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Abstract. We define the notion of a morphism of generalized semi-stable type, which is a general-
ization of the notion of a semistable degeneration over a curve. We partially generalize Steenbrink’s
results on the limit of Hodge structures to the case of such a morphism. As an application we prove
the E1-degeneration of the relative Hodge—De Rham spectral sequence for this case.
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Introduction

For a semistable degeneratignX — A over the unit discA in C, Steenbrink
constructed, in [12], a cohomological mixed Hodge complex which gave us the lim-
iting mixed Hodge structure of the variation of Hodge structure over the punctured
disc A* obtained from the morphisn. In this article we partially generalize his
result to the case of higher dimensional parameter spaces. This is a partial answer
to a problem stated by Steenbrink and Zucker [14, problem 7 in the Introduction].
In Section 6 we define the notion of a morphism of generalized semi-stable type
(see Definition (6.2)). Roughly speaking, a morphism is said to be of generalized
semi-stable type, if it is locally a product of smooth morphisms and semistable
degenerations over 1-dimensional unit discs (see Lemma (6.5) precisely). There-
fore such a morphism is of quasi-semistable type in the sense of F. Kato [9]. lllusie
treated such morphisms in [8] for the algebraic case.fl.éX, D) — (S,T) be

a morphism of pairs which is proper and of generalized semi-stable type. Then
the result of F. Kato [9] implies that the sheaff*Q'X/S(log D) is locally free

of finite rank and commutes with base change for every integktoreover it is
trivial that this sheaf defines a variation of Hodge structure S@r. The main
theorem in this article, Theorem (6.10), states that for every boundary point
on T there exists, under a certairaKler condition, &-mixed Hodge structure
(Hq, W, F) such that theC-vector spacéi¢ is isomorphic to the&C-vector space
qu*Q'X/S(Iog D) ® C(s) (whereC(s) denotes the residue field at the paift

and, via this isomorphism, the filtratidrni on H¢ is identified with the filtration on
qu*Q'X/S(Iog D) ® C(s) obtained from the stupid filtration cm'X/S(Iog D). In
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Section 4 we construct a cohomological mixed Hodge complex which gives us such
a candidate of the ‘limiting’ mixed Hodge structure by an elementary way follow-
ing the idea of Steenbrink in [12], [13] and of Tu in [15]. Here we should mention
L.-H. Tu’s Ph.D. thesis [15], in which he studied the same problem and proposed a
way of constructing such a cohomological complex. However, he has not finished
the proof that his complex is actually a cohomological mixed Hodge complex, as
far as the author knows. Our cohomological mixed Hodge complex constructed in
Section 4 is the same as L.-H. Tu’s at estructure level. But the construction

of the underlyingQ-structure is different from his but deeply influenced by the
work of Steenbrink in [13]. In Section 1 we present some basic facts which we
need later. In Section 2 we construct a complex of sheavé€¥wéctor spaces,
which will turn out to be the underlyin@-structure of our cohnomological mixed
Hodge complex in Section 4. Section 3 is concerned with the weight filtrations on
sheaves of the logarithmic forms. In Section 5 we study the relation between the
relative log De Rham complex for a morphism of generalized semi-stable type and
the cohomological mixed Hodge complex constructed in Section 4.

There stillremain, at least, two open problems related to the results in this article.
The first is to prove that our mixed Hodge structure is the limit of Hodge structures
in the sense of Schmid [11] and Cattani—Kaplan [1]. The second is the problem
to generalize the results in this article to the case of log geometry in the sense of
Fontaine—lllusie and K. Kato [10]. Log geometry does not appear explicitly in this
article, but influences it deeply. So it is natural to study the generalization to the
case of log geometry as in Steenbrink [13].

Notation

We use the following notation in this article.

(0.1) For a complexX< and for an integen we define a compleX[n] by
K[n]P = KPtn

for everyp with the differential defined by

A = did "I K[ = K" — K" = K[n]P

Notice that our definition is different from the usual one as in Hartshorne [6] on
the sign of the differentials.

(0.2) Letk be a positive integer. A-ple complexK  means the collection of the
dataK” indexed by the set*, that is,p runs througtz*, and the morphisms

di: KP — KPtéi,

fori =1,...,k for everyp, wheree; denotes théth unit vector ofZ*, satisfying
the conditions:

KP =0 unlesp € (Z:0)*
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d’>=0

diodj+djod,~:0,

for everyi andj. To a givenk-ple complexK -, we associate a (single) complex
sK, which is called the (single) complex associatedkto by

sK"= P K”
pl=n

with the differential

k
d=Pd,
=1

)

where|p| = p1 + - - - + pj, for an elemenp = (p1, ..., py) of Z¥. Itis easy to see
that the datds K'; d) above actually give a complex, that is, the differenfiabove
satisfies the conditiod® = 0.

(0.3) For a positive integeW and for an integem with 1 < m < N we define a

sets)Y by

GTNn:{(Ul,...,O’m) €eZMl<o1< - <op <N}
Form > 2 and for an element = (04, ...,0,) € 6Y, the symbob; denotes the
element(oy,...,6;,...,0n,) Of 6 _, for everyi = 1,...,m, where the symbol

“ means that we delete the integer under it.

(0.4) A reduced diviso” on a complex manifoldX is called a normal crossing
divisor if for every pointz onY” there exists a local coordinate system, ... . , z,,)
around the point such thalt” is defined by the function; - - - 2, for somek with

1 < k < n. Areduced normal crossing divisor on a complex manifold is said to be
a simple normal crossing divisor if every irreducible component is nonsingular.

(0.5) Let X be a complex manifold antl = Z,N:lYi a reduced simple normal
crossing divisor orX, where they;’s are the irreducible componentsYf For an
elementr = (o4,...,0,,) of 6 we define a submanifolt, of X by

Y, =Y, N---NY,, .

Notice thatY}; is of pure codimensiom in X. Furthermore, for an integes with
1< m < N weset

v"= 1] Y,

ceclN
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where] | denotes the disjoint union of complex manifolds. We use the convention
thatY? = X andY™ = § for m > N or m < 0. We denote the canonical
morphism fromY™ to X by

am Y™ - X

and, if there is no danger of confusion, omit the subserifb a,,,. Sincea,, is a
finite morphism of complex manifolds, the functar,,). is an exact functor. For
this reason we sometimes omit the sym@g},)... As for the pull-back of analytic
objects onX to Y, (resp.Y™), we sometimes use the symbol¥,, (resp.NY™)
or |y, (resp.|ly=). For example, for a0 x-module sheafF on X the pull-back
a,F of F to Y™ is denoted byF |y, for a subspac€ of X the subspace,,'Z
of Y™ is denoted byZ N Y™ and so on.

(0.6) For a point: of a complex analytic spack the residue field at the pointis
denoted byC(z), that is,C(z) = Ox ,/m,, which is isomorphic t&. For a local
sectionf of Ox around the point, f(z) denotes the class of the gefine Ox,

in the residue fieldC(z), which is often identified with a complex number by the
isomorphisnC(z) ~ C above. The complex numbgé(z) above is called the value
of f at the point.

(0.7) LetX andsS be complex manifolds,” andT reduced simple normal crossing
divisors onX and .S respectively, andf: X — S a surjective morphism. (We
permit the cas& = 0. In this case we need a trivial modification in the following.)
Assume, in addition, that the pull-baék= f*T" and the sunD + Y are reduced
simple normal crossing divisors ofi too. Then we have a morphism

F*Qi(logT) — Q% (log(D +Y))

whereQ? (log(D +Y)) andQi (log T') are the sheaves of the logarithmic 1-forms.
We deflne ar0x- moduIeQX/S(Iog D)(logY') by

0%/5(log D)(logY) = Cokex(f*Q(log T) — Q% (log(D +Y)),

andOx-module sheave®%., . (log D)(logY’) by

X/S

0% s(logD)(logY) = /\QY/S log D)(logY),

for all p. (For the case that = 0, we use symbolQX/S(IogD) andQ”Y/S(IogD)
instead.) The derivatios on Q7 (log(D + Y)) induces af ~10Os-derivation

d: % (log D) (log ') — Q% (log D) (log V)

for everyp and therQ'X/S(Iog D)(logY’) forms a complex of ~*Os-modules.
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1. Preliminaries

(1.1) In this section we will prove several results which we need later for the
construction of th&-structure of our mixed Hodge structure.

(1.2) At first we recall the definition of the Koszul complex (see lllusie [7] or
Steenbrink [13]).

DEFINITION (1.3) LetA be aring andp: E — F a morphism ofA-modules.
We fix a non-negative integer. Then we define ad-module Ko$ (¢)? for every
integerp by

0 if p<Oorp>n

Kos)(p)? =
A((p) {Pan®A /\pF O<p<n

wherel',,_, denotes th€n — p)th graded piece of the divided power envelope
of E over A. Moreover we define a morphism of-modulesd: Kos (¢)? —
Kos? (o)P*! for everyp = 0,...,n — 1 by

k
d((e o) ®y=2 o e @ (e Ay,

wherez,, ...,z are elements off, y of A’ F, ny,...,n; are positive integers
with Ele n; =n — p. Then itis easy to see th@os’ (¢)?, d) forms a complex

of A-modules. We call it the Koszul complex associated to the morphiskive
omit the subscript, if there is no danger of confusion. We use the convention that
Kos™ ()P = 0 for everyp if n is a negative integer.

Remark1.4) Lety: E — F be a morphism ofi-modules and3 an A-algebra.
Then we have a canonical isomorphism

Kosji(¢) ®a B ~ Kosg(p ®4 B),

for every integem, wherey ® 4 B denotes the morphism d8-modules from
E®4 Bto F ®,4 B obtained by the base extensidn— B. Therefore we have an
isomorphism

HP(Kos)i(¢)) ®a B = HP(Kosp (¢ ©4 B))

for every integep, if B is flat overA.
(1.5) LetA, E, F andy be as above and a fixed non-negative integer. Then the
inclusion Ke(yp) — E induces a morphism

Tp—p(Ker(y)) ® /\F — Kos*(yp)?
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for 0 < p < n. ltis clear that the image of the morphism above is contained in the
kernel ofd: Kos® ()P — Kos®(p)P*1. Therefore we obtain a morphism

Ty—p(Ker(p) ®AF+HWMﬂ)) (1.5.1)

On the other hand, the canonical surjectior- Coker(p) induces a morphism

T, ,(Ker(p)) ® /\F — T, ,(Ker(p) ® /\COkel(tp)

It is easy to see that the morphism (1.5.1) factors through the morphism above.
Thus we obtain a morphism

T, p(Ker(p)) ® /\ Cokel(p) — HP(Kos"(p)). (1.5.2)
LEMMA (1.6) Inthe situation as ir{1.5), the morphisn{1.5.2) is an isomorphism
for every integep if E, F andCoker(y) are flat overA.

Proof. See lllusie [7] and Steenbrink [13]. O

COROLLARY (1.7) Assume that we have the following commutative diagram

0 - K - E Y L F e ~ 0

!

0 - K -E — % L F - C - 0,

of flat A-modules with exact lines. Then the canonical morphism
Kos™ () — Kos™ (')

induced by the morphisnds — E’ andF — F' is a quasi-isomorphism.
Proof. Trivial from the lemma above. O

(1.8) In addition to the assumption in Lemma (1.6), we assume that the base ring
A contains the field of the rational numb&)sand that the kernel ap is a freeA-
module of rank one, that is, Kes) ~ A and the cokernel of is a freeA-module

of finite rank, that is, Cokép) ~ A" for some non-negative integer \We denote

the free generator of K@p) by e. For integers: andn’ with n < n’ we have a
morphism of complexes K8$p) — Kos™ (¢) by

TRY > el "z y
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at thepth step, where is an element of,,_, E andy of A? F.

