemporary causal infer-
ence methods in epidemiology that can be used to investigate
causality. The last two decades have seen an explosion in the
development and application of contemporary causal infer-
ence methods (for an excellent primer, see for example,
Hernan & Robins9), which – under certain (strong) assump-
tions – can be applied to observational data to strengthen the
plausibility that a given association between an exposure and
outcome is causal (see ‘Causation’, later in this chapter).

Exposures and Outcomes
In most studies, investigators measure three main things:

• Exposures

• Outcomes

• Potential confounders, which are other factors that may
influence both the exposure and the outcome

The term ‘exposure’ encompasses a wide range of different
factors that might be important in the aetiology of a disorder.
These can include simple demographic variables such as age
and gender; biological entities such as genotype, intra-uterine
infection and brain abnormalities; psychological variables
such as experiences of parenting; or social factors such as life
events, deprivation and income inequality. Clearly, these
exposures may be measured in many different ways, but the
methodological principles behind linking exposure to out-
come are essentially similar.

The term ‘outcome’ is also used broadly – to psych-
iatrists, the most obvious outcomes are diagnostic categories
such as schizophrenia, depression or anorexia nervosa.
While some researchers may choose to ‘split’ psychiatric
categories into diagnostic groups as defined in ICD-1110 or
DSM-V, others may ‘lump’ together broad categories (e.g.
‘psychotic disorders’, ‘common mental disorders’ or ‘eating
disorders’). Increasingly, it is common in both clinical prac-
tice and in research to investigate the dimensions underlying
different presentations, recognising that there are continua
of experiences in the population (from no mental health
symptoms to mild, moderate or severe symptoms) and that
there is often phenomenological overlap in symptom dimen-
sions across traditional categorical diagnostic boundaries.
Further, in some countries, clinical practice increasingly
seeks to avoid formal diagnoses in the early stages of mental
illness to avoid stigma (particularly as most psychiatric con-
ditions begin in adolescence) and allow a clear clinical pre-
sentation to unfold. The latest iteration of the Diagnostic and
Statistical Manual, DSM-V11, explicitly recognises dimen-
sional approaches to mental illness. Thus, depending on
the research question, investigators may choose to study
clinical disorders, sets of psychiatric conditions or dimen-
sions of psychopathology.

Potential confounders are described in more depth later but
are essentially any variable that may present alternative
explanations for the observed relationship between exposure

and outcome; in causal language, they are referred to as
common causes of the exposure and outcome.

Development of Measures: Reliability
and Validity
All quantitative research involves the measurement of vari-
ables, which may be outcomes or exposures. In physical sci-
ence, there are often objective criteria on which to base
measurement (weight, length, electrical resistance, etc).
In psychiatry (and much of medicine besides), such objective,
external measures are lacking, and our measurement is there-
fore particularly prone to error. In developing questionnaires,
rating scales or diagnostic interviews, it is necessary to assess
their reliability and validity.

Reliability
There are two main types of reliability: inter-rater reliability
and test–retest reliability. The term is also used, though, to
describe the ‘internal’ integrity of an instrument – that is,
inter-item reliability.

Inter-rater Reliability
Inter-rater reliability indicates whether two or more research-
ers using the same measure on the same subject will gain
similar answers. The measurement of inter-rater reliability
depends on the type of variable generated by the question-
naire. If it generates a binary outcome, such as the presence or
absence of a specific diagnosis, reliability could be described as
the percentage agreement between the two researchers.
However, this would not take into account agreements that
happened just by chance. Instead, Cohen’s kappa takes into
account that some of the observed agreements would be
expected by chance. Kappa can vary anywhere between –1
and +1, where positive values indicate above-chance agree-
ment (1 indicates perfect agreement) and negative values indi-
cate below-chance agreement.

If the measure generates an ordered categorical outcome –
for example, levels of certainty about the presence of a diag-
nosis (definite, probable, possible, absent) – a weighted kappa
can be used. This gives more emphasis to serious levels of
disagreement between raters than to trivial ones.

If the measure is a continuous variable, such as a symptom
score, the intraclass correlation coefficient may be used, which
will take a value between 0 and 1, with 1 again indicating
perfect agreement.

Test–Retest Reliability
Test–retest reliability involves the same rater using the same
measure to assess the same subject twice over an interval of
time. The same parameters can be used as for inter-rater
reliability. Test–retest reliability is important for measures that
assess stable psychological traits, such as personality or intelli-
gence, but is less useful for gauging the reliability of psycho-
logical symptoms, as these fluctuate over time.

James B. Kirkbride and Annie Jeffery
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Inter-item Reliability
Split-half reliability describes the integrity or coherence of a
questionnaire and assesses whether the questions assess the
same underlying construct. It can be measured by calculating a
correlation between the scores of the first and second half of
the questionnaire or between odd-numbered versus even-
numbered questions. Alternatively, Cronbach’s α can be used,
which provides the average correlation between all possible
ways of splitting the items.

Validity
Validity refers to the extent to which an instrument (which in
this context usually means a questionnaire or interview) actu-
allymeasures what it sets out to measure. There are three main
types of validity:

• Content validity (which includes ‘face validity’) refers to the
degree to which the measure covers what it is meant to
cover – for example, one would expect a measure of
depression to include items on low mood, anhedonia
and fatigue.

• Construct validity is a more abstract term meaning the
degree to which results from a measure fit with
underlying theoretical constructs pertaining to that
measure. For example, if the phenomenon under study
changes with age, one would expect the results of the test to
reflect this.

• Criterion-related validity (concurrent or predictive) is the
degree to which the measure compares with an alternative
criterion. In concurrent validity, the measure is compared
with a ‘gold standard’, and the results are summarised as
the sensitivity and specificity of the measure (these are
discussed further in the chapter). Predictive validity is
assessed by how well the measure is able to predict a
subsequent outcome that fits into the construct being
examined – for example, an IQ test used in children should
go some way to predict future academic performance, or a
measure of suicidal ideas should be able to predict future
suicide attempts to some extent.

Concurrent Validity: Sensitivity and Specificity
Table 1.1 gives the overall framework for calculating a range of
common parameters for assessing the concurrent validity of
an instrument against a gold standard, including sensitivity
and specificity.

The formula for these measures are given below:

Sensitivity =
a

a+ c

Specificity =
d

b+ d

Positive predictive value=
a

a+ b

Negative predictive vale =
d

c + d

Likelihood ratio LRð Þ of positive result =
sensitivity

1� specificityð Þ
Pretest odds of disorder =

a+ c
b+ d

Post test odds of disorder =
a+ c
b+ d

∙ LR

Post test probability of disorder =
Post test odds

1 + post test oddsð Þ
It will be easiest to define and discuss sensitivity and specificity
in relation to an example and some actual numbers. Say a
general practitioner (GP) decided to screen all attenders with
the 12-item General Health Questionnaire (GHQ-12) to
improve their detection of common mental disorders.
It would be important to know the concurrent validity of the
questionnaire – in other words, how it performs against
a ‘gold standard’ psychiatric interview. The GP might
therefore compare the results of the GHQ-12 with those on
the ‘gold standard’ Revised Clinical Interview Schedule
(CIS-R), which is a structured diagnostic interview. It is
then possible to give the sensitivity and specificity of the
GHQ-12 (in relation to the CIS-R). Say the doctor uses both
measures on 49 patients, and the results are as shown
in Table 1.2.

Note, first, that the frequency of psychiatric disorders
rated on the CIS-R is high (nearly half the patients score
positive). Note also that the frequency of patients who are
positive on the GHQ-12 is higher still – this is usually the
case when a questionnaire is being used to detect possible
cases and indicates that at least some of the ‘positives’ on the
questionnaire are false positives. Sensitivity is a measure of
the ability of an instrument to pick up genuine cases – in this
instance, the sensitivity is close to one (0.96, see below),
indicating that the GHQ-12 identifies nearly all those who
are true cases.

Table 1.1 Definitions of sensitivity and specificity

Gold standard

Positive Negative Total

Our
instrument

Positive a b a + b

Negative c d c + d

Total a + c b + d a + b + c + d

Table 1.2 Example calculations of sensitivity and specificity for a sample of
49 patients

CIS-R (Gold standard)

Positive Negative Total

GHQ-12 Positive 23 9 32

Negative 1 16 17

Total 24 25 49

Clinical Epidemiology
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Specificity is a measure of the ability of an instrument to
identify correctly those who are free from the disorder. Here
the specificity is much lower (0.64), indicating that the GHQ-
12 was performing less well. There is a play-off between
sensitivity and specificity: the more sensitive a measure is,
the more likely it is to also pick up false positives, and vice
versa. The positive predictive value (0.72) describes the
chances that an individual scoring positive on the test will
actually have the disorder when the gold standard is applied.
Similarly, the negative predictive value (0.94) is the chance
that an individual who tests negative will be free from the
disorder. Note that the positive and negative predictive values
are sensitive to the frequency of the disorder under study.
If the disorder is very rare, it is likely that a higher proportion
of those who test positive will not have the disorder compared
with when it is very common.

Sensitivity =
23
24

= 0:96

Specificity =
16
25

= 0:64

Positive predictive value=
23
32

= 0:72

Negative predictivevale =
16
17

= 0:94

The Odds, the Likelihood Ratio and Proportion
The GP knows from past experience that a high proportion (in
fact, 49 per cent) of his patients have a psychiatric disorder. How
much of a difference does the test make? The likelihood ratio of a
positive value gives us an idea of the ‘added value’ that the test
makes, but to use it, we also have to calculate the odds of a patient
having a disorder. As per the formulae above, this leads to the
following values:

Likelihood ratio LRð Þ of positive result =
0:96
0:36

= 2:67

Pretest odds of disorder =
24
25

= 0:96

Post test odds of disorder = 0:96 ∙ 2:67 = 2:56

Note that the odds are different from the probability, and the
odds are calculated as the proportion with the disorder divided
by the proportion without a disorder (here, 24/25=0.96). The
likelihood ratio of a positive test is defined as the amount by
which a positive test result increases the odds of a patient
having the disorder – in this case, 2.67. If a patient scores
positive on the GHQ-12, the odds that they have a disorder
now increases by 2.67-fold to 2.56. What does this mean in
terms of proportions? As above, we now use the formula for
the post-test probability of disorder, given as:

Post test probability of disorder =
2:56
3:56

= 0:72

Hence, the positive test result on the GHQ-12 has changed the
probability that the patient has a disorder from 49% to 72%.

Measures of Disorder Frequency: Prevalence
and Incidence
One of the basic functions of epidemiology is to describe the
frequency of disorders in the population. Knowledge about the
burden of disorders in a given population should be the
founding principle on which clinical and public health
resources are based. There are two main measures of fre-
quency: prevalence and incidence.

