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Abstract

Researchers often aim to assess whether repeatedmeasures of an exposure are associated with repeatedmeasures of an outcome. A question of
particular interest is how associations between exposures and outcomes may differ over time. In other words, researchers may seek the best
form of a temporal model. While several models are possible, researchers often consider a few key models. For example, researchers may
hypothesize that an exposure measured during a sensitive period may be associated with repeated measures of the outcome over time.
Alternatively, they may hypothesize that the exposure measured immediately before the current time period may be most strongly associated
with the outcome at the current time. Finally, they may hypothesize that all prior exposures are important. Many analytic methods cannot
compare and evaluate these alternative temporal models, perhaps because they make the restrictive assumption that the associations between
exposures and outcomes remains constant over time. Instead, we provide a tutorial describing four temporal models that allow the associations
between repeated measures of exposures and outcomes to vary, and showing how to test which temporal model is best supported by the data.
By finding the best temporal model, developmental psychopathology researchers can find optimal windows for intervention.
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Introduction

Developmental psychopathology is a framework that examines
risk and resilience processes across development, with the aim of
preventing psychopathology and promoting positive development
(Cicchetti & Toth, 2009; Cicchetti, 1993; Masten, 2006; Sroufe &
Rutter, 1984). This framework is integrative, multidisciplinary, and
involves the examination of the dynamic interplay of multilevel
influences across development (Cicchetti & Toth, 2009; Masten,
2006). Integral to this approach is the idea that associations
between exposures and outcomes often vary across time. As a
result, factors during certain developmental periods may have a
larger influence on the development of psychopathology and
related outcomes (Cicchetti & Toth, 2009). Thus, examining
exposure–outcome associations across development, and not just
in one developmental period, is critical. Additionally, it is
important to consider how these associations may change over
time (i.e., strengthen, attenuate, or vary with time since exposure).

While it is known that many associations differ over time, many
analytic approaches require the assumption that the association

between an exposure and outcome is constant, no matter what
period during development the exposure and outcome are
measured. In this tutorial, we present a more general approach
to fitting longitudinal models of exposures and outcomes, which
allows the association between the exposure and the outcome to
change across time. In many cases, the temporal model for how
exposures and outcomes are associated is not fully understood. In
these cases, an exploratory, hypothesis-generating approach can be
used. For these cases, we present a planned testing cascade to select
the model which best fits the data. The testing cascade compares
the utility of four temporal models, under the assumption that the
exposure precedes the outcome.

In this tutorial, we present a general approach to fitting
longitudinal models that are relevant to some of the central tenets
of the developmental psychopathology framework. One of these
tenets is that the developmental psychopathology framework is
inherently transdisciplinary and examines multilevel influences on
development (Cicchetti & Toth, 2009; Doom & Cicchetti, 2020;
Rutter & Sroufe, 2000). In this approach, researchers can test
transdisciplinary questions such as whether a child’s attachment
style might be associated with other domains (e.g., executive
functioning; immune system function) across development.
Another central tenet of the framework that the current approach
is well-suited to explore is developmental cascades, or influences
that spread across multiple levels, domains, or systems over time
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(Doom & Cicchetti, 2020; Masten & Cicchetti, 2010; Sroufe &
Rutter, 1984). Here researchers might be interested in under-
standing the cascade from parenting stress at one or multiple
points in development to children’s later externalizing symptoms.
Another important consideration in the developmental psycho-
pathology framework is the identification of sensitive periods in
development (Cicchetti & Toth, 2009; Cicchetti, 2015b; Pollak,
2015). Researchers might examine whether there are specific
developmental periods in which stress exposure has the largest
impact on cognition. Finally, this approach allows for the testing of
interactions between risk and protective factors over time, which is
another central tenet of the developmental psychopathology
framework (Doom & Cicchetti, 2020; Masten, 2001, 2006). In this
approach, researchers could first assess the relation of maltreatment
experiences at one or more points in development with later
friendship quality. After establishing this main temporal model,
researchers could then test whether having a safe, trusting adult might
disrupt the association between maltreatment and friendship quality
across development. The statistical approach described in the current
manuscript is well suited for examining these central tenets of the
developmental psychopathology framework.