COROLLARY (1.9) Under the assumption ifl.8) the morphism
Kos™ (i) — Kos™ (i)

is a quasi-isomorphism fank (Coker(y)) < n.
Proof. Easy from Lemma (1.6). O

(1.10) In the situation as in (1.3), an increasing filtrati@non Kos'(y) is defined
by
W Kos'(p)? =0 for m <O

W, Kos" ()P = image of I';,_,E @ A" F @ AP""p(E)in Kos" ()
forO<m<p
W Kos ()P = Kos*(¢)? for m > p

as in Steenbrink [13]. We easily see tH&}, Kos’(p) forms a subcomplex of
Kos™ ().

(1.11) From now on, we assume that the base vnig a field. So we use the
letter K instead ofA. We will treat the cased = Q, R or C only in the following
sections. We denote the cokerneldby C' and the projectio” — Cokely) = C
by =: F — C. Moreover we assume that a direct sum decomposition

k
C=Pa (1.11.1)
i=1

is fixed. Under this assumption, we defin&asubspacé’; of F' by

Fy=r"1 (@ Cj) , (1.11.2)
J#i
forevery: = 1,..., k. Thenthe image ap is contained irF; for everyi, therefore

the morphismp can be viewed as a morphism frafihto F; for everyi. We denote
this morphism byp;. Then we have a commutative diagram with exact lines

Pi
E F; D;-iCj 0

0

E L4 F C =®kC;
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for every; = 1,...,k, where the vertical arrows; — F and@®;,; C; — C =
@®)_, C; denote the inclusions.

(1.12) Under the assumption in (1.11), we define increasing filtrations oii&bs
as follows. A subspac# (C;),, Kos” (¢)? of Kos" ()P is defined by

W(C;)m Kos ()P =0 for m <O

W (C;)m Kos* ()P = image of I',,_, E @ A™F @ AP7™F;in Kos"(¢)?
for O<Km<p

W(C;)m Kos*(p)? = Kos*(p)? for m > p

for everyi = 1,...,k. Then it is easy to see th&¥/'(C;),, Kos"(p)? forms a
subcomplex of Ko%(p). Thus we get increasing filtratio® (C;)’s on Kos' ().

(1.13) We set a subspadeby ' = 7~1(C},). Then we can view the morphism
¢ E — F as amorphism fronk to F'. We denote it byp. Then we have an exact
sequence

E-2 P00
Now we define another increasing filtratidi on Kog'(¢) by
W, Kos™(p)? = 0 for m <0
W, Kos (p)? = image of T',_, E ® A™F ® AP~™F in Kos"(ip)?
forO<m<p
Wi Kosi ()P = Kos'(@)? for m > p

as before.

(1.14) Once we fix a splitting' — F of n: F — C, we have an identification
k
FepE)oC=¢(E)® <€BC¢> :
i=1

Under the identification above the subspaEgs and F are identified with

Fy~ p(E) ® (@ Cj>
i
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Then we have the following identifications:

a+B1+-+Br=p

a B1 Br
Kos'(¢)? ~T,, ,E® ( P /\QO(E)®/\01®---/\CIC> ;

a b1 B
Wy Kos* (@) ~ T, _,E ® P AeE)yeA\NCrie---A\Ck|,
a8y, =p
B1+-+B<m
a B1 B
W (Ci)m Kos™ ()P ~T,_pE ® P AeE)eANCie--— ACk|,
a+pB1+-+B=p
Bi<m
R « B1 B
W KOS™ ()P ~ Ty ,E ® P Ae@®eANCrie---ACk|,

a+pB1+-+B8=p
B1++Brp_1<m

for all  andm with 0 < m < p.

LEMMA (1.15) We have

k

k
<Z W(Ci)(Ii> N W(Ck)m = Z(W(Cz)lh N W(Ck)m)
=1

=1

onKos"*(p)P for everyp, q1, . . . , g andm.
Proof. Easy by taking a splitting’ — F as in (1.14). O

LEMMA (1.16) We have

k
<Z W(Ci)q; + Wq) NW(Ck)m
i=1

k
=S (W (Ci)g; "W (Ch)m) + Wy N W (Ch)m
=1

onKos* ()P for everyp, q, q1, - . ., ¢ andm.
Proof. As above. O

LEMMA (1.17) Under the assumption ifl.11) we have

Kos" ™™ ()P ™™ @ \(F/F;) — Grly (CDKos™ ()P, (1.17.1)
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for everyi = 1,...,k and for everym, p. (Recall the convention in Definition
(1.3) for the casen > n.) More precisely, the isomorphism above is induced by
the morphism
p—m m
TwpE® \ Fi® \F — Gry (@IKos" (p)?,
defined by
TQyRz—z® (yAz) =(=1)"P"™z & (2 Ay) modW (C;)mi1,

wherez is an element of,,_, F, y of AP~ F; andz of \"" F.
Proof. Fixing a splitting, we can identify" ~ F; & C;. Then it is easy to prove
the conclusion. 0O

PROPOSITION (1.18)or every integen, the morphisng1.17.1) above induces
an isomorphism of complexes

m
Kos" ™™ (¢;)[-m] ® \(F/F;) — Griy (“IKos™ (). (1.18.1)
Proof. Trivial from the lemma above. O

LEMMA (1.19) By the isomorphisrfil.18.1) above, we have

(W(Cy) Ko ™ (p1) [—ml) @ N\(F/E) =5 W(Cy)y G COKos' (),

for every:i andj with i # j and for every integel, wherel? (C;) on the right-hand

side denotes the induced filtration G’r}ff(ci)Kos”(ap) from W (C;) onKos"(y)
andW (C;) on the left-hand side is the filtration defined from the decomposition

Cokel(y;) = P C;
J#i
in the same way as if1.12).
Proof. Easy by fixing a splitting. O

LEMMA (1.20) By the isomorphisnil.18.1) in Proposition(1.18), we have the
identification

(W, Kos™ " (1) [=m]) @ A\ (F/F;) = Wi Gry (“DKos" (p),
wherel¥” on the right-hand side is the induced filtration Glmv,‘f(c’“)Kos"(go) from

W onKos"(¢) andW on the left-hand side is the filtration dtos™ (i}, ) defined
in the same way as iflL.10).

https://doi.org/10.1023/A:1000642525573 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000642525573

LIMITS OF HODGE STRUCTURES IN SEVERAL VARIABLES 139
Proof. Easy by fixing a splitting. O
(1.21) Once an elemenbf F is given, a morphism Kd5y)? — Kos*t1(yp)r+t
is defined by
TQYU—TQtAY,

wherez is an element of’,,_,F,y of AP F, thereforez ® y is an element of
I, ,E® N F = Kos'(¢)P andz ® t Ay is an element of,, ,E® \PT1F =
Kos™()P+1. We denote this morphism iy if there is no danger of confusion.
Then we can easily see th@n)? = 0. Moreover, we have

(tA)od+do (tA) =0,

where thed’s are the differentials of Kdy) and Kog+1(y) at the appropriate

places.
(1.22) We have
(tA) (Wi KOS (9)P) C Wy 1Kos ()P F1 (1.22.1)
(tA) (W (Ci)m KOS™ ()P C W (Ci)m41K0S™ ()P4 (1.22.2)
(tA) (Wy, KOS (9)P) C Wiy 1Kos ()P, (1.22.3)
for everym, everyi and anyt € F'. If ¢ is contained in the subspagéF), then
we have
(tA) (W KOS (9)P) C W, Kos™ ()P, (1.22.4)
if t € F;, then
(tA) (W (C)m KOS (©)P) C W (Cy)p Kos ()P T, (1.22.5)

andift € F', then
(tA) (W KOS (9)P) C W, Kos¥ ()P FL, (1.22.6)

(1.23) Here we list up all the assumptions which we need latetkLis¢ a field &
andF be K-vector spaces angt £ — F a K-linear map. We denote the cokernel
of ¢ by C and the projectio” — C by 7. We assume the following:

(1.23.1)C is of finite dimension

(1.23.2) we are given a direct sum decomposition

k
C=Pc
=1

)
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(1.23.3) we are given an elemenif F' for everyi, such thatr(¢;) is a non-zero
element ofC contained in the subspacg

We setr; = dimgC; andr = dimgC = Y5, r;.

(1.24) Under the assumption in (1.23) we define the subspgcgs= 1,...,k)
and F of F, the morphismsp;: E — F; (1 =1,...,k) and the weight filtrations
W,W(C;)(i = 1,...,k) andW on the complex Kdg) as before. Notice that
the morphismp;: E — F;, Cokely;) = @, C; andt; for j # i satisfy the
conditions stated in (1.23) for eveiyThe element; is contained inF; for every
J # ¢ by the definition (1.11.2) of;, andt;, is contained inf” by the definition of
F'in (1.13). Therefore we have

(tiN) (W (C)m KoS™ ()?) € W (Cj)m Kos™ ()P,
for everyj # ¢ and for everyn as in (1.22.5) and
(tk) (Wi KOS ()?) C Wy, Kos™ ()P,

for everym as in (1.22.6).

(1.25) From now on, we use multi-index notation. We denotestheinit vector
in Z* by e;. For an element = (g1, ...,q;) in Z¥, we setlq| = S-¥_; ;. We fix
a non-negative integet. Under the assumptions in (1.23) we defin& avector
spaced(y; n)P? for an integep and for an element of Z* by

k
A(p;n)P1 = KosmHal+k(pptlaltk Z W (Ci)q, KogHlaltk (p)plal+k
i=1

for p € Z5p andq € (Z50)*, and
A(p;n)? =0

if p < 0orq e Z"\(Zs0)*. Moreover, for the case thatis negative we define
A(p;n)P? = 0. We have filtrations ol (p; n)P»? induced from the filtration$V/,

W (C;) andW on Kog'tlal+k(p)ptla+k We denote these filtrations by the same
lettersW, W (C;) andW by abuse of language. The differentiaf Kos™ 41+ ()
induces a morphism

do: A(p;n)P? — A(p;n)P+be,
Moreover, the morphism

ti A Kosﬂ+\a\+k((p)p+|q|+k N Kosn+|q|+k:+l(g0)p+\q\+k+l
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induces a morphism
dit A(gin)P7 — A(p;n)Pates,
for everyi because of (1.24). It is easy to see that we have the following equalities:
(d;)> = 0 for everyi
diodj+djod; =0 foreveryi and j with i # j,

which means thatA(y; n)P»9) forms a(k + 1)-ple complex ofK-vector spaces.
The single complex associated(td(y; n)??) is denoted by A(yp; n). As for the
filtrations, we have

(¢0;
p;n)P1) C Wm+1A(<p; n)Psate:
Y A(p; 1)) C W (Ci)m A(ip; n)P e
mA(p;n)P9) C W(Cy)mi1A(p; n)Pate
CilmAlp;n)P?) C W (Cj)mA(pin)Pa+e for i # j
(psn)P9 C Wy A(p; n)PH5a

(0;n)P9) C W1 A(p;n)Pate:

e (Win A(; )P0 C Win A(; n)P ek,

s
5

\

(1.26) We define new filtrations om (yp; n) as follows. We set

mSA((p1 EB Wm+2|q|+kA((p n)p,q
pt+lgl=s
L(C})msA(p;n) EB W(Cj)m+2g; +1A(p;n)P7 for j=1,... .k
ptlg/=s
mSA(‘P1 @ Wm+2|q\+k 1A(p;n)Pa
p+lgl=s
for everym ands, whereg denotes the elemefy, . . ., ¢,_1) of Z¥~for a given

elementy = (q1,...,q;) of Z*. Then it is easy to see th&{(C}) ., Ly, andL,,
define filtrations on the complexd (¢; n) by using (1.25.1).