Prevalence
Prevalence is the total number of individuals with the disorder
divided by the population from which they are drawn:

Prevalence=
Total cases

Total population

Prevalence estimates will include some patients who have had
the disorder for many years and others who have only just
developed it. Prevalence is therefore a function of the number
of new cases developing the disorder over a given time period
(i.e. the incidence rate) and the average chronicity of the
disorder (i.e. its average duration). It is worth noting, there-
fore, that the prevalence of the disorder will be affected by
both recovery and death rates as a result of the disorder – two
pertinent and pernicious issues in psychiatry; a higher recov-
ery rate (fewer cases) would reduce prevalence as, paradoxic-
ally, would a higher death rate as a result of the disorder
(fewer cases).

Two subtypes of prevalence exist: point prevalence, which
is the proportion of the population who have the disease at the
point in time when it is measured, and period prevalence,
which is the proportion of the population who have experi-
enced the disorder over a defined interval. In psychiatry, there
are advantages to using period prevalence as many disorders
relapse and remit, and a point prevalence may not reflect the
true proportion of the population who have been affected by
the condition under study. The two most common timescales
for estimating period prevalence in psychiatric epidemiology
are annual and lifetime prevalence.

Lifetime prevalence is the proportion of people in the total
population who have ever experienced a disorder in their
lifetime. There has been considerable controversy over the
accuracy of lifetime prevalence estimates when obtained from
psychiatric interviews. The problem with such estimates is that
they depend on the recall of clusters of symptoms (e.g. for
depression: low mood, anhedonia, sleep disturbance) many
years before. Recall of such complex information is likely to
be very inaccurate. Alternative sources – such as prospectively
recorded cases in case registers – may be free from issues of
recall bias (see ‘Bias’) but may still lead to underestimates of
lifetime prevalence if case identification is based purely on
clinical contact and diagnosis.

Lifetime prevalence is frequently confused with morbid
risk of a disorder. Lifetime prevalence is an estimate of the
total proportion of people alive at a given point in time (or at a
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given age) who have ever experienced the disorder of interest
(that is, it is dependent on survivorship to that point in time or
age). Morbid risk, by contrast, is an estimate of the proportion
of disease-free people at a given point in time or age who will
go on to experience the disorder of interest over a certain time
period or by a certain age.

Finally, a common error in reporting prevalence estimates
in the literature is to describe them as prevalence rates; any
estimate of prevalence is a proportion in a fixed population
(denominator), such as the percentage of people surveyed
today who have ever experienced depression.

Incidence, Incidence Rates and
Cumulative Incidence
In epidemiology, the term ‘incidence’ strictly describes the
number of individuals in an initially disease-free population
who develop the disorder of interest for the first time within a
specific time period. For example, there were 80 new cases of
schizophrenia in the at-risk population of 400,000 people in
2022. Colloquially, however, incidence is used synonymously
with the term incidence rate, which estimates the rate at which
new cases occur within a population:

Incidence rate =
Number of new cases

Population at risk ∗ time at risk

For example, in the aforementioned population, the incidence
rate was 20 new cases of schizophrenia per 100,000 people at
risk in 2022. Note here the important concept of the ‘popula-
tion at risk’, which includes only individuals who have never
had the disorder. It excludes people who have previously had
the disorder or those who would not be at risk of developing
the disorder. The latter issue may seem trivial, but if someone
with an organic brain disorder were to develop psychosis
symptoms in the earlier example, there may be a high prob-
ability that those symptoms were caused by the organic dis-
order. Since that person would not meet diagnostic criteria for
non-organic psychotic disorders, they could never have been
‘at risk’, and they should not be included in the estimation of
either the numerator (new cases) or denominator (population
at risk) when estimating incidence rates.

Cumulative incidence, sometimes referred to as incidence
risk, estimates the proportion of new cases in an initially
disease-free population at risk over a given length of time.
Unlike an incidence rate, the denominator for cumulative
incidence is the initial disease-free population at risk, ignoring
the time at risk:

Cumulative incidence=
Number of new cases

Initial population at risk

Conceptually, cumulative incidence is similar to morbid risk.
To illustrate the difference between these measures, we use a
simplistic example of 10 individuals in a population, as
depicted in Figure 1.1. These individuals are followed for
one year to determine who develops a disorder. Three possible
outcomes are possible for each individual: remain well,

develop the condition under study, or be censored – in other
words, stop contributing to the study because of death, emi-
gration or other loss to follow-up. When calculating cumula-
tive incidence, the problem of censoring is ignored. The
numerator is all new cases of the disorder, and the denomin-
ator is the population at risk. In the study illustrated in
Figure 1.1, we would state that two cases (4 and 7) developed
the disorder, so the risk is 2/10 or 0.2.

When calculating the rate, a more precise estimate is made
to take into account the differing amounts of time each indi-
vidual spends ‘at risk’ of the outcome. Individuals who become
ill can no longer contribute to ‘time at risk’, nor can individ-
uals who die or who are otherwise censored. The denominator
for the rate is the total ‘person-time’ at risk in the study. From
Figure 1.1, only five individuals (2, 3, 6, 8 and 10) contribute
an entire year of time at risk. Case 7 hardly contributes any
time, becoming ill after 1 month. Case 4 becomes ill at 7
months, and cases 1, 5 and 9 are all censored, at 11, 9 and 4
months, respectively. The total person-time at risk here is 7.7
years, and the rate is 2 per 7.7 person-years at risk. Typically,
we then re-express rates on a common person-years scale,
such as per 100 person-years, per 1,000 person-years or even
per 100,000 person-years to make it easier to compare between
studies or groups. The scale is arbitrary and a function of the
frequency of the disorder in the population. Here, we could
express 2.0 per 7.7 person-years as 26.0 per 100 person-years,
but for rarer disorders, such as psychotic disorders, we typic-
ally express incidence rates on a larger scale (i.e. a recent meta-
analysis of the incidence of psychotic disorders placed this to

Figure 1.1 Calculation of incidence measures (see text for explanation).
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be 26.6 per 100,000 person-years).12 Because it is a more
accurate measure, this rate is the preferred expression
of incidence.

Finally, in order to precisely estimate incidence rates or
prevalence, note that it is important to have accurate infor-
mation about the denominator. Denominator error occurs if
the investigator attempts to define a population using some
routinely available data (e.g. the census or electoral register),
but these are inaccurate because not everyone provided infor-
mation in the census or signed up to the electoral register. This
may lead to an over-estimate of incidence or prevalence, even
if the numerator is being accurately recorded. The strength
and effect of this bias (see further in this chapter) will depend
on the accuracy of the denominator source, whether such bias
was differential or non-differential across subgroups and the
absolute rarity of the disorder.

Measures of the Strength of Associations: Risk
Difference, Risk Ratios, Rate Ratios and
Odds Ratios
In analytical studies, an attempt is usually made to describe the
strength of an association between an exposure (or risk factor)
and an outcome (or disorder). These are referred to as
measures of effect or measures of association. In cohort studies,
the incidence of a disorder is compared in two groups – one
exposed to a risk factor, the other not exposed. The study
estimates incidence risks or rates for each group. The risk or
rate difference (sometimes excess risk or rate) is the difference
in risks (or rates) between the exposed and unexposed group,
expressed as:

Risk difference=RiskExposed � Riskunexposed

and

Rate difference=RateExposed � Rateunexposed

Risk (rate) ratios are ratios of the risk (rate) in the exposed
population divided by the risk (rate) in the unexposed popu-
lation, as follows:

Risk ratio =
RiskExposed
Riskunexposed

and

Rate ratio =
RateExposed
Rateunexposed

A risk ratio of 3, for example, indicates that individuals with
the exposure are three times more likely to have the outcome
as those unexposed.

Use of ratio measures is more common in clinical epidemi-
ology than difference measures, although the choice will
depend on the intended goal of the researcher when setting
the research question and designing the study. Risk (or rate)
differences can be useful in quantifying the absolute excess

incidence or risk of disorder in one group compared with
another, providing valuable clinical or public health informa-
tion. Difference measures are particularly useful when
reporting the results from RCTs, since they provide valuable
information about the absolute magnitude of benefit or harm
of the treatment in those who received the intervention. These
should be reported alongside ratio-based measures of effect.13

Another widely used measure of impact is the odds ratio,
which is used especially in case-control studies. The relation-
ship between the odds ratio and risk or rate ratios is
described in detail elsewhere,14 but it can be illustrated in the
following example.

Imagine that we are interested in determining the effect of
unemployment on suicide rates in men of working age.
We might identify a population of 1 million men for whom
we know their employment status. Assume that 5 per cent of
the population are unemployed and we follow the population
for one year assessing suicide rates to obtain the figures shown
in Table 1.3.

From these figures, it is possible to calculate the rate ratio:

Rate ratio =
36 per 100,000
12 per 100,000

Rate ratio = 3

Now let us assume that it was impossible to identify the employ-
ment status of the entire population at the start of the study, and
instead a case-control design was used. In the case-control study,
the exposure status for cases (i.e. people who die by suicide) and
controls (i.e. people who do not die by suicide) are compared.
Assuming that it was possible to identify all 132 suicides in the
population and compare them with a randomly selected sample
of individuals who did not commit suicide, and assuming that
the rate of unemployment in this randomly selected group of
controls was similar to that of the general population, we could
compare the odds of exposure in the cases with that in the
controls. This might generate a table like Table 1.4.

Table 1.3 Illustration of rate of suicide by employment status

Employed Unemployed

Number of
suicides

114 18

Denominator 950,000 50,000

Suicide rate 12 per 100,000 per year 36 per 100,000 per year

Table 1.4 Illustration of rate of unemployment by suicide status in a case-
control study

Cases of suicide Controls Total

Total 132 264 396

Employed 114 251 365

Unemployed 18 13 31

Odds of exposure 0.158 0.052 -

James B. Kirkbride and Annie Jeffery

12

https://doi.org/10.1017/9781911623861.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781911623861.002


From this, it is possible to calculate the odds ratio, where
the odds ratio is defined by the odds of exposure in cases
divided by the odds of exposure in controls:

Odds ratio =
OddsCases
OddsControls

Odds ratio =
0:158
0:052

Odds ratio = 3:05

In the above example, we calculated the ‘exposure’ odds ratio,
that is, the increased relative odds of exposure (being
unemployed) in cases relative to controls. In a case-control
study, we could have equally calculated the ‘disease’ odds ratio,
that is, the increased relative odds of suicide in those who
were unemployed (the exposed) relative to those who
were employed. This yields the same odds ratio ([18/13]/
[114/251] = 3.05).