Following from this framework, developmentalists often ask
questions about how exposures at different time points across
development may be associated with trajectories of later outcomes.
The following questions are often of interest:

• Are all prior measurements of the predictor are associated with
the outcome, with potentially different strengths of association,
depending on the timing of the exposure and outcome measures
(Figure 1a)?

• Is only the most recently recorded measure of the predictor
associated with the outcome (Figure 1b)?

• Is there a sensitive period which best predicts the outcome across
development? If so:

○ Does the strength of the association between the exposure
measured during a sensitive period and the outcome differ
depending on when the outcome was assessed (Figure 1c)?

○ Or, does the strength of the association between the exposure
measured during a sensitive period and the outcome remain
constant nomatter when the outcome was assessed (Figure 1d)?

These questions are quite common in developmental research
as well as across a number of other fields. For example, a researcher
interested in the association between maternal sensitivity and
offspring internalizing symptoms over development might hypoth-
esize that all antecedent measurements of maternal sensitivity are
associated with offspring internalizing symptoms (Figure 1a).
Similarly, a researcher could hypothesize that hypothyroidism at any
time point would be associatedwith expressive language at any point
in development (Figure 1a). A researcher interested in the relation
between peer deviancy and externalizing problems over time might
hypothesize a recency effect, which would be best modeled using
measurements of peer deviancy collected immediately before the
assessment of externalizing problems (Figure 1b). Similarly, a
researcher could hypothesize a recency effect of alcohol intake on
risky decision-making where alcohol intake at the preceding time
point shows the strongest association with risky decision-making at
the following time point (Figure 1b). A researcher interested in
examining the relation between iron deficiency and attention over
time might hypothesize that there is an early sensitive period in
which iron deficiency has the largest impact. They may also be
interested in whether iron deficiency in that early sensitive period
has the same magnitude of association with attention over time

Figure 1. Four models to test hypotheses about different temporal associations between the predictor and the outcome. These include the (a) all-time-before model,
(b) immediately-before model, (c) differential-sensitive model, and (d) stable-sensitive-period model.
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(Figure 1d), or whether this magnitude differs over time, and
therefore across development (Figure 1c). Researchers inter-
ested in teratogenic effects of antenatal Zika infection on
offspring cognition might similarly hypothesize that there is a
sensitive period during pregnancy where infection may have
greater effects relative to exposures outside of this period,
though the strength of the association between antenatal Zika
infection and the outcome could be the same or differ over time
(Figure 1c,d). While each of these researchers might hypothesize
certain temporal models for their research questions, it is
difficult to know which is the best temporal model without
comparing multiple models.

This tutorial describes how to test four hypotheses that are
relevant to the psychopathology examples described above. We
describe how to fit, compare, and evaluate models that align with
each hypothesis. This tutorial has two main aims: (1) to describe
how to fit several temporal models and (2) to describe how to
compare the models and evaluate the associated hypotheses they
represent, with an ordered sequence of tests. While any researcher
could benefit from fitting the temporal model that fits their a priori
hypothesis, the comparison of multiple models is especially helpful
in situations where researchers have a hypothesized model but not
enough prior literature to be confident that the proposed temporal
model fits the data well.

The organization of the current tutorial is as follows. We first
describe four possible temporal hypotheses, which correspond to
four models. Mathematical descriptions and example code for the
four models appear in the section entitled Supplementary
Materials. Second, we show how to construct hypothesis tests to
compare the four temporal models, and how a planned sequence of
hypothesis tests allows investigators to choose the model that best
fits the data. Third, we illustrate the approach by posing the
questions in the context of an example longitudinal study of
effortful control and body mass index (BMI), each measured at
multiple time points. We provide a template for the interpretation
of the results. Lastly, we contextualize recommendations for this
modeling approach by discussing implications for conclusions in
developmental psychopathology. See Table 1 for a glossary of
terms used in the tutorial.

Analytic methods

This section details the general linear mixed model. First, we
describe the model itself, then the components and assumptions,
the hypothesis testing approach, four potential models that can be
tested under this approach, and finally, how to compare models.

The general linear mixed model

The general linear mixed model (Laird & Ware, 1982) has several
features which allow it to provide a good description of repeated
measured data in developmental psychopathology. The mixed
model can be used to analyze data with repeated measures of both
exposures and outcomes. Additionally, the general linear mixed
model can be used for research where some of the planned
measures are missing, or do not occur exactly at the time the
researchers planned. This model allows describing both the
population average response, and participant-specific trajecto-
ries. Finally, the model permits modeling the covariance
structure for the outcomes, which describes the variance of
each measure, and the correlations among the repeated measures.
A description of themodel appears in the SupplementaryMaterials
section.