LEMMA (1.27) We have

Ly,sA(p;n Z La sA(g;n)’ N L(Ck)gsA(p;n)®
a+pB=m
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for everym ands.
Proof. Because of the equalities

LinsA(gin)® = @ WiiogrAlein)??
p+lgl=s

and

Z LasA(g;n)* N L(CY) s A(p;n)*
a+pB=m

= D Y WarzgerasA@ )P 0 W (Ch)pizg 1A(0in)P
p+|g|=s a+B=m

the following lemma implies the conclusion. O

LEMMA (1.28) For everyp € Z-q and every; € (Zs0)*, we have

Wi Alpin)P! = Y WaA(p;n)?1 0 W (Cr)gAlp; n)P,
a+pB=m

for everym.
Proof. Easy by taking a splitting of: F* — C. O

COROLLARY (1.29) In the situation above the natural morphism

@ GrgGré(C’“)sA(w;n) =5 Grl sA(p;n),
a+pB=m

is an isomorphism.
Proof.Easy from Lemma (1.27). O

(1.30) In order to compute the left-hand side of the isomorphism above, we need
the following results.

DEFINITION (1.31) LetC be an abelian category, an object o’ andFE, F' and
W subobjects o with the conditionF C E. Then the subobjed¥ (E/F') of
E/F is defined as the image of the natural morphidhm £ — E/F.

LEMMA (1.32) (Zassenhaus’ LemméagtC be an abelian category/ an object

of C,andFE, F andW subobijects oV with the conditionF’ C E. Then the natural
surjection

E/F - E(V/W)/F(V/W)
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induces an isomorphism
(E/F)/W(E/F) = E(V/W)/F(V/W).
Proof. Easy. O

LEMMA (1.33) In the situation above, assume that another subobijéds given.
If we have

W+W)NE=WnNE+WnE
then
W(E/F)((E/F)/W(E/F)) = W(V/W)(E(V/W)/F(V/W))

via the identification in the lemma above, where the left-hand side is the subobject
of (E/F)/W (E/F) induced by the subobjeit (E/F) of E/F and the right hand
side is the subobject & (V/W)/F(V/W) induced by the subobjett (V/W) of
VI/W.
Proof. Easy. O

LEMMA (1.34) LetC be an abelian category, be an object of and F, F' and
Wi, ..., Wy subobjects ot/ with the conditionF’ C E. If we have

Wi+ - +W)NE=WiNE+---+W,NE,
then the canonical projection

E/F - EV/W1+ -+ W)/ F(V/ W1+ --- + Wy)),
induces an isomorphism

(E/F)/(Wi(E/F) + -+ Wi(B/F))
— E(V/(Wi+ -+ W) /F(V/(W1 + - + Wy)).

Proof.Easy by Lemma (1.32). O

LEMMA (1.35) We fix integers: and p with p < n. For an integerm with
m > r; = rankC; we have

W (C;)m KOS ()P = Kos* ()P

Therefore ifm > 7, then GrK(Ck)A(go;n)”yq = 0 for everyn € Zo, every
p € Zsoand everyy € (Zso)*.
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Proof. Easy by taking a splitting of: F* — C. O

LEMMA (1.36) We fix non-negative integersandp with p < n and an element
q=(q1,--.,q) in (Zs0)*. For an integerm with m > p + g, we have

W (C)m KosHalHk (pyptlaltk zk: W (Ci)q, KogHlal+k (pyp-+lal+k
i=1
= K0571+|Q|+k((p)p+|q|+k.
Therefore ifm > p + g + 1 then
W (Cr)m-1A(p;n)P"? = A(p;n)P1
and
G (€0 A(in)P = 0.

Proof. As above. O

COROLLARY (1.37) GK(C’“)A(w;n)p’q = O unlessg;, < m < min(rg,p +

qr + 1).
Proof. Lemma (1.35) and Lemma (1.36) imply the second inequality. The first
inequality is trivial. O

LEMMA (1.38) For non-negative integetsandp, for an elemeng = (qa, . .., qx)
of (Z0)* and for an integem with g, < m, the morphisn{1.17.1) in Lemma
(1.17) induces an isomorphism

Alprin + g + 1= m)P om0 @ \ (F/F) = Gy () A(p;n)P

wherej denotes the elemefyy, . .., g,._1) of Z¥~1. Moreover, we have the fol-
lowing identification for the filtrations

WiA(prin + gy + 1= m)P T80 @ \(F/Fy) = Wy Gy ) A(p;n)P,
viathe isomorphism above, whé#éon the right-hand side is the filtration induced
by W on A(p; n)P4.

Proof. If the integern does not satisfy the condition < min(rg, p + qx + 1),

we obtain the conclusion by Corollary (1.37). Because of Lemma (1.15) and Lemma
(1.34) we have

GrnV‘{(Ck)A(w; n)P4

k
~ er[l/(ck)KOSn+\Q‘+k((p)p+|(I|+k/ (Z W (Cy)q, Gr,v,‘f(c’f)Kos"+|‘1|+’f(<p)p+|‘17|+k>
i=1
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and then obtain the first result by Lemma (1.17) and Lemma (1.19). The latter half
follows from Lemma (1.16), Lemma (1.20) and Lemma (1.33). O

PROPOSITION (1.39)or a fixed non-negative integer, the morphisn{1.18.1)
fori = k in Lemma(1.18) induces an isomorphism

B+21+1 o
P sAlprn-B-D-B-21® N (F/F) - Gy WsA(gin)
l>max(0a7ﬁ)
and an isomorphism
B+20+1
P LasAlprin—B-D[-B-20]® N\ (F/F)

l2m3><07—5)

— L GrLCk A(pin),

whereL on the right-hand side is the filtration induced byon s A(¢; n).
Proof.Because

(Ck)
o sy = @ G Al
p+lgl=s
we get
AR SN
GrWsApin)' > @ Alpin-p-1PP e N\ (F/F)
1>max(0,—8)
p+Igl=s—1
by Lemma (1.38) and by putting= gy.. O

THEOREM (1.40) For a fixed non-negative integer, we have an isomorphism
B+20+1
GrisA(pin)~ P GrisAlppin—pB-0[--2]e N (F/F)

a+pB=m
1>max(0,—p)

induced from the isomorphisft.17.1) in Lemma(1.17).
Proof.Corollary (1.29) and Proposition (1.39) imply the result. O

(1.41) Assume that we are given the following data:
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(1.41.1) a commutative diagram &f-vector spaces with exact lines

0 G E —7 F' C 0

0 G E—* L F C 0

(1.41.2) a direct sum decomposition

k
C=Pc
=1

)

(1.41.3) elementg of F' fori =1,...,k

such that the data': E' — F', Coke(y) = C = @F_,C; andt!; € F’ satisfies the
conditions in (1.23). Then, settirtg the images of. by the morphisn¥’ — F,
the datap: E — F, Cokefp) = C = @F_,C; andt; € F satisfies the conditions
in (1.23) too. Therefore we obtain two complexeX¢'; n) andsA(y; n) and the
morphism

sA(p';n) — sA(p;n),

induced by the morphism&’ — E andF’ — F for a fixed non-negative integer
mn.

PROPOSITION (1.42)in the situation above, the morphism above
sA(p';n) — sA(p;n)

is a filtered quasi-isomorphism with respect to the filtratidnsn both sides.
Proof. We have to prove that the morphism

Gr,LnsA(go'; n) — GI’,LnsA(go; n),

induced by the morphism in the statement is a quasi-isomorphism. We have iso-
morphisms

B+20+1
GrisA(pin)~ P GrisA(pyin—-pB-0[--2]® N (F'/F)

a+pB=m
I>max(0,—8)
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and
B+21+1
GrlsA(pin)~ @ GtisA(ppin—p-D[-f-2l® N (F/F)
a+pB=m
I[>max(0,—3)

by Theorem (1.40). Under the identification above, the morphiss@(y’; n) —
Grk s A(p;n) in question is identified with the morphism which is a direct sum of
the tensor product of the morphism defined in the same way asE8ty';n) —
Grk s A(yp;n) for

B — . F} - @1 C 0

E—% L, F, er-lc; 0

and the isomorphism

B+21+1 B+21+1

N FVE) =~ N\ (F/F)

induced from the morphisi’ — F. Therefore we reduce the problem to the case
of £ = 1 by induction ork. In the case of = 1, the double compleX(y; n)P-?
is given by

A((,o; n)p,q — Kosn+q+l(¢)p+q+l/Wq Kosn+q+l((p)p+q+l

and then we have

m+20+1
Grh sA(p;n) ~ @ Kos" ™ (@) [—m — 2] ® /\ C
1> max0,—m)

for everym, wherep is the morphismZ — ¢(F) induced fromp. Because we
have the same result ed (¢'; n) and because the isomorphism above is functorial,
we complete the proof by Corollary (1.7). O

PROPOSITION (1.43)In addition to the assumption ifl.23), we assume that
the kernel ofp is of dimension one. Once we fix a non-zero elemenKer(y) we
have the morphism

Kos () — Kos" (),
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defined in(1.8) for two integers: andn’ with n < »'. If the integem satisfies the
conditionn > r = dimg C, then the morphism

sA(p;n) — sA(p;n’),

induced by the morphism above is a filtered quasi-isomorphism with respect to the
filtrations L on both sides.

Proof.Similarly to the proposition above, we can reduce the problem to the case
of k = 1. (Because the conditions> max0, —3),n— -1l <r—ryandn > r
implies the inequality? + 2/ + 1 > 7, and then we have

B+21+1
N\ F/F. =0,

sincery, = dimg (F'/ F). Therefore we have

B+21+1
sA(ppin—B-D[-B-2]® N (F/F)=0,

if n—p8—1<r—r,=dimg Cokelp) for I > max0, —73). Therefore we
can regard the direct sum decomposition of,GA(¢;n) and GE,sA(p;n’) in
the proof of the proposition above as the direct sums in which the ihdexs
through the integers with the conditiohs max0,—g) andn——1 > r—r; =
dimg Cokel(py,). Thus the induction ok works.) For the case df = 1, we have

m—+2+1
GrhsA(pin)~ P Ko " (@) -m-2le A C
I>max0,—m)
and
, m—+2+1
GrhsA(pin)~ P Ko@) -m-2le A C
I>max0,—m)

wherep is the morphismF — ¢(FE) induced byyp. So we conclude the result by
Corollary (1.9). O

2. A complex of sheaves of Q-vector spaces

(2.1) In this section we construct a complex of sheavea3-okctor spaces, which
will turn out to be the underlyin@-structure of our cohomological complex in
Section 4, fromthe dat@X’; D, ..., Dg; t1,...,tr) whereX be a connected com-
plex manifold,D, ..., Dy reduced simple normal crossing divisors with defining
functionsty, . .., t.
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(2.2) LetX be atopological spac& afield andp: E — F amorphism of sheaves
of K-vector spaces oX . Then we can define a complex of sheavesXoim the
same way as in the last section, that is,

p
Kos'(¢)? =Ty, E®k /\ F

at thepth step with 0< p < n. We define a filtratioriV on Kos'(y) similarly as
in the last section. We denote the cokernepdfy C' as before. Once a direct sum
decomposition

k
C=Pc (2.2.1)
=1

)

is fixed we obtain the filtration®’ (C;) on Kos'(y) as in the last section. If we fix
a global section of the sheaf”, in addition, we have a morphism

tA: K0S (p)? — Kos™H1(p)Pte,

asin (1.21).
(2.3) Assume, in addition, that we have a continuous fidp — X. Because the

inverse image functof ~1 commutes with taking the tensor product and taking the
wedge product, we have

FKos () = Kos*(f~1p) (2.3.1)

wheref~1ly: f~E — f~1F is the topological pull-back of the morphism For
the case that we have a direct sum decomposition (2.2.1), the cokerfielof
admits a direct sum decomposition

k
Coke(f o) = f'C=P [ 'Ci
i=1

because the functgi is exact. Via the identification (2.3.1), the filtratiofis* W
andf W (C;) (i = 1,..., k) onthe left-hand side are identified with the filtrations

W andW (f~1C;) on the right-hand side. We can easily see it by using the exactness
of the functorf —1.