The odds ratio in this example is a close approximation to
the rate ratio estimated in Table 1.3; however, the two are not
identical. The odds ratio approximates to the rate or risk ratios
where the outcome under study is rare, as is often the case for
many psychiatric disorders. When it is not rare, the odds ratio
is higher than the risk ratio. See Box 1.1 for a technical note as
to why we should not estimate risk (or rate) ratios in case-
control studies. An exception to this rule exists for nested case-
control studies in which controls are sampled by a method
called incidence density sampling; here, provided conditional
logistic regression is used, the odds ratios will be equivalent to
incidence rate ratios (for further introduction to this advanced
issue, see Lubin and Gail).15

Measures of Impact
A key question for preventive medicine is determining how
much impact a risk factor has on the overall rate of a
disorder. Thus, measures of impact provide a useful way of
understanding how much disease, disorder or burden
could – theoretically – be prevented in the population, if a
given risk factor or exposure could be removed (e.g. if we
could stop everybody from being exposed to bullying in
childhood, what proportion of psychiatric disorders in the
population would we prevent?). Note, that measures of
impact are predicated on several assumptions, including that
there is a causal association between the exposure and
outcome, the exposure can be prevented and that removal
of the exposure would lead to removal of the outcome in a
given population. The extent to which these assumptions are
valid is of considerable debate, particularly given the multi-
factorial causal structure of most psychiatric conditions,
where any single risk factor may be neither sufficient nor
necessary to cause morbidity. We return to issues of
causation later in this chapter.

Returning to the unemployment and suicide example in
Table 1.3, we might want to know how much unemployment
contributes to the total suicide rate and whether removing the
exposure (i.e. providing conditions of full employment) would
have a sizeable impact on suicide rates. The population attrib-
utable risk (PAR) gives an estimate of this:

PAR%=
Pe Ie � Iuð Þ

PtIt

� �
∙ 100

where:

Pe = Number of persons exposed = 50,000
Pt = Total population = 1,000,000
Ie = Incidence in the exposed = 36 per 100,000 per year
Iu = Incidence in the unexposed = 12 per 100,000 per year
It = Incidence in the total population = 13.2 per 100,000

per year

Box 1.1 Use of odds ratios and not risk ratios in
case-control studies

In the example in Table 1.4, we saw how the exposure odds
ratio and disease odds ratio yielded the same effect size
of 3.05.

The same property does not hold if one were to estimate
the ‘disease’ risk ratio and ‘exposure’ risk ratio using case-
control data. For example, in Table 1.4, the risk of suicide in
the unemployed group is 18 of 31 (risk = 0.581) while the risk
of suicide in the employed group is 114 of 365 (risk = 0.312),
leading to a ‘disease’ risk ratio of 0.581/0.312=1.86. However,
the ‘exposure’ risk ratio would be estimated as (18/132)/
(13/264) = 2.77.

This situation arises in case-control studies because the
researcher artificially constrains the number of controls in
the study by design (for example, often one control per case).
Because of this, risk of disease in both the unexposed and
exposed group will change as a function of the proportion of
controls to cases.

Suppose now we decide to sample 10 times as many
controls for our study, which, under consistent sampling to

the data generated in Table 1.4, would yield 130 unemployed
and 2,510 employed controls. Now, the risk of suicide in the
unemployed group would be 18/148 = 0.122, and the risk of
suicide in the employed group would be 114/2624 = 0.043,
yielding a ‘disease’ risk ratio of 2.80, compared with 1.86
previously. Thus, calculation of the risk ratio is a function of
the number of controls, which is decided in advance by the
researcher in case-control studies, while calculation of the
odds ratio remains unchanged ([18/130]/[114/2510] = 3.05).

Assuming that the proportion of exposed to unexposed
controls remains consistent as the number of controls
increases, the odds of exposure in controls will be unaffected
by the total sample size (which is constrained by design),
leading to a valid measure of effect in case-control studies.
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Leading to a PAR estimate of:

PAR%=
50,000 ∙ 36� 12ð Þ
1,000,000 ∙ 13:2ð Þ

� �
∙ 100

PAR%=
1,200,000
13,200,000

� �
∙ 100

PAR%= 9:1%

In other words, this shows us that, of the 132 suicides that
occurred in the year, 9.1% were attributable to unemployment.
This implies that if unemployment was removed as a risk
factor, the suicide rate would fall by this amount. Thus, the
population attributable risk can be defined as the proportion
of a population’s experience of a disorder that can be
explained by the presence of a risk factor. As noted earlier,
PAR has major practical limitations. In this example, it may
not be feasible to remove unemployment entirely from the
population, or the risk factor itself may not be a cause of
suicide. For example, people may be unemployed because of
other underlying health conditions, including mental health
issues such as depression, and these issues may remain even if
someone returned to work.

For a more comprehensive overview of the strengths and
limitations of such measures of impact and to learn more
about various methods for estimating the PAR (and other
measures of impact) that exist, we refer the reader elsewhere.14

Study Designs
Ecological Studies
The ecological study design looks for population-level associ-
ations between the rates of a disease or disease outcome and the
rates of a given exposure. This type of study design can be used to
compare associations between different geographical locations,
across time or between different groups such as migrant groups
or social class. This approach requires routinely available esti-
mates of prevalence or incidence as well as data on exposure. The
problem in psychiatry, and the reason that ecological studies are
not a common design, is that there are relatively few reliable
estimates of prevalence or incidence that apply between many
populations. Two key exceptions are suicide rates and hospital
admissions. An example of an ecological study assessing suicide
is that by Helbich et al.,16 who assessed the relationship between
suicide rates and the proportion of green space across different
municipalities in theNetherlands. The authors found that muni-
cipalities with more green space had lower rates of suicide
compared to municipalities with less green space. Another
example of an ecological study assessing time trends in involun-
tary psychiatric hospital admissions is that by Keown et al.17 The
authors assessed the relationship between annual changes in the
state provision ofmental illness beds in the United Kingdom and
involuntary admission rates. They found that reductions in
mental illness beds were associated with increases in involuntary
psychiatric admissions.

Ecological studies can be useful to generate hypotheses on
the aetiology of a disorder at a relatively low cost. However,

because they do not measure the exposure or the outcome at
the level of the individual, it is not possible to use them to link
exposures and outcome at the level of the individual.
Therefore, they only provide weak evidence of causal relation-
ships. This is referred to as the ecological fallacy. Another
problem with ecological studies is ecological bias. There are
two ways in which ecological bias may occur. Firstly, eco-
logical bias may occur when associations described in eco-
logical studies can be explained by factors that might link the
exposure and outcome (confounding). For example, if it was
found that suicide rates were highest in areas with the most
developed mental health services, a naive interpretation would
be that mental health services are bad for mental health and
have caused this excess. An alternative explanation is that
there are unmeasured confounders, such as social deprivation
or urban environments, which are associated with both suicide
and the extent of local mental health services.

The second way in which ecological bias may occur is
when the effect of the exposure is modified by another factor
that varies between populations (effect modification). For
example, if a study found that suicide rates were lowest in
areas with more green space, this could be modified by the
level of perceived safety – areas with high perceived safety may
benefit from more green space, whereas this may not be the
case in areas with low perceived safety where green space is
not utilised.

Despite these concerns, ecological studies can reveal
important trends in psychiatric outcomes at a population or
group level and across time. This information can be valuable
for the planning of health services and public health initiatives,
as well as hypothesis generation.

Cross-sectional Studies
Cross-sectional studies examine health outcomes within a
defined population at a particular point in time. They are
usually survey-based and are conducted on individuals, rather
than at the group level like ecological studies. They can be used
to assess the frequency of disease occurrence (prevalence) and
the distribution of disease occurrence (e.g. by sex, age, ethni-
city or social class). There are several important examples of
large cross-sectional studies in psychiatry, such as the UK
Adults Psychiatric Morbidity Survey18 and the WHO World
Mental Health Survey.19

The first step in the design of a cross-sectional study is the
identification of a population. For the purposes of most stud-
ies, population means individuals living within a defined geo-
graphical area. However, it can be any group of individuals of
interest to the researchers, as long as that group can be defined
in a reproducible way. Thus, cross-sectional studies may be
carried out within specific settings, such as primary care or
general hospital outpatient departments, and specific popula-
tions in these settings, such as among employees of a firm or
pupils within a school. In some circumstances, the researcher
may be interested in defining a population of individuals with
a disorder – such as patients with schizophrenia – and
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measuring the prevalence of another disorder – such as tardive
dyskinesia – within this group.

As it is not always possible to survey an entire population,
cross-sectional surveys are typically conducted using samples
from an accessible subset. The key to making valid inferences
using a study sample is to ensure that it is representative of the
target population. Thus, if a cross-sectional study of school
refusal was carried out, it would clearly be important not to
limit the interviews to those children attending school as the
group of most interest are those least likely to be there!
Another example might be a cross-sectional study that inter-
viewed individuals within their own home. If the survey was
performed during working hours, it is likely that the healthiest
members of the community would be at work, and the survey
would exaggerate rates of illness as a consequence. Relevant
groups (e.g. children who do not attend school or household
members in full-time employment) should be identified in
advance so that efforts can be made to ensure their inclusion.
Random sampling is then preferable to maximise the repre-
sentativeness of the sample.

Although cross-sectional studies can be used to measure
associations between risk factors and disease outcomes,
because both exposure and outcomes are measured at the
same time point, the direction of causation may not be clear.
However, there are a number of important examples where
cross-sectional studies have been repeated with the same par-
ticipants over time (e.g. the UK Household Longitudinal Study
(‘Understanding Society’), the English Longitudinal Study of
Ageing). These are termed panel studies and are in essence, a
hybrid form of cross-sectional and cohort study.

Cohort Studies
Cohort studies examine the relationship between exposures
and subsequent health outcomes. In a cohort study, the sample
is defined according to its exposure status and followed up over
time to determine who develops the disorder(s) of interest. The
key strength of the cohort study is its longitudinal design, which
means that participants are assessed for the exposure before the
onset of the disorder. Thus, cohort studies can usually give an
insight into the direction of causation (see later) and are not
susceptible to recall bias. Cohort studies allow rare exposures to
be studied and can assess the effect of such exposures on
multiple outcomes. In psychiatric epidemiology, cohort studies
identify groups of people exposed to risk factors (such as
childhood maltreatment, substance abuse, workplace stress or
a history of depression) and compare the incidence of mental
health outcomes with that among a non-exposed group. The
analysis of a cohort study then involves the calculation of a risk
ratio or rate ratio (see previous discussion).

The cohort study is best suited to situations where the
outcome is common. For rarer outcomes (such as suicide
and schizophrenia), cohort studies, unless very large, may
have more limited utility. To illustrate this, suppose that a
research team designs a cohort study to determine the effect of
birth asphyxia on schizophrenia. They may identify babies

with birth asphyxia (the ‘exposed’ group) and babies without
such a history (the ‘unexposed’ group). They then have to
follow the babies until adulthood in order to see whether any
of them have developed schizophrenia. Assuming that by
25 years of age, the risk of schizophrenia is 0.5 per cent in
those without birth asphyxia, the team would have had to
follow (on average) 200 babies for each individual with schizo-
phrenia in the unexposed cohort. In order to have a reasonable
chance of detecting a twofold increase in the risk of schizo-
phrenia over the course of the study, they would have had to
follow over 10,000 individuals for 25 years. This example
illustrates that cohort studies can be very expensive and
time-consuming, especially if the outcome is rare. Cohort
studies need to follow-up as many of the original sample as
possible. Non-response bias (see ‘Non-response Bias’ in this
chapter) is therefore a major concern in psychiatric cohort
studies, as the individuals who cannot be traced may be the
ones of most interest. For example, individuals with schizo-
phrenia frequently become homeless or may not be coopera-
tive with requests to participate in research. In the reporting of
these studies, the investigators should describe the character-
istics of those who could not be traced and how they differ
from those who were traced.