Model components

Full descriptions of the components of the general linear mixed
model appear in the Supplementary Materials section. The general
linear mixed model has a vector of outcomes, a fixed effect
exposure matrix, a matrix of fixed effect slopes and intercepts for
the population average, a matrix of participant-specific random
exposures, and a vector of errors. The fixed effects exposurematrix,
also known as a design matrix, or an X matrix, contains known
constants and organizes the variables of interest.

Variance assumptions

A complete description of observations with a normal distribution
specifies not only the means and slopes but also the covariance
matrix, which gives variances and correlations among observa-
tions. A general linear mixed model defines the covariance among
observations with (1) the random effects exposure matrix, (2) the
covariance matrix for random effects, and (3) the covariance
matrix for errors.

When fitting repeated measurements from the same individual,
the covariance structure among observations must accurately
account for within-participant correlation and potentially unequal
variances. Choosing the incorrect covariance structure can greatly

Table 1. Glossary of key terms used in the manuscript

All-times-before
model

For each outcome at each time, values of the
predictor collected at any time before the
outcome are used as the predictors. The model
allows different strengths of associations
between each predictor and outcome pair. This
model provides evidence of a cumulative effect.
The all-times-before model is shown in Figure 1a.

Design matrix The fixed effect predictor matrix, or X matrix,
which contains and organizes the independent
variables of interest.

Differential-sensitive-
period model

Each outcome at each time is only associated
with the measurement of the predictor from
time 1 (sensitive period). The model allows
different strengths of association between each
predictor and outcome pair. The differential-
sensitive-period model is shown in Figure 1c.

Immediately-before
model

For each outcome at each time, values of the
independent variable measured at the time
immediately-before the outcome are used as the
predictors. The model allows different strengths
of associations between each predictor and
outcome pair. The immediately-before model is
shown in Figure 1b.

Multiple design
matrix model

A modeling approach originally described by
Srivastava and Giles (1987a). The approach uses
a data-driven approach to define the best-fitting
design matrix across a series of nested design
matrices.

Sensitive period A sensitive period is a key developmental period
during which heightened neural plasticity
enables the opportunity for both growth and
vulnerability (Knudsen, 2004).

Stable-sensitive-
period model

Each outcome at each time is only associated
with the measurement of the predictor from
time 1 (sensitive period). The model assumes that
the strength of the association is the same at
each time period. The stable-sensitive-period
model is shown in Figure 1d.
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increase the Type I error rate (Gurka et al., 2011), the probability
that a hypothesis test incorrectly rejects the null.

Explicit guidance for choosing an appropriate covariance
structure for repeated measures appears in multiple manuscripts
(e.g., Cheng et al., 2010). Here, we discuss two possible structures.
When the true covariance pattern is unknown, a common approach is
to fit an unstructured covariance (Gurka et al., 2011; Harrall et al.,
2023). The unstructured covariance structure is estimated using the
repeatedmeasurements for each study participant.When the variance
of the outcome increases with age, as is common for such outcomes as
BMI, many authors fit a random regression covariance model. The
random regression model allows participant-specific intercepts and
slopes andmodels the variance and covariance as a function of age or
duration of time. The random regression approach was used in the
four models in this manuscript.

The four models

Graphics are used to describe each model in Figure 1. Model
equations are shown for each model in Table 2. The four models
are presented in decreasing order of complexity, from most
complicated, with many exposures, to least complicated, with
fewer exposures.

For tutorial purposes, the models are presented with four
repeated measurements. The assumption is made that the
exposures are measured before the outcomes. Therefore, we will
consider the exposure at time one, time two, and time three. We will
consider the outcome at time two, time three, and time four. Exposure
matrices for the four models appear in the Supplementary Materials
section.

The four models described here can each model developmental
processes. The all-times-before model associates the predictor in
every prior time period with an outcome and can test different
strengths of association at each time point. The immediately-

before model tests the influence of a predictor on an outcome close
in time. The two sensitive period models test whether there is a
time period where the predictor has greater effects on the outcome.
The four models enable assessment of developmental processes
and assess which are probable based on the timing of the
measurements.Wemay not know ahead of time which is plausible,
especially with new predictor and outcome or in novel time
periods, which is why testing all the models is important.