(2.4) Lett be a global section of the sheéf as in (2.2). Since we have the
canonical morphisnf~:T'(X, F) — I'(Y, f~1F), we obtain an elemert—'t of
[(Y, f~1F) for an element of I'(X, F'). Then we have a morphism

tA: KOS ()P — Kog'Ti(p)P+t
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on X and a morphism
(f 1) ArKos™ (f ) — Kos™(f 1)

onY. Via the identification (2.3) the last morphism is identified with the inverse
image of the former one, that is,

(A= ).
(2.5) Now we assume that we are given the following data.

(2.5.1) A morphism of sheaves &f-vector spaceg: E — F on X. We denote
the cokernel ofp by C' and the projectioF” — C by .

(2.5.2) A direct sum decomposition

k
C=Pc
=1

of the cokernel ofp.

(2.5.3) Elementg; of I'(X, F) for i« = 1,...,k such that the germ(¢;), is
contained in the subspa(e€;), of the stalkC,, for everyi at any point: of X, and
is not equal to zero if the stallC;), is not zero.

For a fixed non-negative integemwe define 4%+ 1)-ple complexA x (¢; n)P+1,
wherep is an integer ang is an element oZ”, in the same way as in the last
section, that is,

k
Ax (@;n)P7 = KogHaltk(p)ptlal+k Z W (Ci)q, KogHal+k (pyptlaltk
i=1

forpe Zsoandg = (q1,...,qx) € (Z;o)’“. The associated single complex of the
(k + 1)-ple complexAx (p; n)P? is denoted by Ax (p; n) as before. We define
three filtrationsL, L(C) andL onsAx (p;n) as in (1.26).

(2.6) If we are given a continuous mgpY — X in addition, the datg —1y: f 1E
— f71F, Coke(fYp) = f~1C = @F_,f~1C; andf~1t; € T(Y, f~1F) satisfy
the conditions (2.5.1)—(2.5.3) becaL{g‘Glc’)y = Cy(y) for every pointy of Y.
Then we have & + 1)-ple complex4dy (f ~1¢;n)P? onY and the single complex
sAy (f Lp;n) associated to it ofr. Then we have

fH Ax (pin)P? = Ay (ftpin)Pe
for everyp andq, and

[ tsAx(oin) = sAy(f Yein)
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by (2.3), (2.4) and the exactness of the fungtot.

(2.7) LetX be a complex manifold anf a reduced simple normal crossing divisor
on X. We define a monoid sheaf y (D) on X by

wherej is the openimmersioX’\ D — X and the intersection is taken in the sheaf
7xOx\p- The sheall x (D) is considered as a monoid sheaf by the multiplication
in Ox. ThenO% is a monoid subsheaf di/x (D). The abelian sheaf associated
to the monoid sheaflx (D) is denoted byM x (D)9. Then we have the following
exact sequence

0— Ox = Mx(D)% — (a1)+Zp1 — 0,

whereD? is the disjoint union of all the irreducible components of the diviBor
andZ 1 is the constant sheaf aR? with valueZ. Composing the exponential
map f — e/ of Ox to O% and the inclusior0% — Mx (D)%, we obtain a
morphism of abelian sheavesOx — Mx (D). It is trivial that the kernel
of this morphism is the sheafr2/—1Z. We setEx = Ox ®z Q(~ Ox) and
Fx (D) = Mx (D)% ®zQ. Thenwe have amorphisiiy — Fx (D) by tensoring
Qto the morphisme: Ox — Mx (D)% above. We denote it byx (D). Moreover,
we denote the cokernel gfy (D) by Cx (D) and the projectiod’x (D) — Cx (D)
by 7x (D). Then we have an exact sequence

0 2rv—1Q = Ex X% pe(0) ™% oy (D) = 0 (2.7.1)
and a natural isomorphistiiy (D) — (a1).Qp1. For a fixed non-negative integer

n we denote the Koszul complex Kbsy x (D)) simply by Ko (D). The filtration
W on Kosi, (D) defined as in (2.2) is denoted byx (D).

(2.8) LetX be a complex manifold anfly, . . . , Dy, reduced simple normal crossing
divisors onX such thatD; + - - - + Dy is a reduced simple normal crossing divisor
too. Then, setting) = Ele D;, we apply the construction above 1. In this
case we have a direct sum decomposition

k
Cx(D) = P Cx(Dy). (2.8.1)
i=1

Then we have the filtratiol’ (C'x (D;)) on the Koszul complex Kds(D), which
is denoted byVx (D;) for everyi = 1, ..., k. Notice that we have

P Cx(D;) = Cx(D — Dy)
J7#i
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j#i
forevery: = 1,...,k and that the projectiofi’y (D); — @,.; Cx(D;) induced
by the morphismr x (D) coincides with the morphismy (D—D;): Fx (D—D;) —
Cx(D — D;).

(2.9) Moreover, we assume that we are given a global defining funttiohthe
divisor D; for everyi. Then thet;’s are global sections of the she@fx (D). We
denote the images of's in ['(X, Mx (D)%) orI'( X, Fx (D)) by the same letters
t; if there is no danger of confusion. Then the data

Fx(D); =mx(D)™! (EB CX(Dj)> = Fx (D — D;)

(px(D)ZEX — Fx(D)

k
Cokelpx (D)) = C = P Cx(D;)
i=1

ti e (X, Fx (D)) fori=1,...,k

satisfy the conditions (2.5.1)—(2.5.3). Therefore we have a complex of sheaves of
Q-vectorspaced x (¢x(D);n)P*?andsAx(¢x(D);n)onX asinthe last section.

We denote them b x (D1, ..., Dy;n)P? andsAx (D, . .., Dg;n) respectively.

We denote the filtrations, L(C'x (D)) andL onsAx (D1, ..., Dy;n) by Lx (D),
Lx(Dy,) andLx respectively.

(2.10) In addition, we assume that we are given a reduced simple normal crossing
divisorY on X such that the divisoD + Y is a reduced simple normal crossing
divisor onX again. Now we fix a non-negative integer and denote the canonical
morphisma,,: Y™ — X simply bya (see (0.5)). On the complex manifold™

we have reduced simple normal crossing divisBesN Y™, ..., D N Y™ such
thatthe sumD NY™ = D1NY™ +-.- + D, NY™ is again a reduced simple
normal crossing divisor ol ™. Moreover, if we have the global defining functions

t;'s of D;’s, then thea*t;’s are the global defining functions @; N Y™. Thus

we have Kog .. (DNY™), Aym(D1NY™, ..., DNY™;n)P?andsAym (D1 N

Y™ . ..,Dy,NY™;n)onY™.

(2.11) Itis clear that the morphisaT*Ox — Oy induces a morphisar 1M (D)
— Mym (D N'Y™) of monoid sheaves ol™. It is easy to see that we have a
commutative diagram

ailox —— ailMX (D)gp

Oym —— Mym (D NY™)%
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and that the two horizontal arrows have the same kernel and cokernel. Tensoring
Q with the above diagram we have

a~Ypx (D)

a lEx a 1Fx (D)

By pym (DNY™)
m

Fym(DNY™)

and the two horizontal arrows 1 x (D) andypy - (D NY™) have the same kernel
21v/—1Qy and the same cokernet1Cx (D) = Cyw= (D NY™). Therefore we
obtain the morphism

a~1Kosk (D) = Kos*(a Ypx (D)) = Kot (D NY™), (2.11.1)

from the commutative diagram above for every non-negative integeis easy to
see that these morphisms satisfy the conditions in (1.41). Therefore the morphism

ailsAx(Dl,. .y Dgin) = sAym(D1NY™, ..., D NY™;n)

induced from the morphism (2.11.1) is a filtered quasi-isomorphism with respect
to the filtrationa =1L x (D) on the left-hand side and the filtratidn-» (D N Y™)

on the right hand side by applying Proposition (1.42) and by (2.6). Becaigs
finite morphism, we have a filtered quasi-isomorphism

ax(a™ sAx(D1,...,Dpin)) = au(sAym(D1NY™, ... DN Y™ n)),

with respect to the filtration., (a "*Lx (D)) on the left andu, Ly (D N Y™) on
the right. On the other hand, we easily see that the canonical morphism

sAx(D1,...,Dg;n) — a*(a_lsAX(Dl, ooy Din))

induces an isomorphism

m
sAx(D1,...,Dg;n) ® /\CX(Y) — ay(aYsAx(Dy, ..., Dg;n))

and that the filtration x (D) ® A™ Cx(Y') on the left-hand side corresponds to
the filtrationa.. (a1 L x (D)) on the right via the isomorphism above. Therefore we
have a filtered quasi-isomorphism

m

sAx(D1,...,Dg;n) @ \ Cx(Y) = ax(sAym (D1NY™, ..., D NY™;n)),
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with respectto the filtratiol y (D) ® A" Cx (Y') on the left and, Ly~ (DNY™)
on the right.

(2.12) In addition to the assumption in (2.11) above, assume that we have a global
defining function, of Y on X. Then a k+2)-ple complexA x (D1, . .., D, Y; n)P4

is defined for a non-negative integeWe also have the complex x (Ds, . . ., Dy,

Y';n) associated to thg + 2)-ple complexA x (D1, ..., D, Y ;n)P1.

(2.13) We abbreviated x (Ds, ..., Dy, Y;n)P? and sAx(D1,...,Dg,Y;n) as
Ax(n) andsAx(n) respectively for a while. We use the similar abbreviation for
Aym(D1NY™, ... . DyNY™n) andsAy=(D1 N Y™, ..., D, N Y™ n). By
combining the results above and Theorem (1.40) we obtain the following.

PROPOSITION (2.14)We have a quasi-isomorphism

GlhXsAx(n) = @@ G q, (sAyssan(n — B —1)[—B — 2I]),
L5 msdo,5)

wherea denotes the morphisay_, 5,1 for everyl and 3.

3. Differential forms with logarithmic poles

(3.1) In this section we collect the results on differential forms with logarithmic
poles which we need later. L&t be a complex manifold and a reduced simple
normal crossing divisor o . We denote by2-(logY") the sheaf op-forms with
logarithmic poles alond”. The weight filtration defined in Deligne [2] is denoted
by Wx (V).

DEFINITION (3.2) LetX be a complex manifold antl andZ reduced simple
normal crossing divisors oK such that” + Z is again a reduced simple normal
crossing divisor orX . (We permitt” = 0 or Z = 0.) Then we define an increasing
filtration Wx (Y') on Q% (log(Y + Z)) by

Wx (Y)mQx (log(Y + 2))
= the image of Q% " (log Z) ® Q¢ (log(Y + Z)) in Q% (log(Y + Z))

and call it the weight filtration with respectif. Itis easy to see that the subsheaves
(Wx (Y)mQ (log(Y + Z))) form a subcomplex of2y (log(Y + 2)).