Two approaches can be used to overcome some of these
difficulties. The first is the use of large population-based
cohort studies. In the UK, there are several large birth cohort
studies that follow individuals born in a certain year over the
course of their lives.20–22 There is also, for example, the
English Longitudinal Study of Ageing, which identified a
sample of 11,391 people over the age of 50 in the year
2002 and continues to follow-up these individuals every two
years. These cohort studies have looked at many different
aspects of health, and because of their size and inclusion of
relevant exposures, they have provided important data for
psychiatric epidemiologists.23,24 The second common
approach is the retrospective cohort study. To return to the
example of birth asphyxia and schizophrenia, instead of
following babies born now, the investigators could examine
the hospital records of babies born 25 years ago, and – pro-
vided sufficient information on asphyxia was available – could
then trace the babies to identify individuals who had
developed schizophrenia. This is a cheaper approach because
the long follow-up time is not required. Population registers,
such as those in the Nordic countries,25 contain health infor-
mation for all citizens stored under a unique personal identity
number – these registers enable easier tracing of whole popu-
lations over long periods of time and are ideal data sources
from which to conduct retrospective cohort studies. For more
detail about the design, strengths and limitations of cohort
studies, see Chapter 3.2 on the ‘Causes of Depression’ by
Lewis, Lewis and Srinivasan.

Prognostic Studies
Studies on prognosis essentially use a cohort design in which
the participants are patients with a disorder who are followed
over time. There is usually no comparison group, as such
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studies are essentially descriptive – giving insights into the
natural history of the disorder rather than its cause. The main
methodological consideration is ensuring that an inception
cohort is defined, meaning that to be included, patients must
be as close as possible to the start of their first episode of
illness. Most psychiatric disorders have a fluctuating course,
with relapses and remissions. If a study assessing the prognosis
of psychotic illness gathered a sample of individuals at differ-
ent stages of their illness, it would tend to give an overly
pessimistic view of prognosis because it would preferentially
include individuals whose illness had an established chronic
course. Determining that the cohort of individuals are all in
their first episode ensures that those who get better quickly
and never suffer further symptoms are included.

Another consideration with such studies is that the sample
should be truly representative of the general population.
If patients are recruited from specialist centres, there may be
important referral biases, where more unusual cases are
included, perhaps with a poorer outcome. For example, many
of the earlier prognostic studies in the UK, for example of
depression, were conducted from the Maudsley Hospital,
which is not only a tertiary referral centre but also has an
inner-city catchment area, both factors that may skew the
outcome in a negative direction.

Case-Control Studies
Like cohort studies, case-control studies examine the relation-
ship between exposures and health outcomes. Unlike the
cohort study, where the sample is defined according to its
exposure status, in a case-control study, the sample is defined
according to its outcome status.

Cases with a disorder or outcome of interest are compared
with individuals who are free from the disorder or outcome.
An example of a case-control study in psychiatric epidemiology
is that of Jongsma et al.,26 where the authors recruited 1,130
cases with schizophrenia and 1,497 controls without schizo-
phrenia, then compared a range of exposures between these
groups, including ethnicity and social disadvantage. Unlike
cohort studies, case-control studies are useful for rare dis-
orders, and it is possible to determine the relationship between
many different exposures and the disorder under study. Case-
control studies are usually quicker and cheaper to perform than
cohort studies because the disorder has already occurred, and it
is not necessary to follow individuals over many years. Unless
very large, case-control studies are not useful for rare exposures
because insufficient cases and controls will have experienced
them to make useful comparisons. The analysis of the case-
control study involves a comparison of the odds of exposure in
the cases compared with the controls – and is expressed as the
odds ratio (see previous discussion).

The most important issue in case-control studies is the
selection of both cases and controls. The key problem is
selection bias, which occurs when the risk factor under study
has an effect on the likelihood that the individual will be
recruited to the study. This can work for both cases and

controls. For example, some neuroimaging studies in psych-
iatry involve selecting patients with severe chronic psychotic
illness from ‘centres of excellence’ and comparing them with
controls who may be PhD students from the same centres. For
both cases and controls, equal and opposite selection factors
may generate misleading results. Cases may be unlikely to give
a true representation of psychotic illness because those most
readily available tend to be those with chronic symptoms (an
instance of prevalence bias, discussed later). The controls are
unlikely to represent the typical ‘normal’ brain because they
have been drawn from a highly educated sample. For this
reason, much emphasis is placed on attempting to select as
representative a sample of cases as possible. The key to the
selection of controls is that they should be drawn from a
similar population and be similar to the cases in all respects
apart from the disorder under study.

Depending on how and when the exposure is assessed,
case-control studies may be unable to determine the direction
of causality and may be susceptible to recall bias. However,
this may not be the case when there is a clear temporal
sequence (e.g. exposure to childhood maltreatment and the
outcome of substance abuse in adolescence or the exposure to
domestic violence and the outcome of suicide). Recall bias
may also be overcome if exposures are identified through,
for example, medical records.

Randomised Controlled Trials
In the randomised controlled trial (RCT), interventions to
treat (or sometimes prevent) a disorder are compared to a
placebo or to one or more other active treatments. RCTs can
be used to evaluate intervention efficacy, acceptability and
adverse effects. RCTs randomly assign participants to an inter-
vention as part of the trial. To perform an RCT, the investi-
gator should demonstrate that there is no evidence to suggest
that a treatment is better than placebo or another active
intervention. If one treatment was already known to be far
superior to another, it would not be ethical to randomise.
Unlike studies of risk factors, where it would be unethical
for the investigator to assign individuals to receive a poten-
tially harmful exposure, RCTs are ethical because the inter-
vention is expected to do good.

Appropriately designed RCTs are the most robust research
method for determining causal relationships between an inter-
vention and outcome (for a more detailed discussion of this, see
the ‘Causation’ section later in this chapter). The key methodo-
logical feature of the RCT is randomisation with concealed
allocation. The rationale behind randomisation is that each
participant has an identical chance of receiving each treatment.
Then, if the trial is sufficiently large, potential confounders will
be evenly distributed between the groups; this process should
theoretically remove confounding by both observed and unob-
served variables, as well as avoid selection bias.

In simple randomisation, the participants are assigned to
groups in sequence according to a randomly generated
number. The problem with this method is that the random
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groups may not be balanced: it is possible that, simply by
chance, the two groups are of different size, and this is statis-
tically inefficient. Balanced randomisation overcomes this by
allocating participants in blocks. A typical block size would be
eight, and the investigator would arrange that within this
block, four participants would receive the intervention and
four would be the control condition (see Figure 1.2).

Randomisation usually ensures an even distribution of
important confounders between groups. However, in smaller
trials, this cannot be guaranteed – by chance, there may be big
differences in the distribution of confounders. To get around
this, the investigator can perform a stratified randomisation,
where the sample is divided according to the presence of the
variable. For instance, in a trial of sertraline to treat depres-
sion, the baseline severity of depression was considered to be a
key variable, and so, the investigators stratified the random-
isation on this.27 In minimisation, this process is taken a step
further, and a wide range of key variables are identified;
participants are then effectively matched on each of these
variable to ensure that they are as similar as possible.

Concealment of allocation refers to the degree to which it is
predictable to the researcher which treatment the patient will
receive. If the investigator had considerable faith in a new
treatment, they might consciously or unconsciously manipu-
late the randomisation process in order to ensure that patients
with a good prognosis were assigned to the experimental
treatment. Thus, the trial would be more likely to report
‘positive’ results. The best method is to have randomisation
performed by an independent third party who is not aware of
the study questions.

RCTs usually have a list of inclusion and exclusion criteria
to ensure that patients entered are similar. The rationale for

exclusion criteria may be to prevent the following groups from
participating:

• People with contraindications for the treatments

• Clinical subtypes with particular profiles that might
confuse the results (e.g. having psychiatric comorbidities
with similar symptoms)

• Certain groups who are considered ‘high risk’ (e.g. patients
with suicidal ideation – this may prevent embarrassment
of the investigators and sponsors, but it is not useful to
clinicians, who see such patients all the time)

• Those who might be considered to have difficulties
consenting or following trial protocol (e.g. individuals with
learning disabilities or cognitive impairment)

It is good practice for trials to report the number of individ-
uals approached, the number who refused to participate or
were excluded, and the number randomised. The CONSORT
statement provides a widely endorsed checklist of standard
reporting items for RCTs.25

As with cohort studies, dropouts from RCTs are a major
problem. The investigators should attempt to follow everyone
up, including patients who drop out of treatment. Many trials
simply compare those in the two groups who have completed
the trial according to protocol. This may mean that a sizeable
proportion of those randomised (one-third in average anti-
depressant trials) are left out. This is misleading and can be a
source of potential bias. A better approach is to use intention
to treat analysis, where all randomised participants, no matter
how long they were on treatment, are included in the analysis.

The analysis of RCTs depends on the nature of the out-
come. Many RCTs describe results in terms of change of
scores on symptom-rating scales. In these cases, it is preferable
to present results as differences in the changed scores from the
baseline. For categorical outcomes (e.g. recovery or admission
to hospital), the approach will be similar to cohort studies, and
a relative risk or rate ratio may be calculated. The number
needed to treat, which expresses the number of individuals
whose recovery can be attributed to the intervention, can also
be calculated. This is a clinically useful measure that describes
the number of individuals who would have to be placed on a
treatment in order to produce one good outcome. For
example, in a meta-analysis (see Box 1.2) of the antidepressant
fluoxetine versus a placebo to treat depression, 45.8% of those
treated with fluoxetine were considered to be in remission
after six weeks, compared with 30.2% of those treated with
the placebo.25 The number needed to treat is then the inverse
of the risk difference (see Box 1.2). In other words, a doctor
would have to prescribe antidepressants to more than six
patients (at least seven, in fact) in order for one to meet criteria
for remission.

Systematic Reviews and Meta-analysis
Reviews aim to synthesise evidence on a topic of interest and
are an important source of information for policy makers,

Figure 1.2 Distinction between simple randomisation and balanced
randomisation. In the simple randomisation, the total in each group is unlikely
to be balanced. In balanced randomisation, the investigator has decided to
randomise within blocks of eight. In each block of eight, there must be four
participants on each treatment.
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clinicians and researchers. While narrative reviews are some-
times used to summarise a body of knowledge, this approach
has been criticised because the methods are not reproducible:
important articles may be missed, and the reviewer may over-
emphasise results that confirm his or her point of view.
Systematic reviews, on the other hand, involve a systematic
effort to identify all relevant literature; inclusion and exclusion
criteria are then applied to that literature, and results are
extracted in a systematic way.