All-times-before model
The all-times-before model is shown in Figure 1a and Table 2. For
each outcome at each time, values of the exposure measured at any
time before the outcome are used as the exposures. The model
allows different strengths of associations between each exposure
and outcome pair. For example, in a study with four time points, in
this model, the measurement of the exposure at time one is
associated with the outcome at time two, the measurements of the
exposure at times one and two is associated with measurement of
the outcome at time three, and the measurements of the exposure
at times one, time two, and time three are associated with the
outcome at time four.

Immediately-before model
The immediately-before model is shown in Figure 1b and Table 2.
For each outcome at each time, values of the exposure variable
measured at the time immediately before the outcome are used as
the exposures. The model allows different strengths of associations
between each exposure and outcome pair. In this model, in a study
with four time points, themeasurement of the exposure at time one
is only associated with the measurement of the outcome at time
two. Similarly, the measurement of the exposure at time two is only
associated with the outcome at time three. Lastly, the measurement
of the exposure at time three is only associated with the
measurement of the outcome at time four.

Differential-sensitive-period model
The differential-sensitive-period model is shown in Figure 1c and
Table 2, with the sensitive period assumed to be at time one. The
exposure at time one is associated with the outcome at each later
time point. The model allows different strengths of association
between each exposure and outcome pair. For example, the
magnitude of the relation might decrease as more time elapses
between themeasurements of the exposure and the outcome, or the
magnitude of the relationmight strengthenwith age. In this case, in
a study with four time points, the measurement of the exposure at
time one is associated with the measurement of the outcome at
times two, three, and four.

Stable-sensitive-period model
The stable-sensitive-period model is shown in Figure 1d and
Table 2, with the sensitive period assumed to be at time one. The
exposure at time one is associated with the outcome at each later
time point. The model assumes that the strength of the association
is the same at each time period. Like the differential-sensitive-
period model, the measurement of the exposure at time one is
associated with the measurements of the outcome at times two,
three, and four.

Model comparison by hypothesis testing

To determine the importance of specific developmental periods or
how an association may change over time, the all-times-before, the

Table 2. Four model equations. The paired data for person i is notated as
follows: yij is the outcome for person i at time point j, and xij is the predictor for
person i at time point j

Model

All-times-before 1

1 xi1

1 xi1 xi2

1 xi1 xi2 xi3

Immediately-before 1

1 xi1

1 xi2

1 xi3

Differential-sensitive-period 1

1 xi1

1 xi1

1 xi1

Stable-sensitive-period 1

1 xi1

1 xi1

1 xi1
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immediately-before, the differential-sensitive-period model, and
the stable-sensitive-period models can be compared using a series
of planned hypothesis tests. This series of tests uses a backward
stepdown approach to find the best temporal model. If a sensitive
period best predicts the outcome, then a test is used to determine
whether the association varies across time or is stable across time.
A flowchart for this series of hypothesis tests comparing the four
models specified appears in Figure 2. Mathematical specifications
of the hypothesis tests appear in the Supplementary Materials
section.

Each hypothesis test compares a complex model with a simpler
model nested within it. A simple model is considered to be nested
within a complex model if the simple model can be obtained from
the complex model by setting coefficients equal to zero. The
immediately-before model and sensitive period models are nested
within the all-times-before model and therefore can be compared.
However, the sensitive period models are not nested within the
immediately-before model and thus cannot be directly compared.
The hypothesis testing sequence does allow arrival at any of the
four models as the final model (see Figure 2).

The hypothesis testing sequence starts with the most complex
model, the all-times-before model. Hypothesis tests are used to
evaluate the utility of exposures. The tests provide comparisons of
nested models. The first test compares the all-times-before model
to a model nested within it: the immediately-before model. The
second test compares the all-times-before model with a different
model nested within it: differential-sensitive-period model.

In both tests described, the hypothesis test assesses themultiple-
degrees-of-freedom null hypothesis of whether the coefficients
which occur in the more complex model, but not the simpler
model, are equal to zero. A multiple degrees of freedom hypothesis
is a hypothesis which tests multiple simple hypotheses at the same
time. A significant p-value (i.e., one less than the nominal level set
by the investigator, often 0.05) suggests that the null should be
rejected, indicating that at least one of the coefficients is different
from zero, and therefore the more complex model is a good fit to
the data. A nonsignificant p-value indicates that the null should not
be rejected, and that the simple and more complex model seem
equally likely. For reasons of parsimony, the hypothesis testing
cascade suggests using the simpler model wherever reasonable.