(3.3) Let X be a complex manifold and and D reduced simple normal crossing
divisors onX such thatD + Y is a reduced simple normal crossing divisor too.
For an element of 6, whereN is the number of the irreducible components of
Y andm is an integer with i m < N, we have a morphism of sheaves

Q. (logD NY,) — GryxMOE ™ (log(D +Y)),
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defined in El Zein [4] for every. Taking the direct sum of the morphisms above,
we have an isomorphism

()« (log D NY™) = GEYxIOEF™ (log(D +Y))

(for the proof, see El Zein [4] or Deligne [2]). The inverse of this isomorphism is
called the residue isomorphism with respedttd-or anintegem with 1 < m < p,

Res,: GPYx(Y)QP (log(D + Y)) = (am). Q5" (logD NY™),
denotes the residue isomorphism with respeéf t&or an element € &7,
Reg : G x(MQA (log(D +Y)) — Q. "(logD NY,)

denotes the corresponding direct summand of the isomorphisjj Resthe case
of m = 0, we have an isomorphism

Gy *0IQF (log(D + V) — Q% (log D)

also called the residue isomorphism with respett tmd denoted by Rgs We can
easily see that the weight filtratid#iy- (DN Y ™),0Q%.... (log D N Y™) is identified
with the filtration Wy (D), G * ) Q™ (log(D + Y)), which is induced by
W (D); on Q5™ (log(D + Y)). In the case that the simple normal crossing
divisor D is written as the sum of two simple normal crossing divisors, tha is;
D1+ D, by simple normal crossing divisofg; andD, it is easy to see, as before,
that the weight filtratioriy-m (D; N Y™),Q%....(log D N Y™) is identified via the
residue isomorphism above, with the filtratiting (D;); Gr,V,IfX(Y)Qé’(*m(Iog(D +

Y')) which is induced from the filtratiofV - (D;); on Q% (log(D1 + D2 4+ Y))
fori =1,2.

(3.4) Now we assume that we are given a global defining funatiohY on X.
Then the wedge product with:/« defines a morphism

du

— N9 (Iog(D +Y)) — Q5 (log(D +Y)

for everyp, that is,
du du
(—/\) (W)= —Aw
u u
for a local sectiomw of Q% (log(D + Y')). Then we easily see

() (Wx (V) 0g(D + ¥))) € W (1)1 log(D + )

u
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(SE0) (Wx (D)2 (0g(D +¥))) € W (D)% log(D + )

for everyp andm. In the case thaD = D; + D, with reduced simple normal
crossing divisord), and.D,, we obtain the same result as the second onéJfor
fori = 1, 2 instead ofD. Moreover, we have the equality

do <d—u/\> + (d—u/\> od=0
u (7
whered denotes the derivatiathon the complex of the sheaves of the logarithmic
formsQy (log(D +Y)).

(3.5) Now we study properties of the stalk of the sheaf of logarithmic differen-
tial forms at a given point. So, we may assume the following: Lat be the
polydisk in CN+N" and a pointz the origin. We denote the coordinate func-
tions by z1,...,2n,2N+1,.-., 2y n7. LELY; be a divisor onX defined by the
function z; for i = 1,...,N andY = .V V;. Moreover, letD be a reduced
simple normal crossing divisor oX defined by the functiory;, - -- z;, with

N+1<i < --- < i £ N+ N'. In the situation above, for an element
o = (01,...,0m) of &Y, the closed subspadé of X is defined by the func-
tions zy,, . .., %4, . Therefore X is isomorphic to the product df, and them-

dimensional polydisk, and then we have a projection
T X = Y,.

So we have a restriction morphism
1y Q% (log D), — OF, (logD NY,),

induced by the inclusior,: Y, — X and a morphism
Ty . (log D NY, ), — Q5 (log D),

induced by the projection,. Trivially the compositg:);) o (%) is equal to the
identity. It is also trivial that we have

(m3) Wy, (D NY,)Q, (log D NYy), C Wx (D)% (log D).

In the case thab is written in the formD = D1 + D, with simple normal crossing
divisorsD; and D5, we also have

(75 )Wy, (D; N Y5) . (log D NY, ), C Wx(D;) 2% (log D).

fori =1, 2.
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(3.6) Letp be a positive integery an integer with i m < pando = (01, ...,0pm)
an element o6 . We define a morphism

sy Gy XIOK (log(D +Y)), — Q% (log(D +Y)),
as follows. We have the residue morphism
Res : GRYx() 0% (log(D + Y)), — """ (log D NY,),

and the morphism

Ty . "(logD NY;), — Q% ™(log D),

Then for an elemerit of GrKX(Y)Q{’Y(Iog(D +Y)), we get an element, o
Reg (@) of Q5 ™( IogD) . Thus, we define an elemedit(w) of Q4. (log(D+Y)),,
for an elemen&? of Gy x (Y )Qi’)’((log(D +Y)), by

dzg,,

dz,
sY (@) = (r* oRed @) A 2 A+ A
Zoy 2y

m

Moreover, we set

= Y G ML (log(D + ), — Y (log(D + 1)),

cecN

then it is trivial that the image ofY, is contained iV x (Y),, Q% (log(D + Y)),
and thats, is a section of the canonical projectitiiy (Y),, Q% (log(D +Y)), —

GrKX(Y)Q’)’((Iog(D +Y)).. Therefore, we obtain a direct sum decomposition

Q% (log(D + Y)), ~ é GVx(MQP (log(D +Y))., (3.6.1)

m=0
and then we have

p
Q% (log(D + Y))z ~ P ((am)+ Q5" (logD NY™)),, (3.6.2)

m=0
by using the residue isomorphism. Via the identification above we have
!

W (V)% (Iog(D + V), =~ @ ((am). 25 (logD N Y™),  (3.6.3)

m=0
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and

Wx (D)% (log(D +Y))s

p
~ P ((am)Wym (DNY™), Q" (logD NY™)),. (3.6.4)

m=0

In the case thab is equal to a sum of two simple normal crossing divisBisand
Dy, thatisD = D1 + D, then the second isomorphism holds foyinstead ofD
fori =1, 2.

COROLLARY (3.7) Let X be a complex manifoldy” and D1, ..., D reduced
simple normal crossing divisors aX¥ such thatD; + --- + Dj, + Y is a reduced
simple normal crossing divisor too. We plit= D1 + - - - + Dy, for simplicity.
Then we have an equality

k k
(Z WX(Di)qi> NWx(Y)m =Y (Wx(Di)g N Wx (Y )m)
=1

i=1

on Q% (log(D + Y)) for integersp, m, andg; (i = 1,..., k).
Proof. It is sufficient that we prove the equality above for every stalk. On the
stalk we have the direct sum decomposition (3.6.1), which implies the resit.

COROLLARY (3.8) In the situation above, we have

k
(Z I/VX(l)z)qZ + WX(D)q> N Wx(Y)m
i=1
k
= > (Wx(Di)g; N Wx(Y)m) + Wx(D)g NWx (Y)m
i=1

on Q% (log(D +Y)) for integersp, ¢, m andg; (i = 1,...,k).
Proof. As above. O

COROLLARY (3.9) Under the assumption in Corolla(B.7) we have an equality

k
(Z Wx (Dj)g; + WX(Y)q> NWx(Y)m
=1
k
=N (Wx(Di)g N Wx(Y)m) + Wx (Y)g N Wx (Y)m

i=1

on Q% (log(D +Y)) for integersp, ¢, m andg; (i = 1,...,k).
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Proof.Easy from Corollary (3.7). O

COROLLARY (3.10) Under the assumption in Corollaid.7), we have

k
(Z Wx(Dj)g; + Wx (Y)g + Wx (D») AWx(Y)m
=1

k

=Y (Wx(Di)g; N Wx(Y)m)
i=1

+Wx(Y)q N Wx(Y)m + Wx(D)l N Wx(Y)m

on Q% (log(D +Y)) for integersp, ¢, m,l andg; (i = 1,...,k).
Proof. Easy from Corollary (3.8). O

(3.11) Let X be a complex manifold and,, ..., D, reduced simple normal
crossing divisors o suchthatD = "%, D; is areduced simple normal crossing
divisor onX too. We define al® x-moduleBx (Dx, ..., D)7 by

k
Bx(Dy,...,Dp)P = Q214 (10g D)/ (Z WX(Di)qi>
=1

forp € Zooandg = (qu,...,qx) € (Z>0)*, and by
Bx(Dy,...,Dp)??=0

if p < 0orq € Z*\(Z0)*. We denote the induced filtrations 8 (D1, . . . , D )P

from the filtrationsW x (D) andWx (D;) (i = 1,..., k) on Q§(+|q|+k(log(D +Y))
by the same symbold’x (D) andWx (D;). Then we have

WX(Dk)mBX (D]_, . ,Dk)p,q

_ {0 it m < g

for everyp andgq. The first case is trivial and the second can be seen by counting
the number of poles.

(3.12) In addition to the assumption in (3.11), we assume that we are given defining
functionst; of D; overX for all <. Then we define morphisms

dt;
p LA Q% (log D) — Q% (log D)

i
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as in (3.4) for every. By the conditions on the weight filtratiori& x (D;)’s in
(3.4) these morphisms induce morphisms

dt; ,
d; = t—f/\:BX(Dl, ey DPT — Bx(Dy, ..., Dy )P0te

i
fori =1,...,kandfor every € Z andgq € Z*. On the other hand the differential
d: Q% (log D) — Q% (log D)
induces a morphism
do: Bx(D1,...,Dg)?? = Bx(D1,..., Dp)P™4
for everyp andq. Then we can easily see that
(Bx (D1, ..., Dg)P% do, du, - - s di) pez gezh
forms a(k + 1)-ple complex ofOx-modules. We denote the single complex
associated to thg: + 1)-ple complex above byBx (D1, ..., Dg).
(3.13) We define a decreasing filtratiéhy and increasing filtration& x (D) and
Lx(D;)(i=1,...,k)onsBx(Dy,...,Dy) by

F?sBx(D1,....Dp)" = @ Bx(Di,...,Dp)"

p'+lg|l=n
p'>p

Lx(D)msBx(D1,...,Dp)" = @ Wx(D)mioq+kBx(D1,. .., Dy)P"
p+lgl=n

Lx(Di)msBx(D1,...,Dp)" = @ Wx(Di)mi2q+1Bx(D1,. .., Dy)P".
p+lg/=n

We can easily see that the definition above actually defines filtrations by complexes
onsBx(D1,...,Dy) by easy computation.

(3.14) For the simplicity of the subscript we shift the indeto £ + 1 and denote
D1 by Y for a while. Therefore the index of Bx (D, ..., D, Y)P? runs
through the sex*+ and thenBx (Dy, ..., Dy, Y)?? becomes &k + 2)-ple com-
plex. Inthis situation we also consider the filtratiéh (D) on B(D1, . .., Dy, Y )P:?

induced by the filtratio¥x (D) on Q5 17* X (jog(D + Y)). Moreover we also
consider the filtratiorL x (D) on sBx (D1, . .., Dy, Y') defined by

Lx(D)msBx(Dl, N ,Dk, Y)n

= P Wx(D)nigj+rBx(Da,..., Dy, Y)P,
p+lgl=n
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whereg is an elementqs, . . ., g;,) of Z* for an elemeny = (q1,. .., qx, gp11) Of
Zk+l.

PROPOSITION (3.15)Under the assumption above, we have the canonical iso-
morphism

GrVx()By(Dy,..., Dy, Y)PI

N (am)«Bym(D1NY™ ..., DrN Ym)p+qk+1+l—m,(j if m > qry1
=0 i m < g

for everyp € Zso andq = (qu,...,qk+1) € (Zs0)*1. Moreover, the filtration
Wx (D), on the left-hand side is identified with the filtrati®¥y,~ (D N Y™), on
the right-hand side via the identification above.