Just as with primary research, systematic reviews should
aim to answer a specific question and state their aims and
objectives explicitly. Systematic reviews also include a
‘methods’ section that describes the search strategy. The
reviewer performs a literature search, which will usually
involve a combination of searching databases of published
research (e.g. MEDLINE), tracing other articles in the refer-
ence lists of identified studies, searching clinical trial data-
bases for unpublished trial results and so on. The results
section should include information on the number of studies
identified from the literature search, the numbers excluded
and included, and the characteristics of the studies included.
Several reporting guidelines now exist for systematic
reviewing and meta-analyses, including the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA; www.prisma-statement.org) and the Meta-
Analyses of Observation Studies in Epidemiology (MOOSE)
reporting guidelines (https://jamanetwork.com/journals/
jama/fullarticle/192614). Like other forms of research, pro-
spectively registering systematic reviews, on databases such as
PROSPERO (https://www.crd.york.ac.uk/PROSPERO/), is also
encouraged.

Meta-analysis is a statistical synthesis of the main results
from the studies identified by a systematic review. Because
randomised trials in psychiatry are often too small to give
reliable information, pooling the results of many similar stud-
ies will improve the precision of the effect size. When the effect
size varies between studies, meta-analysis can also be used to
identify the reason for the variation. For example, different
trials of the same intervention may take place in different
settings (outpatient, inpatient, primary care), with disorders
of differing severity or chronicity. For pharmacological treat-
ments, the drug prescribed in different trials may have been
identical, but the dosage may have been different. For non-
pharmacological treatments, such as psychotherapy or trials of
the way in which community care is delivered, the treatment

may differ radically between trials. It is possible to use a
statistical test of heterogeneity to assess whether all the trials
included in a meta-analysis are ‘pulling the same way’. If this
test indicates that significant heterogeneity between trials
exists, the researchers should investigate why this might be.

Publication Bias
An important problem with meta-analysis is publication bias.
It is a fact of life that researchers and journal editors like to
have ‘positive’ results. There is considerable evidence that
papers that show that one treatment has a clear advantage
over another are more likely to be published than those that
do not. Substantial publication bias could radically alter the
conclusions of a meta-analysis. Publication bias is best avoided
by a comprehensive search strategy – unpublished results may
be publicly available in clinical trial databases or databases of
‘grey literature’ (e.g. OpenGrey).

The role of publication bias can then be assessed using a
funnel plot.28 If researchers complete a large RCT, they are
likely to want to see it published even if the result is negative
because of the effort involved. If publication bias does exist, it
is most likely to be due to small negative trials not being
published. The funnel plot is a graphical representation of
the size of trials plotted against the effect size they report.
As the size of trials increases, they are likely to converge
around the true, underlying effect size. For the large trials,
one would expect to see an even scattering of trials on either
side of this true, underlying effect. When publication bias
occurs, one expects an asymmetry in the scatter of small
studies, with more studies showing a positive result than those
showing a negative result.

Choosing a Study Design
The choice of a study design depends on the type of question
being asked, the nature of the disorder/outcome and the
exposure, and the time and resources available. The first
question a researcher should ask is whether the question has
been answered already, and the step before any serious
research project should be to identify systematic reviews on
the topic or to perform one. For some types of questions, the
study design may be obvious. Studies on treatment efficacy are
usually best answered by an RCT or a systematic review and
meta-analysis of RCTs. When the researcher wants to describe
the prevalence of a disorder, cross-sectional studies provide
the obvious solution. However, it is more difficult to settle a
question about the aetiology of a disorder, or the potential
harmful effect of an exposure (including exposure to different
treatments), and the study design will often be a trade-off
between methodological considerations and resources.

The question next to ask is whether there are existing
sources of data. Previous research studies may have collected
the data necessary to answer the question. Kandola et al.29

were able to use data from the Avon Longitudinal Study of
Parents and Children to determine whether sedentary

Box 1.2 Example calculation of number needed to treat

Risk of recovery on antidepressant 45.8/100

Risk of recovery on placebo 30.2/100

Risk difference 15.6/100

Number needed to treat (NNT) 6.41
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behaviour between the ages of 12 to 16 was associated with
depressive symptoms at age 18, which the study showed to be
the case. This was an extremely economical way of answering a
well-focused question, which would otherwise have required
major resources. Sometimes routinely collected data exist that
are not part of a research study but which still allow the
question to be answered. For rare side effects of drugs, large
databases such as the UK Clinical Practice Research Datalink
are an ideal resource.

If existing data do not exist, the choice of whether to use a
case-control, cohort or cross-sectional study will depend on
the relative frequency of the outcome and exposure and how
easy they are to measure. Case-control studies manipulate the
frequency of the outcome (by sampling according to partici-
pants’ disorder status), and cohort studies manipulate the
frequency of the exposure (by sampling according to the
participants’ exposure status). Thus, case-control studies are
best for rare disorders and cohort studies for rare exposures.

Causation
The observational (e.g. cohort, case-control) and experimental
(e.g. trial) study designs in epidemiology described earlier
share the common goal of identifying whether an association
between two variables is causal. This fundamental tenet of
epidemiology then forms and informs the basis of effective
clinical and public health intervention and policy.
In observational studies, the researcher attempts to under-
stand whether an association between exposure (a risk or
protective factor) and disorder is causal; in experimental
studies, the researcher attempts to understand whether an
association between an intervention or treatment (a protective
factor) and effect is causal. In this section, we provide a
theoretical overview to help the reader understand important
conceptual issues around causation and how they apply par-
ticularly to studies in psychiatric epidemiology and psychiatry
more generally. In other chapters of this book, for example,
Chapter 3.2 on the “Causes of Depression” by Lewis, Lewis
and Srinivasan, more direct application of causal theory to
specific issues is given.

As would be expected of this cornerstone issue, causal
inference in epidemiology has received substantive theoretical
and empirical attention, particularly given the controversies
and harms that potentially arise from incorrect inferences; one
of the most infamous (and since debunked30 and retracted31)
recent examples in psychiatric epidemiology was the errone-
ous conclusion – based on a very weak study design and (as it
later turned out) falsified data and unethical procedures – that
a combined measles, mumps and rubella (MMR) vaccine
caused an increased risk of autism in children. Subsequent
research has demonstrated the profound impact on public
health this had, increasing both measles susceptibility in
young children32 in the years after publication until the partial
retraction (1998–2004) and in increases in vaccine hesitancy in
the population.33

Causal inference has been central to the development and
evolution of epidemiology as a discipline. In his seminal
President’s Address to the Royal Society of Medicine in
1965, Sir Austin Bradford Hill outlined nine criteria
(Box 1.3) of any exposure-outcome association that we should
‘especially consider before deciding that the most likely inter-
pretation of it is causation’.34 These traditional causal infer-
ence criteria remain useful today, while recognising that
establishing causation requires careful triangulation of a range
of evidence across a variety of settings, study designs and
methodological disciplines. For example, recent randomised
trial evidence that the drug lecanemab can delay cognitive
impairment and lead to reductions in amyloid burden in those
with early Alzheimer’s disease over an 18-month period35

builds on decades of biomedical, neuroscientific and other
observational and experimental research that has identified
the agglomeration of amyloid beta (Aβ) in plaques as one of
the core features of the pathology of Alzheimer’s disease.
Indeed, several influential epidemiologists have proposed
modern triangulation criteria to strengthen causal inference
in aetiological epidemiology,36,37 which seek to incorporate
and assess evidence generated by different methodological
approaches that – although not free from bias – will likely
contain different sources of biases that may (or may not)
counteract each other to strengthen (or weaken) the plausibil-
ity of a causal association.

Box 1.3 Bradford Hill criteria for causation

1. Strength – Stronger associations are more likely to
be causal

2. Consistency – The finding replicates across different studies
in different samples by different researchers

3. Specificity – Evidence that a single risk factor has a specific
effect on one disorder but not others may increase the
likelihood of causality (though Hill also recognised that
most disorders would have multiple causes, or the so-
called multifactorial aetiology)

4. Temporality – The exposure should precede the outcome
5. Dose-response – The greater the level of exposure, the

greater the risk of disorder
6. Plausibility – The finding agrees with accepted

biological understanding
7. Coherence – Triangulation of findings across different

designs and disciplines. Here, epidemiological evidence
would cohere evidence from other disciplines such as
neurobiology, psychology and animal evidence

8. Experimental evidence – Observational findings are
supported by RCT evidence and natural experiments

9. Analogy – Analogous exposures and outcomes show
similar effects. For example, if low socioeconomic status
(SES) was a determinant of schizophrenia, we would
expect to see this association across validated measures of
education, income, occupation and social class
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Complementing these approaches, a set of more statistic-
ally based contemporary causal inference methods in epidemi-
ology have also been developed over the past two decades to
strengthen the plausibility that associations between exposure
and outcome from observational epidemiology are causal.
A causal effect would be established if we could prove that an
individual exposed to a risk factor for disease developed the
disease following their exposure (i.e. the factual scenario) but
would not have developed the disease had they not been
exposed (i.e. the counterfactual scenario). In other words, if
we could observe the outcome status that a single individual
would experience if they were both exposed or unexposed to a
given risk factor or treatment, we could estimate the individual
causal effect of the exposure on the outcome. This is an example
of counterfactual reasoning, where any individual has two
potential outcomes: the outcome they would have received if
exposed versus the outcome they would have received if they
had remained unexposed. The difficulty here, however, is that
we can never simultaneously observe the factual and counter-
factual outcomes for a single individual, meaning that individ-
ual causal effects are not identifiable. As discussed previously,
the great advantage of experimental epidemiology study
designs, such as randomised controlled trials, is that provided
certain assumptions are satisfied, the process of randomisation
ensures that both measured and unmeasured confounders are
similarly distributed in both the intervention and control arms
of the trial. Given this, the two groups become exchangeable
such that the average outcome experienced in the intervention
arm (i.e. the factual scenario) would be the same as the average
outcome experienced in the control arm, had the control arm
been the intervention arm (i.e. the counterfactual scenario),
and vice versa. Thus, at the population or group level, it is
possible to estimate the average causal effect in an RCT design
under certain assumptions; for example, provided that the trial
achieves a sufficient sample size, has true randomisation and is
free from attrition bias, the effect size (i.e. the odds ratio)
becomes equivalent to the causal odds ratio.

Unfortunately, establishing counterfactual effects under a
potential outcomes framework from observational study
designs is much more difficult. This is particularly problematic
for applied research in mental health (as most disciplines),
where randomised controlled trials are often infeasible or
unethical for testing exposure to putatively harmful effects.
Contemporary causal inference methods, including genetically
informed studies (e.g. twin and sibling designs, Mendelian
randomisation (MR)), the broader class of instrumental vari-
able approaches of which MR is a special case, inverse prob-
ability weighting and propensity scoring have been developed
as statistical techniques to mimic the fundamental concept of
exchangeability that is achieved in an RCT through random-
isation. Thus, these methods – under certain strong assump-
tions – recover the average causal effect between exposure and
outcome in an observational study design. It is beyond the
scope of this chapter or book to provide a detailed introduc-
tion to this class of causal inference methods in epidemiology,

but for excellent introductions on theory and critique of causal
inference, see Rothman and Greenland;38 causal inference
methods, see Hernan and Robins;9 and on contemporary
approaches to triangulation, see Lawlor et al.36 and Munafò
et al.37 In this book, Lewis, Lewis and Srinivasan also provide
more details about Mendelian randomisation, its advantages
and limitations, and how it has been used in depression
research in Chapter 3.2 on the ‘Causes of Depression’.