Figure 2 shows one last planned hypothesis test, for the case
when a model using a single sensitive period as an exposure is the
best fit. The hypothesis test compares two nested models. Testing
whether slopes and intercepts are the same across time periods

allows choosing between the differential-sensitive-period model
and the stable-sensitive-period model.

Example matrices and code

Organizing the data for fitting the models and testing the
hypotheses is key. Commented SAS code (SAS Institute, Cary,
North Carolina) appears in the Supplementary Materials section,
together with example datasets. The sample code demonstrates
how to construct analytic datasets, hypotheses, and the fourmodels
presented in this manuscript. For clarity, the example analytic
datasets and code assume four repeated measures in both outcome
and predictor, and do not include covariates.

Example study

We provide an illustrative example to highlight the strength of this
method. Deer et al. (2023) studied the longitudinal association
from birth to adolescence between effortful control and BMI using
data from a study of pregnant people and their offspring, described
in Glynn et al. (2018). We use this example study to highlight how
to test associations in the context of both a repeated exposure (in
this example, effortful control) and a repeated outcome (in this
example, child BMI). Effortful control, or the effortful regulation of
thoughts and behaviors such as planning, attention, and inhibiting
impulsive behaviors (Rothbart & Bates, 2006), has been identified
as a transdiagnostic risk factor for mental and physical health
(Anzman-Frasca et al., 2012; Santens et al., 2020; Thamotharan
et al., 2013). BMI is a measure of cardiometabolic health and is
predictive of weight stigma (Puhl & Lessard, 2020), being a victim
of bullying (van Geel et al., 2014), and poorer socioemotional
development (Black & Kassenboehmer, 2017), as well as physical
and mental health across the lifespan (Jacobs et al., 2022; Sahoo
et al., 2015). In the example presented, we operated using the
temporality assumption, meaning that there must be temporal
delays between causes and effects (Rothman et al., 2012). Here, we
posited that alterations in effortful control would precede changes
in BMI, but this does not preclude a hypothesis that BMI could
predict later effortful control.

Example study methods

Participants in the example study were recruited during pregnancy
if they spoke English, did not smoke, were over 18 years of age,
were pregnant with a single child, and did not report using drugs or

Figure 2. Flow chart for hypothesis tests deciding which model is most appropriate.
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alcohol during pregnancy. Offspring were included if they were
born after 34 weeks of gestation, and had effortful control, height,
and weight measured at six months of age. Effortful control was
assessed using the Rothbart Temperament Questionnaires, which
are a set of developmentally appropriate questionnaires to assess
individual differences in reactivity and self-regulation across
development (Ellis & Rothbart, 2001; Gartstein & Rothbart, 2003;
Putnam et al., 2006; Rothbart et al., 2000; Simonds, 2006). These
questionnaires were completed by mothers at 6-months, 1-year,
2-year, 5-year, 6.5-year, 9.5-year, and 11.5-year visits. Weight and
length or height were measured by trained research assistants to
calculate BMI at the 6-month, 1-year, 2-year, 5-year, 6.5-year,
9.5-year, 11.5-year, and 13-year visits. Infant sex at birth was
collected frommedical records and used as amoderator in the final
model. Mothers reported their income and family size at the
6-month visit for the calculation of income-to-needs ratio (INR),
which was used as a covariate in the final model. Further details
appear in (Deer, Doom et al., 2023).

Asking the four study questions in the context of the example
study

The investigators were interested in assessing whether there were
associations between repeated measures of effortful control and
BMI. It was assumed that effortful control needed to be measured
prior to BMI in order to have a relation with it.

We now rephrase the potential research questions in the
context of the example study.

• Are all previous measurements of effortful control associated
with the current measurement of BMI?

• Across development, is the measure of effortful control
immediately prior to the measure of BMI associated with that
measure of BMI?

• Is there a sensitive period when effortful control best predicts
BMI over development? If so:

○ Does the strength of the association between effortful control
in that sensitive period and BMI differ depending on when
BMI was assessed?