Proof. It is sufficient to prove the casg.1 < m < p+ qrr1+ 1 by (3.11.1).
In this case we have

GVx()By(Dy,..., Dy, Y)PI
~ Gr}f{"( )QP+|G|+k+1(|Og D+Y) / (Z Wx (D +WX(Y)qk+l>

by using Lemma (1.34) and Corollary (3.9), whé#& (D;) andWx (Y) above
denote the induced filtrations on ¥ ) Q&1+ (10g( D + ') from the filtra-

tionsWx (D;) andWx (Y) onQ5" 4 (log(D +Y')). Then we can easily obtain
the first part by the residue isomorphism. Lemma (1.33) and Corollary (3.10) imply
the second part. O

PROPOSITION (3.16)In the situation above, we have

Wx(D+Y)y= Y Wx(D)aNWx(Y)s
a+pB=m

onBx(Ds1,..., Dy, Y)P1 for everyp, g andm.
Proof. It is easy to see that the equality

Wx(D +Y), Q% (log(D +Y))

> Wx(D)a% (0g(D + ) N Wx (V)52 (log(D + V)
a+B=m
(3.16.1)

holds. Therefore we have

Wx(D+Y)ym C Y. Wx(D)aNWx(Y)s,
oz—l—ﬁ m
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onBx(Ds1,..., Dy, Y)P1 for everyp, g andm. In order to prove
Wx(D + Y)m D) Wx(D)a N Wx(Y)ﬁ,

onBx(Ds,..., Dy, Y)P?foreveryp, q,m anda, 8 with a+ 3 = m, itis sufficient
to prove

k
(WX (D)o + Z WX(Di)qz' + Wx (Y)Qk+1> N WX(Y)ﬂ
=1

k
CWx(D)a NWx(Y)s+ > Wx(Di)g, + Wx (Y)gsns
=1

on Q% (log(D + Y)) for everyp,q,a and 8 by the definition of Bx (Dy, ...,
Dy, Y)P?and by (3.16.1). This is trivial from Corollary (3.10). Thus, we complete
the proof. O

(3.17) From now on, we denof@x (D1, ..., D, Y)??andBym (D1 NY™, ...,
Dy, n Y™P4 by BRY and BYY, respectively for every integem for simpli-
city. We use the similar abbreviation feBx (D1,..., Dy, Y) andsBym (D1 N
Y™ ., Dy NY™).

PROPOSITION (3.18)in the situation above, we have

Lx(D+Y)ysBx = >  Lx(D)asBx NLx(Y)sBx.
a+pB=m

Therefore, we have the canonical isomorphism

P crtxPer sy ~ Grhx(PH)spy
a+pB=m

Proof. The first equality follows from Proposition (3.16) easily. Then we obtain
the second one as Corollary (1.29). O

LEMMA (3.19) We have an isomorphism

GrgX(Y)SBX ~ @ a$Byp+a1[—0 — 21,
I>max0,—f3)

under which the filtration. x (D) induced on the left-hand side is identified with
the filtration

EB ay Ly -pra41(D N Yﬁ+2l+l),
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on the right-hand side. Moreover the filtratidrx on the left is identified with the
filtration

@ G*Fyﬂ+25+1[—ﬁ — l],
lzma)<07_ﬂ)

on the right.
Proof. By Proposition (3.15), we have

(Y) _ p,q
Grgx SB% - @ G ﬁ+2%+1+1
ptiq|=

p
D Byl

p+ld|+i=n
I>max(0,—3)

1

under which the filtratior. x (D) induced on the left is identified with the filtration

@ O Ly-pt214+1 (D N Yﬁ+2l+l)
lzma)<07_ﬂ)

on the right. Then we obtain the result easily. O

THEOREM (3.20) We have an isomorphism

L DNy #+2+1
Grix(Pspy ~ (P a, (Gray+2 il 'sByaran|—B — 21]).
a+B=m
I>max(0,—3)

Moreover the filtrationF'y on the left-hand side is identified with the filtration

EB a Fypram[—0 =]
a+pB=m
1>max(0,~ )
on the right-hand side.
Proof.We computed the left-hand side of the identification in Proposition (3.18).
Then the result is easily obtained by the lemma above. O

4. Construction of a cohomological mixed Hodge complex

(4.1) In this section we work in the following situation: L&be thek-dimensional
polydisc with the coordinate functions, . . . , t;. The divisor defined by the func-
tion t; is denoted byr; for everyi = 1,...,k and the divismzf:lTZ- by T, that
is, T = Y% , T;. Let X be a connected complex manifold of dimensibriVe
consider a surjective morphisfn X — S satisfying the following conditions
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(4.1.1)f is smooth ovelS\T

(4.1.2) the divisorD; = f*T; is a reduced simple normal crossing divisor ®n
foreveryi =1,...,k

(4.1.3) the divisorD = Y%, D; = f*T is a reduced simple normal crossing
divisor too.

The morphismf: X — S above is written, locally orX, in the form
f*tz =Tp; 141" Tr;,

foreveryi = 1,..., k by an appropriate local coordinatey, . . ., z4) on X where
ro,r1,...,7 are integers with 0= rg < r1 < --- < r < d. Therefore the
morphismf is flat because every fiber is of the same dimension. In this case we
denote the functiong*t; simply byt; if there is no danger of confusion.

(4.2) For the morphisnf: X — S given above, the dat&, D1, ..., D, and the
functionst; ..., t; on X satisfies the assumptions in Sections 2 and 3. Therefore
we have a complex of sheaves@ivector spaces

SAX(Dla v 7Dk’ n)a
for a fixed non-negative integerand a complex of sheaves Gfvector spaces
SBx(Dl, N ,Dk),

onX.

(4.3) In the situation above, we have a morphism dlog of monoid sheaves
dlog: Mx (D) — Q% (log D)

sending a local sectionof Mx (D) C Ox to a meromorphic 1-forrda/a which
is easily seen to be a local sectiort¥§ (log D). The morphism of abelian sheaves

Mx (D)% — Q% (log D)

associated to the morphism above is denoted by the same symbol dlog. Notice that
we have a commutative diagram

Ox __ €. MX(D)-‘”’
diog

Ox —2%+ 0% (log D)
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where the morphism is the composite of the exponential mé&py, — O% and
the inclusionO% — Mx (D)% as defined in (2.7). From the diagram above, we
obtain a commutative diagram

2

d
Ox

0% (log D)

whereEx = Ox ®z Q(~ Ox) andFx (D) = Mx (D)% ®z Q as in (2.7). We
denote the vertical morphism on the left byEx — Ox and the one on the right
by v: Fx (D) — Q% (log D).

(4.4) We define a morphism @J-sheaves
¢x(D): Kosg (D)? — Q% (log D),
for everyp by

px(D)(ay? -+ a @by A~ Aby)

1
= 5 m(a))"t - p(ag) v (ba) A~ Av(by)
Iph- 1!
wherelq, ..., [, are integers Witlj)f:1 l; =n—p,a,...,aq;local sections oEx
andby, ..., b, local sections of’x (D). Then we can easily see the equality

do¢x(D)=¢x(D)od

at everyp, which means that we have a morphism K¢®) — Q' (logD)

of complexes ofQ-sheaves onX, which is denoted by)y (D) again. By the
construction above, it is easy to see that the morphisptD) preserves the
filtrations Wx (D) andWx (D;) on both sides defined in Sections 2 and 3. Then
the morphismp x (D) induces a morphism

Yx(D1,...,Dy): Ax(D1,...,Dg;n)P? — Bx(D1,...,Di)P,
for a fixed non-negative integer Now it is easy to see the equality

d; ox(D1,...,Dg) =x(D1,...,Dy)od;,
for everyi. Therefore we obtain the morphism @f + 1)-ple complexes

1/)X(D1,. .. ,Dk):Ax(Dl,. .. ,Dk;’l’b)p’q — Bx(Dl, N ,Dk)p’q
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and then the morphism of complexes
spx (D1, ..., Dg):sAx (D1, ..., Dgin) = sBx(Da, ..., Dg)

which preserves the filtrationsy (D) and L x (D;)’s for all i on both sides.

(4.5) Now we shift the index to £ + 1 and denoté; . 1 by Y as before. We fix a
non-negative integen and denote the canonical morphism

am. Y™ = X

simply bya. Because we have an isomorphism

Kosy™(D)P™™ @ \ Cx(Y) — Grax(Kosk (D + V)P

by Lemma (1.17) and an isomorphism

Kosy "(D)P " ® 7\CX(Y) — a.(a” T Kosy ™ (D)P~™)
by the projection formula, we obtain an identification
GrVx()Kosk (D + Y)? =~ a,(a~Kosk ™(D)P~™)
via these isomorphisms. Moreover we have a morphism
ax(a T KoSE™(D)P™) — a.(Kosi,™ (D NY™)P~™)
asin (2.11). So we have a morphism
GVx(Y)Kosk (D + V)P — a,(Kosk,™ (D N Y™)P~™)
by the identification above.
LEMMA (4.6) We have the following commutative diagram

Gl (¢x (D+Y))

Gr"xY)Kosk (D + V)P GVx()QP (log(D +Y))

ax(pym (DNY™))

a.(Kosy" (D NY™)P~™) a8 (logD NY™),

where the vertical arrow on the left is the morphism above and the one on the right
is the residue isomorphism.
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Proof. Easy by direct computation. O

(4.7) Now we come to one of the main points of this article. In the situation in (4.1)
we obtained the following data:

(4.7.1) a complex of sheaves @Qfvector spaces
SAX(Dla' . 7Dk’n)
with an increasing filtratiord x (D)

(4.7.2) a complex of sheavesGfvector spaces
SBx(Dl, N ,Dk)

with an increasing filtratiorl x (D) and with a decreasing filtratioFiy

(4.7.3) a morphism of complexes
spx (D1, ..., Dg):sAx (D1, ..., Dgin) = sBx(Da, ..., Dg)

for a non-negative integer.

THEOREM (4.8) Let f: X — S be a morphism satisfying the conditiong#l).

Assume, in addition, that all the irreducible components of the diviggprare
Kahler and that the morphisnfi is proper. Then the daté4.7.1)—(4.7.3) above
form aQ-cohomological mixed Hodge complex ovéiif the integern is greater
than or equal tal, the dimension ok'.

Proof.We prove it by induction otk. For the case of = 1, the result is proved
by Steenbrink in [12] and [13]. Now we proceed to the induction step. So we shift
the index fromk to £ + 1 and denote the divisdp,1 by Y as before. We write
SAx(n), sBx andsiyx instead OfSAx(D]_, e, Dy, Y, n), SBx(D]_, ooy Dy, Y)
andsyx(D1,...,Dy,Y), and similarlysAym (n), sBym= and siyym instead of
sAym (D]_ﬂYm, o, DpnY™; n), sBym (Dlﬂym, RN DkﬂYm) andsyym (D]_ﬂ
Y™ ..., DyNY™) for simplicity. Moreover, the filtratio. x (D + Y) onsAx (n)
or sBx is denoted by x and the filtrationLy= (D N Y™) onsAym(n) or sBym
by Ly for simplicity. We have a filtered quasi-isomorphism

GrixsAx(n) » P a (GIeY* 2 s Ay grasa(n — B — )= — 21]),

a+pB=m
I[>max(0,—3)

by Proposition (2.14). Notice that the integer 5 — [ on the right hand side is
greater than the integdr— 5 — 2/ — 1 = dimY#*+2+1 pecausé > 0 and because
of the assumption > d. By Theorem (3.20) we have an isomorphism

GrixsBy ~ @ a,*(Grﬁygﬁl“sBymzzH[—ﬁ - 20)),

a+pB=m
I>max0,—3)
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under which the filtratio’y on the left is identified with the filtration
D  aFysran[-6-1],
atB=m
1>max(0,—§)
on the right-hand side. Moreover we can easily see that the morphism
Grex sipx: GrEx s Ax (n) — Grx 5By,
is identified with the direct sum of the morphisms
0 (I ™y s [~ — 21])
a4 (GraY P s A asa(n — B — 1)[— 8 — 21])
s 4 (G B [ f — 21)),

by using Lemma (4.6). By the induction hypothesis for the morphism dm? 1
(strictly speaking every connected componentdf-2+1) to the k-dimensional
polydisc with the coordinate functiorts, . . . , ¢, the data

L
GraYB“l“sAyﬂzm(n — ,3 — l)

Ly gt24+1
GI’QYB $Bysia+1

Lys+a+1
Gr,Y Yy B+a+1

form a cohomological Hodge complex of weighbn Y #+2+1, So we obtain the
conclusion by computing the effect on the weight by shiftjirgd — 2/] on the
complexes and by shifting-3 — ] on the Hodge filtrationg’. O

5. Relation to the relative log De Rham complex

(5.1) LetX be a complex manifold anB® andY reduced simple normal crossing
divisors onX such that the surv 4+ Y is a reduced simple normal crossing divisor
too. In this situatior™ is a complex manifold and N Y™ is a reduced simple
divisor onY ™ for every non-negative integet. Therefore we hav®y-»-modules

V.. (logDNY™),
for all p. Itis trivial that we have

(am)« - (logDNY™) = P 9 (logDNY,),

cecN
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wherea,, denotes the canonical morphism fraif* to X and N the number of
the irreducible components &f. From now on, we omit the symbék,,, ). for
simplicity. Now we define a morphism

0: - (logDNY™) — QF . (logD N Y™,
for every non-negative integet by
m—+1 )
d(w)o = Y (=) wgly,,
i=1

whereo is an element 067 | ; andw = (wo)sesn is alocal section of

O n(logDNY™) = P OF (logDNYy).

ceGN
If we have a global defining functiomof Y over X in addition, then a morphism
Q% (log(D +Y)) — Q% (log D)

is defined by multiplying the functiomto a local sectiow of the sheaf)%. (log(D+
Y)). Then itis easy to see that the sequence of the morphisms

0 — Q% (log(D +Y)) — Q% (log D)

25 % (logD NY?Y) 25 0P, (logD N Y?)