In addition to these approaches, the use of causal diagrams
provide a further contemporary causal inference technique to
aid transparent identification of causal effects from observa-
tional data. Causal diagrams, such as Directed Acyclic Graphs
(DAGs), have been developed in parallel to more statistically
based approaches to estimating causal effects under a potential
outcomes framework using observational (or experimental)
data in epidemiology. DAGs provide a useful and transparent
tool to declare the theoretical model and assumptions under-
lying any causal effect of interest to be estimated.39 Since
correct causal inference requires the identification and
removal of all potential threats to validity, including the

Box 1.4 Directed Acyclic Graphs (DAGs)

DAGs are causal diagrams that can help researchers identify
and declare the hypothesised causal data structure underpin-
ning the association between an exposure and outcome.
These graphical tools can help researchers identify a minimal
set of confounders that would need to be controlled for in the
design or analysis of a study to estimate the causal effect of
exposure on outcome, as well as to help identify any potential
biases that may be introduced in the design or analysis of the
study. In this way, DAGs provide a useful conceptual tool to
design, conduct and report transparent and reproducible
research. All potential variables relevant to the causal model
should be included, regardless of whether they can be (or
have been) collected.

A DAG includes nodes (variables) and edges (arrows). They
are directed because they must indicate the assumed causal
direction from one variable to another, and they are acyclic
because a variable cannot cause itself; no node should have a
path via edges that points back to itself.

In a DAG, we are usually interested in estimating the direct
causal effect of the exposure, A, on the outcome, Y. Many other
paths between A and Y may exist, via other nodes, including a
set of confounders, L. These are so-called biasing paths
because they are alternate, non-causal paths through which
the association between A and Y exists. Failure to account for
these biasing paths will result in biased estimation of the
direct effect of A on Y. Biasing paths are said to be open when
a confounder is not controlled for, as depicted in Figure 1.3,
and closed or blocked when a confounder is controlled for – or
conditioned on – in some way. Note that a potential biasing
path is any path between A and Y, regardless of the direction-
ality of the arrows (e.g. A L!Y is a biasing path between
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critical issues of confounding, bias and chance (discussed in
detail later), we use simplified DAGs (see Box 1.4 for an
elementary introduction) in the remainder of this section to
highlight how these issues can affect our ability to infer caus-
ation from estimated associations of measures of effect (e.g.
odds ratios, rate ratios) in observational epidemiology. For a
comprehensive introduction to causal diagrams, see both
Hernan and Robins9 and Tennant et al.39

Confounding
Confounders are variables that are common causes of both the
exposure and the outcome and can lead to a spurious associ-
ation or eliminate a real one (Figure 1.3). Importantly, this
implies that a confounder must temporarily precede the occur-
rence of both the exposure and the outcome. For example, we
might be interested in understanding whether cannabis use (A,
in the causal diagram in Figure 1.3) was causally associated with
the risk of developing psychosis (Y, in Figure 1.3). A common
cause of both cannabis use and psychosis (i.e. a potential con-
founder) may be (lower) socioeconomic status (SES) (L, in
Figure 1.3). Since cannabis use may, theoretically, also change
your subsequent SES, any study investigating the potentially
causal association between cannabis use and psychosis would
need to include methods to control for SES that was measured
prior to themeasurement of cannabis use; this maymean taking
measurements of SES in childhood or at birth, for example,
parental SES. Note that confounding is a reflection of the
relationship between variables in real life – unlike bias (see later
in this chapter), confounding is not a result of error in the
design or analysis of studies.

When planning a study, we must identify, measure and
decide on methods to deal with (control for) all potential
confounders that may stop us from concluding that there is
a direct causal effect of A!Y. In causal diagrams, we represent
a confounder that has been controlled for (or in statistical
terms ‘conditioned on’) by placing a box around the confoun-
der (Figure 1.4). This indicates that the potential alternate
causal pathway from A to Y that travels between A L !Y
has been blocked. Subject to assumptions (including the

perfect measurement of the confounder, no other confound-
ing, and correct specification of the causal model), this would
allow estimation of the direct causal effect, A!Y.

There are five main methods of dealing with confounding:

1. Restriction is a method by which individuals with the
confounding variable are removed from the study
altogether. In the previous example, one could restrict the
study to those from the lowest SES group (or highest) and
determine whether psychosis is still more common
amongst those who smoke more cannabis.

2. Matching involves artificially making the two groups
similar in terms of the confounding variable. The
investigator might ensure that, in a case-control study,
each case with psychosis of a given SES was matched with a
control of the same SES. Matching in case-control studies
is intuitively easy to understand but has some
disadvantages in terms of greater sample size requirements
as well as difficulty in finding suitable matched participants
when matching on several variables. Furthermore, recent
epidemiological theory demonstrates that matching alone
does not control for the matched factors included in the
design and that these still need controlling for via other
methods (see the later discussion) at the analysis stage.40

Older textbooks also suggest that a matched design
requires specific statistical methods to take into account
the matching, though this is no longer considered
necessary and indeed can introduce bias to the results. Our

Box 1.4 (cont.)

A!Y in Figure 1.3). Conditioning on L, as shown in Figure 1.4,
blocks the biasing path of this confounder.

Some variables in the assumed causal model may not be
confounders but so-called colliders, C – that is, variables that
are common effects (or common descendants) of two other
variables, as depicted in Figure 1.7. Here, unlike with confoun-
ders, conditioning on a collider will open a biasing path, while
leaving a collider as unconditioned will block that path.

The open access software ‘DAGitty’ (www.dagitty.net) pro-
vides a helpful tool for researchers to build their hypothesised
causal model and understand the potential biasing paths that
need to be blocked in the design and analysis of their study.

A

L

Y

Figure 1.3 Basic confounding structure, represented in a causal diagram. The
potentially causal association between the putative exposure, A, and the
outcome, Y, may not be causal in the presence of a confounder, L, which is not
taken into account during the design or analysis phase of a study.

A

L

Y

Figure 1.4 Controlling for a confounder, L, blocks the potential alternate
causal path between A and Y that travels from A L!Y, allowing the direct
causal effect of A!Y to be estimated.
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recommendations, following Pearce,40 are to judiciously
use matching in case-control studies as a technique to
control for confounders, limited to one or two variables
(e.g. age, gender); ensure the matched variables are
included in the analysis stage; and use appropriate
(‘unmatched’) analytical methods during the analysis.
Matching is also sometimes used in cohort studies, where
the object goal is to make the exposed and unexposed more
similar to each other on certain confounders. Advanced
methods such as propensity scoring techniques attempt to
match participants on their propensity to be exposed
(often, their propensity to receive treatment) in an attempt
to improve the conditions under which the assumption of
exchangeability is satisfied.

3. Stratification is a method used at the analysis stage, where
instead of lumping all subjects together, the sample is split
according to the presence of the confounder – thus those
from different SES groups would be analysed separately.
It is possible using stratification to calculate a combined
estimate of the size of the effect (e.g. the odds ratio) using
specific statistical techniques.

4. Regression adjustment is a general term for multivariable
modelling techniques used at the analysis stage, where the
confounders of interest are included as covariates in the
regression model to control for their effects on the
statistical association between exposure and outcome. Like
with stratification, all confounder variables must be
identified from theory and empirical evidence before the
start of the study and measured appropriately using
reliable and valid instruments. Under any of the earlier
methods (1–4), failure to perfectly measure a confounder
may result in only partial control for the variable, thus only
partially blocking the alternate causal path in Figure 1.3;
this could lead to residual confounding biasing inferences
about the direct causal effect of A!Y.

5. The final approach to confounding is randomisation,
which is dealt with in the section on RCTs. Under
randomisation, all participants in a trial are randomly
assigned to receive the intervention or control, meaning
that the distribution of the confounding factors, L –
whether measured or unmeasured – will be the same in
each arm and thus cannot be common causes of the
treatment, A, or the outcome, Y, as assumed in Figure 1.5.
In practice, one would wish to check whether
randomisation achieved balance (or exchangeability) of
confounders between the two arms of the trial and take

additional steps to control for variables in the presence of
imbalance. However, randomisation is considered as the
strongest method to demonstrate causal effects between
exposure and outcome because it will theoretically deal
with unknown or unmeasured confounders, which cannot
be taken into account by any of the other methods.
Nonetheless, because it is not ethical to assign participants
in studies on risk factors to receive a potentially hazardous
exposure, randomisation is limited to treatment or
preventive studies. This means that studies investigating
risk factors are generally limited to observational
epidemiology, and special causal inference methods have
been developed that attempt to strengthen the
counterfactual strengths that are implicit
to unbiased RCTs.

As mentioned earlier, as common causes of exposure and
outcome, confounders must temporarily precede the exposure
(and outcome). Variables that proceed the exposure but pre-
cede the outcome are on the causal pathway (Figure 1.6); that
is, they are not common causes of the exposure and outcome
(i.e. confounders) but potential mediators of the relationship.
From our example earlier, measuring someone’s SES after
their cannabis use but before the outcome, psychosis, would
make SES a mediator, not a confounder. Inadvertent control
for a variable on the causal pathway may induce bias
(Figure 1.6) into the results since you are no longer estimating
the total causal effect of A!Y.

Typically, more complex confounding structures fre-
quently exist in the causal relationship between an exposure
and outcome, including confounding-by-indication. For
example, in investigating the possible causal role of anti-
depressants on dementia risk, confounding-by-indication
would arise if depression status was an indicator for an anti-
depressant prescription and if depression was a cause of
dementia. For more complex examples of confounding struc-
tures in observational data, see Hernan and Robins.9

A Y

Figure 1.5 Causal diagram of the association between an exposure, A, and
outcome, Y, under the assumption of no confounding, as may arise following
randomisation in a randomised controlled trial.

Ai.

ii.

M Y

A M Y

Figure 1.6 i. When a variable, M, lies on the causal pathway, it is not a
common cause of the exposure, A, and outcome, Y. ii. Inadvertent control for
the mediator, M, would induce bias in estimation of the total causal effect of
A!Y by blocking the part of the causal effect that travels via A!M!Y.
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Bias
Bias refers to systematic errors in the design of a study that
may generate misleading results. Unlike confounding, bias
comes about as a result of the study design or execution.
Bias is classified into selection bias and information bias.

Selection Bias
Selection bias refers to the way in which participants in a study
are selected and the impact this may have on the study’s
results. It occurs when there are systematic differences
between those who take part in a study and those who do
not. It is a particular problem in case-control studies but is not
exclusive to them. An example was given under the ‘Case-
Control Studies’ section. Selection bias tends to be a particular
problem when studies identify cases from clinical populations,
especially in specialist settings, since these cases may differ in
important ways to cases that do not present to services. For
example, a case-control study of the relationship between
bullying and disordered eating restricted to clinically diag-
nosed cases may bias the results because those who
have presented to services may differ systematically to those
cases who do not present to services (but still have an
undiagnosed eating disorder) in terms of their exposure or
confounding factors.