IR (5.1.1)

2. (logDNY™) L QP L (logD N Y™

1)

is a complex ofD x-module sheaves.

LEMMA (5.2) In the situation above, the morphism

B G0 (log(D + Y)) — GV XM 0% (log(D + V)

U m+1
induced by the morphism

du

U

A5 (log(D + Y)) — Q4 (log(D + Y))
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is identified with the morphism

(—)P s QM (logD NY™) — Q8T (log D N Y™+,

via the residue isomorphism
Res,: GrYx()QPE (log(D +Y)) — Q2. "(logD NY™)

Res, 1: G V05 log(D + Y)) — QP (log D N Y™+

for everyp andm.
Proof. Easy computation. O

(5.3) LetX be a complex manifold anB+, . .., D, andY reduced simple normal
crossing divisors o such thab"¥_; D; +Y is a reduced simple normal crossing
divisor on X. We setD = Y°¥ | D;. Then the divisorsD andY are as in the
situation in (5.1). Moreover assume that we are given a global defining furigtion
of D, for everyi. We define ar(’)X-moduIeQ?(/z,_c lDi(log D)(logY) by

Qﬁ(/zk:lDi(log D)(logY)

k
— 0% (log(D +Y))/ (Z % n B log(D + Y))) ,

i=1 !

for everyp. (For the case that = 0, we simply use the symbol

QI))(/Ei;lDi (log D)

instead.) Then the differentidlon Q' (log(D + Y')) induces a differential

(logD)(logY) — QPF1 (log D)(logY),

- OP
d: Q X/5k_D;

X/sk_ D;

for everyp. Then(QX/Ek p.(logD)(logY); d) forms a complex of sheaves of
=17

C-vector spaces. If the dafa; andt; are obtained from the morphisfn X — S
in (4.1), then we have

Yy s(logD)(logY’) = Q2 log D)(logY)

}(/zleDi(
as complexes. Sincethedalma NY™, ..., D, NY™ onY™ for every positive
integerm satisfy the conditions as above (with = 0), we have a complex of
Oy~-module sheaves

Q (logDNY™),

ym/sk_ Diny™
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for everym.

(5.4) Morphisms in the complex (5.1.1) induce morphisms

5: QP

Ym/zécleiﬁym (|Og D N Ym+1)

(logDNY™) — Q’;mH/ELleYmH

by the trivial reason. If we have a global defining functioaf Y, in addition, then
we obtain a morphism

QP

X/zkleiUOgD)(IOQY) - QF (logD)

X/sk_ D;
as before. Then we have a complex of sheaves

0— QP

/s, (logD)(logY) — Q@(/E?:lDi (log D)

(logDNY?Y) -2 QP (logD NY?)

o, Op
& Y?2/sk_ Diny?

Yi/sk  Diny?t

0 0

)
— Qe st pyn (109D NYT) (5.4.1)

0 D +1
— Qmerl/zf:leYmH(IoQD ny™+ly

5
—

as in (5.1). Now a subspace defined by the functigns. . , ¢, is denoted byZ,
thatis,0, = Ox/(t1,...,tx) andZ = D1 N---N Dy. Tensoring?D, overOx to
the complex above, we obtain a complex®§-module sheaves

0— Q§/2521Di(log D)(logY)® O, — Q’)’(/Ef:lDi(log D)® O,
o, Op 1 s 5
—Q (logDNY?) @041 — -+ —

Yi/sk  Diny?t

[
;Qp

Ym/E’.“ZleYm(IOgD nNYy™) e O

Saym (5.4.2)

SN 0 4 (logD NY™ N ® Oy ymiss

ym+l/sk  D;nymtl

0

where the symbak stands for the symbabo , , that is, tensor product ovér x.
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LEMMA (5.5) The complexe&.1.1), (5.4.1), and(5.4.2) are exact.
Proof. Similar to the proof by Friedman [5, Proposition (1.5)]. O

(5.6) Because the sheﬁf’Y/Ek D i(log D)(logY) ® O, is a quotient of2 (log

(D 4+Y)), the increasing filtration® x, Wx (D;) (: = 1,...,k) andWx(Y') on

Qf (log(D + Y)) induce increasing filtrations dﬂpY/Ek D (Iog(D +Y)) which

are denoted by the same lett@rs,, Wx (D;) andWy (Y )forS|mpI|C|ty Moreover

we denote the stupid filtration cm@(/zk (Iog D)(logY) ® O, by F as usual.

(5.7) Let D4,...,D;, andY be reduced simple normal crossing divisors on a
complex manifoldX with global defining functiong,...,#, andwu such that
le D; 4+ Y is areduced simple normal crossing divisor too. Wel3et D; +
-+ + Dy. We consider the properties of weight filtrations on

(Notice that the sheaf above is different from the shé’/@fz Iog D)(logY)!)

LEMMA (5.8) We have the equality

{Z U n 2 Hlog(D +Y)) + L A 0% H(log(D + 1)
i=1 "

k
+ ;9% (log(D + Y))} NWx(Y)m
=1

k

Z( A Q% H(log(D +Y)) N Wx (Y )m )

LA 0% Hlog(D + V) N Wx (V)

k

+) (9% (log(D + Y)) N Wx (Y)m)
=1

on Q% (log(D + Y)) for everyp andm.
Proof. Easy from the direct sum decomposition (3.6.1) and Lemma (5.2).

COROLLARY (5.9) We also have

{Z Citz A Q% (log(D +Y)) + d— A% H(log(D +Y)
i=1 "
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k
+ ;9% (log(D +Y)) + uQ (log(D + Y))} NWx(Y)m
i=1

k
Z(dt’ A Q% Hlog(D + V) N Wx (Y ) )

d )
+Z“ A Q8 H(log(D + V) N W (Y )m

k

+) (9% (log(D + Y)) N Wx (Y)m)
=1

+u%-(log(D + Y)) N Wx (Y ),
for everyp andm.

Proof.Easy from the inclusionQ%; (log(D+Y)) C Wx(Y),,, foreverym > 0
and from the lemma above 6t (log(D + Y)). O

PROPOSITION (5.10)n the situation above, we denote the subspace défined
by the functions, ..., txy andu by Z, and the one defined by, . . . , ¢, by Z. Then
the sheaf

Grirx()qp

/s D; Ly (109(D +7Y)) ®ox Oz

is isomorphic to

N7 oy n (109D NY™) @0y Oy /1M, (5.10.1)

if 1 < m < pand isomorphic to

ar p,(109D) ®0oy Z/“Q)(zk (logD) ®o, O, (5.10.2)
X5k /

if m = 0, wherelm ¢ denotes the image of the morphism

5. Q™ (logDNY™ 1) ®0

ym— 1/Ek D;nYym— 1 O

ym—-1 ~ Znym-1

— QP-m (logDNY™) ®0ym O

ym/sk_ Dinym znym:

Proof.Easy by the corollary above and Lemma (1.34). O

(5.11) LetDs, ..., Dy be reduced simple normal crossing divisors on a complex
manifold X with global defining functionss, . .., ¢, over X, such that the sum
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D= Zle D; is areduced simple normal crossing divisormoo. Then we have
the (k + 1)-ple complex of sheaves

(Bx(Dl, Ce ’Dk)p’q)pez,qezk
as in Section 3 and the single complex
SBx(Dl, N ,Dk)

associated to it. We define a morphism

k
% (Iog D) — Bx(D1,..., Dp)"® = Q4 (log D)/ >~ Wi (Dy)o,
i=1

by sending a local sectian of the left-hand side to the class of the element

of Qi’)’(*k(log D) on the right-hand side. Then it is easy to see that this morphism
induces a morphism

Qf)\’/Ek_lDi(logD) ® Oz = Bx(Dy,... ,Dk)p’o

which is denoted by. Then we trivially have

OWx (Di)m) C Wx(Di)m+1, (5.11.1)
for everym. We see the equalities

doof =60ody

d; 00 =0,
easily. Therefore the morphisrigor all p form a morphism of complexes

0: Q}(/zleDi(logD) ® Oz — sBx(D1,...,Dg).

This morphism preserves the filtratidhon both sides.

(5.12) Here we define another increasing filtratidnon s Bx (D1, . . . , D) by

MmSB)((Dl, . ,Dk)n = EB WX (Dk)m+qk+1BX(Dla . ,Dk)p,q
p+lg/=n
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for every integern. It is easy to see that this defines a filtration as a subcomplex.
We easily see the equality

O(Wx (Dg)m) C MpmsBx (D1, ..., Dy)
for every integern by (5.11.1).

THEOREM (5.13) In the situation(5.11), let Z be the subspace df defined by
the functiongy, . . ., tx. Then the morphism

Ox: Qk/zklei(IOQD) ®0z — SBx(Dl, R ,Dk),
induces a filtered quasi-isomorphism

Gr;])?(oX) Q?(/EleDi(logD) ® OZ[_p] - Gr%SBX(Dla s 7Dk)7

with respect to the filtration®/x (Dy,) on the left and\/ on the right.