From a causal inference perspective, restriction to clinical
cases in this example is a form of conditioning on that variable
(clinical presentation) as discussed in the previous section on
confounding. Conditioning on a common effect of both the
exposure, the bullying, as well as the outcome, eating dis-
orders, may induce a spurious – biased – association between
the exposure and outcome via a phenomenon called collider
bias (Figure 1.7).

In this example, collider bias occurs because, via restric-
tion, we have conditioned on the common effect (the collider)
of clinical presentation; in causal inference theory, condition-
ing on a collider opens an alternate non-causal path between
the exposure and outcome via the common effect, C, of the
form A! C Y, biasing the true causal effect of A!Y.
To estimate the true causal effect of bullying on eating dis-
orders, one would need to obtain a representative sample of
cases from the target population, such that there was no
conditioning on the collider of clinical presentation.
In causal inference theory, the non-causal path between
A!C Y is blocked when unconditioned, allowing estimation
of the causal effect, A!Y. Various types of selection bias exist,
including two important ones discussed next.

Non-response Bias
Non-response bias is a form of selection bias of particular
importance in cohort studies (but relevant to all study
designs), where the individuals of greatest interest may be
those who are least likely to participate. This can cause mis-
leading results if the exposure (or outcome) under study also
influences participation. In cohort studies, non-response over
time is known as loss to follow-up, attrition or censoring.

As a motivating example, consider the long-standing
observation that many migrant groups are at increased risk
of psychosis.41 Cohort studies of this association may be
affected by differential non-response bias, as depicted in
Figure 1.8. In such studies, genetic liability for psychosis is
unmeasured (or at best, imperfectly measured), as repre-
sented by U, but is known to increase both later risk for
psychosis42, Y, and drop-out or censoring43, C, in cohort
studies. Reasons for this differential loss to follow-up may
include greater cognitive impairment or paranoia, M, as
shown via the mediating path U!M!C. At the same time,
migrants, A, may also be more likely to be lost to follow-up,

A Y C

A Y C

i.

ii.

Figure 1.7 i. Selection bias occurs when those who took part are
systematically different to those who did not: the exposure, A, and outcome, Y,
such that selection into the study, C, is a common effect of A and Y. Restriction
to those who took part conditions on C, inducing a biasing path between
A! C  Y, an example of collider bias. ii. If participation is unrelated to
exposure or outcome status, there is no conditioning on the common effect, C,
and the non-causal path A!C Y is blocked, allowing correct estimation of the
causal effect, A!Y.

M

U

A C Y

Figure 1.8 Differential non-response bias is induced when censoring (loss to
follow-up). C is a common effect of both the exposure, A, and other
unmeasured factors, U, which are also related to risk of the outcome,
Y. Analyses restricted to those with complete data, indicated by conditioning
on censorship, C, would induce a non-causal open path between
A! C  M U!Y, biasing the estimated association between A!Y.
M represents a set of mediating variables that may be caused by unmeasured
factors, U, and may influence non-response, C, such as cognitive impairment,
paranoia or other symptoms of disorder.Adapted from Hernan and Robins.9
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C, for a variety of reasons including returning to their home
country. If we let drop-out from the study be denoted by
C=1, and we restrict the analysis to those who do not drop
out from the study (i.e. C=0), then we have conditioned the
analysis on the descendant of a common effect, C, which, as
in Figure 1.8, induces a non-causal path between
A! C  M U!Y resulting in biased estimation of the
causal effect of migrant status on psychosis risk, A!Y.

Various other patterns of selection bias may exist (see
Hernan and Robins).9 Careful consideration of design features
of the study should be made before the start of a new study,
while methods that attempt to mitigate selection bias at the
analysis stage, including inverse probability weighting and
multiple imputation, exist though require strong assumptions
and theoretical considerations and may not overcome all issues
arising from selection bias.

Prevalence Bias
Prevalence bias is a subtype of selection bias that is a problem
in case-control and cross-sectional studies where investigators
identify prevalent cases, some of whom may have had the
disorder for many years. With disorders such as depression,
where relapse and remission are the rule, prevalent samples
will be biased because they will over-represent those with
chronic depression. It is then difficult to determine whether
exposures act to cause or maintain the disorder.

Information Bias
Information bias refers to errors made in the gathering of
information from participants. There are two main types of
information bias – recall bias and observer bias.

Recall Bias
Recall bias particularly occurs when a disorder has an impact
on the participant’s recall. For example, patients with depres-
sion, when asked about recent life events, may be more
inclined to dwell on negative events and over-look positive
ones, as this is a feature of depressive thinking.
In schizophrenia research, it is notoriously difficult to gain
reliable information on early experiences via retrospective
recall, such as obstetric complications, and mothers of people
with schizophrenia may be inclined to put a good deal more
effort into remembering remote events than mothers of
healthy controls. Recall bias is best prevented by using docu-
mentary evidence (e.g. clinical or other routine records) or by
choosing a study design less prone to recall (e.g. cohort stud-
ies). Other strategies are to use a control group of individuals
with another disorder not thought to be associated with the
risk factor under study, where similar recall effects would be
expected, serving as a negative control outcome.

Observer Bias
In its most general sense, observer bias arises whenever the way
in which something in a study (exposure, outcome, confounder)

ismeasured leads to a systematic departure from the true value of
that variable. As such, observer bias comes in many guises.

It can relate to the way in which researchers ask questions
of participants in studies. If the researcher is aware of the
hypothesis under study and also knows which group the
participant is from, they may ask questions in subtly different
ways. For example, if the study was assessing the efficacy of
cognitive therapy versus standard care for depression, the
researcher may probe depressive symptoms in a less persistent
way to the group who have had cognitive therapy. ‘Blinding’ is
an important approach to prevent this type of observer bias,
but it is not always possible to blind the researcher – in case-
control studies it may be very obvious which participants have
a psychiatric disorder and which do not. This type of observer
bias may be overcome by using highly structured interviews or
self-completed questionnaires so that every participant is
asked the same question in the same way.

Observer bias may also relate to some other systematic
error in data collection that we have already come across; for
example, many epidemiological studies that rely on diagnoses
made as part of someone’s routine care will implicitly include
(or ignore) between-clinician variance – or inter-rater
reliability – as a result of the way that different clinicians
formulate and apply the same diagnostic criteria to patients.
Without consideration, this could introduce bias into the
results. For example, in the Social Epidemiology of
Psychoses in East Anglia (SEPEA) study of the epidemiology
of first-episode psychosis in a rural part of the east of
England,44 the authors used clinical diagnoses made in routine
Early Intervention in Psychosis (EIP) care to identify potential
cases before asking a panel of clinicians – all trained in the
same way with good inter-rater reliability – to make diagnoses
using a standardised research instrument; this ensured both
reliable and valid diagnoses were used to define the epidemi-
ology of psychotic disorders in this study as well as minimise
possible observer bias.

In other situations, systematic errors in observation may
arise during the analysis phase of the study if the measures,
techniques or observers introduce incorrect data, have faulty
readings or fail to correctly interpret information. Classic
examples of this exist, including the so-called dead salmon
experiment in which the authors demonstrated that without
correction for multiple comparisons, results from (though by
no means limited to) functional magnetic resonance imaging
(fMRI) experiments would show substantial post-mortem
neural activation in the brain of an Atlantic salmon in
response to socially stressful stimuli (to humans, whether to
fish remains unclear).45

Ascertainment bias is another form of observer bias,
whereby the methods used to detect cases may systematically
fail to identify and include relevant cases in the target popula-
tion from different groups equally. For example, studies in
which hospitalised cases of depression were over-represented
compared with community cases (who may be harder to find)
would underestimate the true incidence or prevalence of
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depression in a population; moreover, if hospitalised cases
differed from those in the community in terms of the fre-
quency of the exposure of interest, this would introduce dif-
ferential bias, leading to inaccurate estimation of the true
effect size (i.e. the odds ratio) between exposure and outcome.
For example, if hospitalised cases were more likely to have a
family history of depression than community cases, this would
lead to an overestimation of the true effect of family history of
depression on the depression risk in this example.

Reverse Causation
In reverse causation, the association between the risk factor
and the disorder is a valid one, but the interpretation is turned
around. For example, a study might find that there is a strong
association between job loss and depression, and this might be
interpreted as indicating that those who lose their jobs are at
greater risk of becoming depressed. However, an alternative
hypothesis is that depression is an important cause of job
loss – individuals who become depressed perform less well at
work and are therefore more at risk of losing their jobs.

From a causal inference perspective,9 reverse causation is
effectively a special form of confounding, when an unmeas-
ured factor – say the prodromal symptoms of psychotic dis-
order – is a common cause of both a decline in SES (because
people in the prodromal phases of psychotic disorder can no
longer hold down a job due to their symptoms) and a clinical
diagnosis of psychotic disorder (Figure 1.9).

In psychosis research, reverse causation is a long-standing
problem46 in understanding whether the higher rates of
schizophrenia and other non-affective psychotic disorders
seen in city dwellers is due to features of urban life (‘social
causation’), or whether those suffering from non-affective
psychotic disorders are more likely to migrate to the cities
(‘social drift’). These issues can be partially addressed using

longitudinal study designs, such as cohort studies, where the
risk factor is measured many years before the onset of the
disorder to decrease the likelihood that prodromal symptoms
could be related to exposure (i.e. effectively removing the
arrow between U and A in Figure 1.9). There is now strong
evidence from such studies that an association persists
between urbanicity at birth47 or during upbringing48 and later
schizophrenia risk. Nonetheless, more complex – intergenera-
tional – social drift patterns may still explain such an associ-
ation if parental genetic liability for schizophrenia (now U in
Figure 1.9) was a common cause of both child genetic liability
for schizophrenia (now L in Figure 1.9) and urbanicity at child
birth (now A in Figure 1.9). Evidence to support this possibil-
ity is currently equivocal (see Colodro-Conde et al., Solmi
et al. and Paksarian et al.49–51 for further reading on
this issue).

Chance
Type 1 and Type 2 Error
Most studies aim to describe reality by taking a sample of the
total population. However, the sample will not exactly describe
the true underlying population distribution: there is always a
degree of sampling error. Tossing a coin 10 times will yield
different combinations of heads and tails. Statistically the most
likely result would be five heads and five tails, but any com-
bination of heads and tails is possible. More extreme results
(e.g. all tails or all heads) become less probable with increasing
numbers of tosses of the coin. In other words, increasing the
number of tosses increases the precision with which the under-
lying ‘true’ situation can be estimated.

In any analytic study, we hope that the results of our study
reflect reality. Nevertheless, if 10 identical studies were per-
formed, they would all come up with slightly different results.
The size of the difference would depend on the size of the sample
in each study. Studies that report an association between two
variables may either be describing the true underlying situation
or, by chance, have committed a type 1 error (see Table 1.5).
A type 1 error occurs where a spurious association is detected by
chance (a ‘false positive’), and the probability that this has
occurred is assessed by statistical testing. By convention, the type
1 error rate is often set at the arbitrary level of P < 0.05.

Studies that report a ‘negative finding’ (i.e. do not show an
association between two variables) may either be describing the

AL

U

Y

Figure 1.9 Reverse causation is effectively a form of confounding, where the
putative relationship between an exposure, A (for example, SES), and outcome,
Y (for example, psychotic disorder), is actually due to the prodromal symptoms
of psychosis which are unmeasured, U, and which may be a common cause of
SES (for example, loss of a job due to the prodromal symptoms of psychosis)
and which increase the risk of psychotic disorder, Y, via some unobserved
pathway, L, for example, cognitive impairment. Since U and L are unobserved,
reverse causation may provide an alternate non-causal path between A!Y.

Table 1.5 The relationship between the results of a study and ‘true life’

‘True life’

Study Association exists No association exists

Association
demonstrated

* Type 1 error (‘false
positive’)

No association
demonstrated

Type 2 error (‘false
negative’)

*

* Indicates where the study results represents ‘true life’
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true underlying situation or may, by chance, have committed a
type 2 error. A type 2 error occurs when a genuine association is
missed by chance (a ‘false negative’). In designing a study, the
power calculation takes into account an acceptable type 2 error
rate, usually set at 10–20%, meaning that most studies accept
that there is a 10–20% chance that they will fail to detect a true
effect. Statistical power is the converse of the type 2 error rate
(and is therefore usually set at 80–90%). While the type 1 error
rate can be set as an arbitrary threshold beyond which statistical
significance is inferred, the type 2 error rate is determined by
the power the study has to detect an effect size of a pre-specified
magnitude in a sample of a given size. This means that power
and sample size calculations are required before starting a study
to understand how big a study needs to be to detect an effect
should one of (at least) that size exist in reality. More powerful
studies require bigger sample sizes.

Hypothesis Testing, Statistical Significance and Uncertainty
Most epidemiological studies seek to test whether there is an
association or effect between a hypothesised exposure and
outcome. Implicitly, this is a hypothesis test that the association
differs from what would be expected under the null condition –
that is, there being no association between the two variables.
Conventionally, a test of the ‘statistical significance’ of this
association is made, with the test being appropriate to the type
of data and model used. If the estimated P-value is smaller than
an arbitrary threshold (often, P < 0.05, though smaller in
genetic studies due to multiple comparisons), conclusions are
drawn that the observed effect differs from the null and is
‘unlikely to be due to chance’ (type 1 error).

The received wisdom presented in the previous paragraph
is, however, a bastardisation of the use of statistics in medical
research. There is no P-value that can ‘prove’ an association is
true. The misuse and misinterpretation of statistical testing, P-
values and related measures such as confidence intervals are
one of the most endemic and enduring issues in medical
statistics, and we encourage readers of this chapter to develop
a deeper understanding of the correct use and interpretation
of statistics in epidemiology and other fields of medicine (see
Greenland et al.52 for an excellent primer on this topic).

Briefly, though, any statistical model we construct defines a
set of assumptions we, as researchers, make about the relation-
ship between exposures, confounders and outcomes.
We collect data from a (hopefully unbiased and representa-
tive) sample of our target population, and we test the extent to
which that model provides an accurate representation of the
data collected. Effect sizes between the outcome and other
variables in our model – including any exposure(s) of interest –
are estimated alongside the level of uncertainty around them.
This statistical uncertainty codifies the probability or likeli-
hood of the observed data, given the effect size(s) estimated,
and is often represented as confidence intervals around the
estimated effect size. Models produced from smaller datasets
will estimate effect sizes with greater statistical uncertainty
(and wider confidence intervals). P-values and confidence
intervals are intimately linked in statistics (a type 1 error alpha

level of 0.05 corresponds to a 95% confidence interval, or 1 –
0.05), and P-values should more correctly be thought of ‘as a
statistical summary of the compatibility between the observed
data and what we would . . . expect to see if we knew the entire
statistical model . . . were correct’ (Lewis, Lewis and
Srinivasan, p.339).48

Confidence intervals provide us with a more intuitive
measure of the likelihood or probability that the estimated
interval from our study sample contains the true effect size in
our target population, or the precision of our effect. If one
were to repeat our study 100 times in another valid (i.e.
comparable) population, on 95 of those 100 occasions we
would expect the confidence interval around our effect size
to contain the true effect size. Confidence intervals may be
calculated for most parameters we estimate. For example, it is
possible to calculate a confidence interval around purely
descriptive statistics like a mean or a proportion. It is also
possible to show a confidence interval around a comparative
parameter such as a difference between two means, a relative
risk or a number needed to treat. When the 95% confidence
interval crosses the null value of a parameter, this indicates
that there is no difference at the P=0.05 level between the
groups compared. It is important here to know the null value
(see Table 1.6).

We recommend de-emphasising the reliance on P-values,
arbitrary thresholds of ‘significance testing’ or the reporting of
‘statistically significant’ results (or worse, ‘significant’ results)
in favour of interpretation of effect sizes alongside 95% confi-
dence intervals, which tells us about the level of uncertainty in
our observed data given the model.

Points to Consider If a Study Reports One or More
Positive Associations
Uncertainty around any estimate and the possibility of a type 1
error mean that no single study will provide sufficient evidence
to demonstrate a causal effect between an exposure and out-
come. This is why researchers seek to replicate one another’s
results and triangulate evidence from a body of studies around
causation. Positive findings may arise for several reasons.

First, it may be that the study is very big, and even differ-
ences that are in clinical terms trivial appear ‘statistically
significant’. Here, it is important to consider the effect size
(i.e. how big the odds ratio is) and its potential clinical rele-
vance instead of reliance on the P-value.

Second, the more statistical comparisons made, the greater
the likelihood that a ‘statistically significant’ association will be
found by chance. If researchers collected data on 40 possible

Table 1.6 Parameters and their null values

Parameter Null value

Differences in means, risk difference 0

Odds ratio, rate ratio, risk ratio, hazard ratio 1

Number needed to treat ∞
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risk factors for schizophrenia, they could expect two to be
associated at P < 0.05 just by chance.

There is a balance to be reached between wasting data and
‘data trawling’. The best way to overcome this dilemma is to set
out with one or twomain hypotheses that form the centre of the
research protocol and on which the power calculation is based.
All additional findings can be labelled ‘secondary analyses’ and
be seen as a useful by-product of the main research, potentially
for follow-up in other future studies. Further, in keeping with
contemporary causal inference methods, defining one or two
main hypotheses a priori and specifying the theoretical model
you assume to be relevant (for example, via construction of a
DAG, see previous discussion) also reduces the reliance on data
trawling and multiple testing; instead, one constructs a theor-
etical model for the hypothesised relationship, designs the
study, collects the data and tests that model.

An alternative approach to multiple statistical testing is to
use a Bonferroni correction. This works on the principle that
the level of statistical significance set should be adjusted to
take account of the number of tests performed. Thus, if we set
P< 0.05 for a single significance test, this should be reduced to
P < 0.005 if we perform 10 comparisons. This approach is
generally considered too conservative and may lead one to
miss significant positive findings. A better approach is to
express results in terms of their precision (see the previous
section on confidence intervals).

Another way of getting spurious P-values is by using
subgroup analyses. Here, the researcher breaks down the
statistical analysis according to certain characteristics of
the participants. For example, a researcher may have per-
formed a randomised trial comparing a new atypical anti-
psychotic with haloperidol in patients with treatment-
resistant psychosis. The main results show no overall differ-
ence, but the researcher may investigate whether there are
any particular subgroups of patients in whom there was a
difference. For example, the researcher might hypothesise
that patients with pronounced positive symptoms will
respond better to the atypical antipsychotic. Such analyses
are often reported as showing positive evidence for the new
intervention but are best avoided as it is notoriously easy to
generate a type 1 error in this way.

Points to Consider If the Study Reports a Negative Finding
The key question to consider when a negative finding is pre-
sented is whether the sample size was sufficient to detect a true
difference if it really existed – that is, are the results due to a type
2 error? For example, in evaluations of new antidepressants, the
new treatment is often pitted against a reference compound.
Studies often report no difference in treatment effect between
the two drugs, suggesting perhaps that the new treatment is as
good as the old one. However, comparisons between two active
treatments require large samples. If one assumes that two-
thirds of patients treated with imipramine respond within 6
weeks, Table 1.7 indicates the sample size required to detect
differing levels of recovery rates for a new treatment at 95%
confidence and 80% power. It indicates that a sample size of

82 would be able to detect only a very big difference between the
treatments and that to detect a difference of 10 percentage
points in recovery rates (which would be a clinicallymeaningful
difference) would require over 650 participants. Thus, an
underpowered study that demonstrates no difference between
two treatments does not indicate that the treatments have
similar efficacy!

Internal versus External Validity
Most of the previous discussion has concentrated on threats
to the internal validity of research studies. However, a
common complaint about research is that participants may
be so dissimilar from patients seen in normal clinical prac-
tice that it is impossible to generalise from the research
findings. This complaint particularly applies to RCTs, which
are indeed performed in different settings and with different
patient groups to those seen in standard practice. In general,
complaints about lack of generalisability of RCTs have been
misplaced. There are very few examples of treatments
working on one group of patients with a disorder but not
on others. In some circumstances, the practicalities of
recruiting patients make it difficult to ensure that those
entered into the study are similar to those seen in clinical
practice; this particularly applies to patients with psychotic
or manic illness, where the most severely affected are least
likely to give their consent to participate. In other circum-
stances, RCTs impose unnecessarily long lists of
exclusion criteria. It is now more common in psychiatric
epidemiology to see pragmatic RCTs, which apply standard
trial methodology on representative samples of patients to
reduce potential issues affecting external validity.53,54

Critical Appraisal
This chapter has discussed a number of aspects of clinical
epidemiology, with particular emphasis on developing
understanding of the principal study designs and their asso-
ciated flaws. Critical appraisal is the approach of putting
this knowledge into practice when assessing research find-
ings. While some knowledge of study designs and common

Table 1.7 Power calculations for different effect sizes: sample size required
to detect differing levels of recovery rates for a new treatment at 95%
confidence and 80% power

Recovery rate on new
antidepressant (compared with
66% improvement on imipramine)

Number required to
be randomised

33% 82

40% 128

50% 320

55% 654

60% 2096
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flaws helps, critical appraisal is a skill that requires practice.
This is best gained by:

• Reading new research with a sceptical frame of mind,
including assessment of the major ‘threats to validity’ of
the reported findings (chance, bias, confounding)

• Following correspondence about published studies

• Discussing studies with colleagues

• Presenting and attending journal clubs

• Being prepared to ask ‘what’s your evidence?’ when given a
‘fact’ (even in this book!)
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