Proof.We prove it by induction o. For the case of = litis proved in Steen-
brink [12] and Zucker [16]. Now we proceed to the induction step. For simplicity
on the subscript, we shift the numbeto k£ + 1, and denote the divisdpy 1 by
Y and the defining functiory, 1 by u. Therefore the subspac¢eof X is defined
by the functiongy, . .., t; andu. Moreover we denote the subspaceXotiefined
by t1,...,t; by Z as in Proposition (5.10). We abbreviatBx (D1, ...,Dy,Y)
andsBym (D1NY™, ..., D, NY™) to sBx andsBy= as before. It is sufficient
to prove that G}.(6x ) induces an isomorphism

GrKX(Y)Q§/2§:1Di+Y(Iog(D +Y)) ® Oz — Gr) Grf.sBx[p],

for every integern. For the casen < 0 is trivial from the definition. For the
case ofm > p, itis clear because of the equality A5Gr,.sBy = 0 in (3.11.1).
Therefore we assume the inequalitkOn < p. Computation as in (3.19) shows
that the complex Gf Grf.s Bx[p] is isomorphic to the single complex associated
to the double complex

0

0
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by using the residue isomorphism, where the horizontal arrows coincide with the
morphismé up to sign and the vertical arrows are the differential of the complex

Gty "sBym+iilp — ml,
for [ > 0. Because of the induction hypothesis the morphism
Gri ™ (Oymita): QI;;nnJ:l+1/2§=1DimYm+l+l(IogD Ny g Ojnym+i
— G "sBymiisalp —m]

is a quasi-isomorphism, therefore the sequence

p—m m~+I+1 .
0— Qym+l+1/2£c=1Dimym+l+1(IOgD ny ) ® Ozmym+l+1

— G ™5 By mirsa[p — m]° — G ™sBymara[p — m]t
is exact. Therefore the complex¥51Gry.s By is quasi-isomorphic to the complex

O — QI;vmn-il/E§:lDiﬁYm+1(log D N Ym ) X OZﬁYm+1

p—m m+2
- Qym+2/E§=1DiﬂYm+2(logD ny )® OZAﬂYmJFZ o

where the morphisms coincide with the morphisrap to sign. We denote this
complex byC' here for a while. Then, more precisely, we have a quasi-isomorphism

C — Gr) Gr.sBx|[p] (5.13.1)
induced from the morphisi, .+.+1. For the case of > 1,

Gr}jl’x(Y)Q’)’(/E§:1Di+Y(Iog(D +Y))® 0z

is isomorphic to

Q’;;"/‘Ek_leYm (logD NY™) @0ym Opnym/IM,

by using the residue isomorphism of Proposition (5.10). Therefore the morphism

g Q’l’/jn"/lzk:ll)mym (logD NY™) ®0ym Osnym

p—m m+1 .
- Qym+1/E§:1Dmym+1(logD ny ) BOymi Ozym
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induces a morphism of complexes

Gr}jl’x(Y)Q’)’(/EfﬂD#Y(log(D +Y))® 0y

~ Q@;’?E§=1Dimym(logD NY™) ®oym Ozqym/IMé = C,
which is a quasi-isomorphism by the exactness of the sequence (5.4.1) in Lemma
(5.5). For the case ofi = 0,

Gryx(Mq?

X/2§:1Di+y(|°g(D +Y))® 0z

is isomorphic to the complex

QP

X/E’.“:lDi(Iog D) Rox (’)Z/qu (IogD) Rox 02,

X/sk_ D;

by Proposition (5.10) as before. Then we have a quasi-isomorphism

Wx (Y
Gry X )Qg(/2§=1Di+Y(|Og(D +Y))® Oz
~ Qﬁ(/Ef:lDi(logD) R0y 02/“91))(/2;:101-“09 D)®o, 0, = C

as before. Combining these two cases, we have a quasi-isomorphism

Gry XM 4y (109(D +Y)) © 07 = C (5.13.2)

for everym. Now it is easy to check the commutativity of the three morphisms of

complexes
G I 1 4y (100D + 1)) © O = G}l GifsBx )
Gryx(Mgqp (log(D+Y))® Oz = C

X/ok_ Di+Y
M P
C — Gr,, GrpsBx|[p],

where the first morphism is the one inducedRy the second is the one in (5.13.2)
with appropriate sign and the third is the one in (5.13.1). Thus we obtain the result
because the second and the third are quasi-isomorphisms. O

COROLLARY (5.14)LetX,Sandf: X — S beasin(4.1), the dataD1,..., Dy
andty, ..., t, defined in the same way as(i#.1). We denote the fibgf—1(0) by
Z. In this situation we have a filtered quasi-isomorphism

Qy/5(10g D) ®oy Oz — sBx(Dy, ..., Dy),
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with respect to the stupid filtratioR' on the left and the filtratiod on the right.
Proof. Easy by the theorem above. O

COROLLARY (5.15) In addition to the situation in the corollary above, assume
that the morphisnf: X — S is proper and that all the irreducible components of
the divisorsD; are Kahler. Then the spectral sequence

B} = HY(Z,9% 4(log D) ®0, Oz) = HP"(Z,Qx5(log D) ®o, Oz)

obtained from the stupid filtration on the complex
Oy g(log D) ®@ox Oz,

degenerates al/;.
Proof. Easy by the corollary above, Theorem (4.8) and Deligne [3, Scholie
(8.1.9)]. O

6. Application

(6.1) Let(X, D) and(S,T) be pairs of connected complex manifolds .S and
reduced simple normal crossing divis@érs7'on X andS respectively. Amorphism
f(X,D) — (S,T) of pairs is a morphisny: X — S of complex manifolds
satisfying the conditiorD = f*T'. For such a morphisnfi: (X, D) — (S,T) we
have a morphism af x-module sheaves

QL (logT) — Qi (log D) (6.1.1)
asin (0.7).

DEFINITION (6.2) A morphism of pairsf: (X, D) — (S,T) is said to be of
generalized semi-stable type, if the morphism (6.1.1) is injective and if the cokernel
of the morphism (6.1.1) is locally free (that ig; QL (logT) is a subbundle of

0% (log D) via the morphism (6.1.1)).

REMARK (6.3) To a given paitX, D), we can associate a ‘log structure’ &n

(see K. Kato [10]). Then a morphism of pajfs(X, D) — (S, T) turns out to be a
morphism of log complex analytic spaces with respect to the ‘log structure’ above.
Such a morphisni is of generalized semi-stable type if and only ifs log smooth

(for the definition and the proof, see [10]).

(6.4) Assume that a morphism of paifs(X, D) — (S, T) of generalized semi-
stable type is given. Take a poinbf X . Then there exists a local coordinate system
(t1,...,t;) centered at the poirft(z) on S such that the divisdF is defined by the
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functiont; - - - t; for somel with 1 < [ < k. The divisor defined by the functianis
denoted byr; for everyi, and the divisoif *T; by D;. Then we havd’ = Zﬁlei
andD = Y!_; D; locally onS.

LEMMA (6.5) In the situation above, there exists a local coordinate system
(z1,...,24) centered at the point such that the morphisrhis written in the form

t1:$1"'$T1

t2:$7‘1+1”'x7‘2

tl = $T‘l,1+l e 1"7‘1

L4l = Tpj+1
liy2 = Tpj42
bk = Tp+k—1,

for some integers,,...,r, with1 < r < --- < r; < d. Therefore a morphism of
pairs of generalized semi-stable type is flat ogeand smooth oves\T'.

Proof.We can take a local coordinate syster, ..., z!,) on X centered at the
pointz such that we have the equality

!

_ !
t; =Ty, 41" Ty

for everyi for some integerss, ..., with 1 < r1 < -+ < r; < d because the
divisor D = f*T'is a reduced simple divisor oK. Now we may work on these
local coordinates oX and S. Then the sheave®l(log7) and Q% (log D) are
free with basis

dt1 dt;
—,...,—,dtl+1,...,dtk
t1 1)
and
dz dx|
x—/]-""’—/”’dm;"l-i-l""’dx:i'
1 r]

Becausef is of generalized semi-stable type, the exact sequence

0— f*Q5(logT) — Q% (log D) — Q% /4(log D) — 0,
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splits near the point. Therefore taking tensor product with the residue fi@{a)
of the pointz, we obtain an exact sequence

0 = f*QL(logT) ® C(z) — Q% (log D) ® C(x)
— Q%/5(logD) @ C(zx) = 0

of C-vector spaces. By using the bases above, we express the first morphism by a
matrix and then we can easily see that the matrix

* .
8f tH—] (I)
‘9$;~,+i 1gigd—n;
1<kl

is of rankk — [, where

Of i

!
amT‘l +1

()

denotes the value of the function

Of b1y,
am:‘z«k’i

in the residue fieldC(z) = C. Therefore we can choose a local coordinate system
(z1,...,x4) centered at the point satisfying

ri=x, fori=1....n
wrl—i—j:f*tlJrj for j=1..., k-1

because of the implicit function theorem. O

REMARK (6.6) By the lemma above, a morphism of pairs of generalized semi-
stable type is a morphism of quasi-semistable type (without ‘*horizontal divisors’)
in the sense of F. Kato [9] with respect to the ‘log structures’ in Remark (6.3). Such
a morphism is treated by lllusie in [8] for the algebraic case.

COROLLARY (6.7) If a morphism of pairsf: (X, D) — (S, T) of generalized
semi-stable type is proper, then any poirdf .S has a coordinate neighborhodd
centered at the poirt with the local coordinate functions, . . ., t; such that the
following conditions hold:

(6.7.1)the divisorT is defined by the function - - - t; for somel with1 < [ < k
inU
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(6.7.2)the divisorsD; defined by the functiong*t; are smooth subvarieties in

fYU) foralliwithi + 1< i<k

(6.7.3)D + Ef:lﬂ D; is a reduced simple normal crossing divisor pn*(U/).
Proof.Easy by Lemma (6.5). O

LEMMA (6.8) We are given a morphism of paiys (X, D) — (S,T) which

is proper and of generalized semi-stable type. We assume that all the irreducible
components of the divisdp are Kahler. Then, for any point on S, the spectral
sequence

B! = HY(X,, 0% 5(log D) ® Ox,) = H'(X,, Qy5(log D) ® Ox,),

obtained from the stupid filtration oﬁ'X/S(Iog D) ® Ox,, degenerates af,

whereX, denotes the fibef ~(s).

Proof.By the corollary above, we may assume thi ak-dimensional polydisc
with the coordinate functions, . . . , ¢ satisfying the conditions (6.7.1)—(6.7.3) and
that the point is the origin in this polydisc. The divisor defined I5y¢; is denoted
by D; for everyi. Then we haveD = !_, D;,. We setT = Y%, 7; and
D = Y% ,.,D;. ConsideringD + D andT + T instead ofD andT’, the morphism
f satisfies the conditions (4.1.1)—(4.1.3). Therefore the spectral sequence

B} = HY(X,, Q% s(log(D + D)) ® Ox,)
= H"(X,, Qy/5(log(D + D)) ® Ox,)
degenerates d; by Corollary (5.15). On the other hand, we can easily check that
Qy/s(log(D + D)) = Qx5(log D),
because the divisdp; = f*T; is smooth forevery =1+ 1,..., k. Therefore we
obtain the result. O

(6.9) Let f:(X,D) — (S,T) be a morphism of pairs which is proper and of
generalized semi-stable type. By the result of F. Kato [9, Corollary 4.6] and by the
base change theorem, we know that the sheaf

qu*QX/S(IogD)

is a locally freeOg-module of finite rank orS' for everyq and that it commutes
with base change, in particular, we have

RI£.y,5(log D) ® C(s) = H(X,, 2y,(l0g D) ® Ox,),

for every points on S, whereC(s) denotes the residue field of the pointFrom
this fact, we obtain the following result by Theorem (4.8), Corollary (5.15), the
lemma above and by the standard argument.

https://doi.org/10.1023/A:1000642525573 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000642525573

182 TARO FUJISAWA

THEOREM (6.10) Assume that we are given a morphism of pgir$X, D) —
(S,T) which is proper and of generalized semi-stable type. Assume, in addition,
that all the irreducible components of the divisrare Kahler. Then we have the
following:

(6.10.1)for any points on S and for any integer, there exists &-mixed Hodge
structure(Hq, W, F') such that theC-vector spacdic = Hg ® C is isomorphic
to the cohomology group

HY(X,,Qy5(10g D) ® Ox,) = R?f.Qy,s(l0g D) ® C(s)

and that the filtrationF’ on Hc¢ coincides with the filtration on this cohomology
group obtained from the stupid filtration de/S(Iog D) ® Ox,

(6.10.2)R‘1f*9§(/s (log D) is locally free of finite rank for every andgq

(6.10.3)R‘1f*F”Q;Y/S(Iog D)isasubbundle ofthe vector bund{éf*Q'X/S(log D),
whereF' denotes the stupid filtration dn'X/S(Iog D)

(6.10.4)the spectral sequence
B = qu*ng/S(logD) = RPTf.QY 5(log D)

degenerates al/;.
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