○ Or, does the strength of the association between effortful
control in that sensitive period and BMI remain constant no
matter when BMI was assessed?

Example study analytic methods

All models used general linear mixed models to assess the relation
between time-specific or repeated measures of effortful control
with BMI trajectories. As prior research has identified a roughly
quadratic pattern across this period of development (Wen et al.,
2012), each model was fit with a linear and quadratic age term. A
random intercept for each participant and random slope for age
was fit with an unstructured covariance between the random
effects in order to account for within-person correlations between
repeatedmeasurements and the known increase in variance of BMI
over time (Wen et al., 2012). A series of four models were fit,
following the planned hypothesis testing cascade shown in
Figure 2, and used in the study (Deer, Doom et al., 2023). First,
the all-times-before model was compared to the immediately-
before model. Then, the all-times-before model was compared to
the differential-sensitive-period model. Finally, the differential-
sensitive-period model was compared to the stable-sensitive-
period model.

Results from the example study

Contrast tests indicated that the all-times-before model did not
explain more variance than the immediately-before model
[p> 0.05]. The second set of contrast tests indicated that the all-
times-before model did not explain more variance than the
differential-sensitive-period model [p> 0.05]. Finally, comparing
the differential-sensitive-period model and the stable-sensitive-
period model showed that the magnitude and direction of the
association between 6-month effortful control and BMI at each
time point did not differ (p> 0.05). Therefore, the stable-sensitive-
period model was retained as the final model.

This example highlights the benefit of the strategy described in
this manuscript. Deer, Doom et al. (2023) were able to find amodel
which best fit their data. Following the model identification stage,
sex was added as a moderator of the association between effortful
control at six months and BMI over time. Covariates were also
added to the model.

Discussion

In this manuscript, we presented four questions that may be of
scientific interest in experiments when both the exposure and the
outcome were measured on multiple occasions across develop-
ment. The questions allow an investigator to assess whether the
exposure is associated with the outcome, to discern the temporal
form of the association, and to test various developmental models.
The models that follow from these questions are ideal for testing
some of the central tenets of the developmental psychopathology
framework, namely the transdisciplinary and multilevel nature of
the approach, developmental cascades, understanding sensitive
periods of development, and the interaction between risk and
resilience factors shaping development over time.

The example study highlighted in this tutorial (Deer, Doom
et al., 2023) concluded that the stable-sensitive period model best
fit the data. However, in other studies, other temporal models
might have been better. Here we discuss the implications of
choosing each of the potential models and what this might mean
for intervention strategies. If the all-times-before model was the
final model, this would indicate that all previous measurements of
an exposure are important when explaining the relation between
the exposure and the outcome. Thus, it might be best to intervene
as early as possible. Alternatively, if the immediately-before model
was the final model, this would indicate that timing does notmatter
as much. Therefore, it would be possible to reduce levels of an
exposure at any age in order to have an effect on the outcome. If
either of the sensitive period models were the final model, this
would indicate that the best time for intervention on the exposure
would be during that sensitive period.

The paper fills an important gap by providing statistical models
to evaluate sensitive periods and temporal associations between
variables in the field of developmental psychopathology. It is possible,
or perhaps likely in many instances, that factors at multiple points
during development may predict repeated measures of socioemo-
tional or behavioral outcomes, with different magnitudes of
association across time. The current paper introduces methods to
compare these developmental models.

This manuscript provides analytic methodology for evaluating
whether a sensitive period model best fits repeated measures data
in contrast to models which include all measurements of the
predictor prior to or immediately before measurement of the
outcome. Some time periods are considered sensitive periods of
development for specific outcomes. Sensitive periods are times
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when physiological and behavioral systems are particularly open to
inputs from the environment. Thus, different factors (e.g., stress,
parenting, sociocultural influences) may play an outsized role in
predicting the subsequent development of physical or mental
health, in part due to changes in neurobiological functioning
during sensitive periods (Cicchetti & Curtis, 2015; Cicchetti, 2016;
Knudsen, 2004). Developmental researchers have identified several
sensitive periods during which specific factors may predict various
outcomes. Frequently studied sensitive periods include the
prenatal period, infancy, early childhood, adolescence/puberty,
the transition to adulthood, pregnancy, and the transition to
parenthood (Davis et al., 2018; Davis & Narayan, 2020; Deer et al.,
2023; Doom et al., 2024; Doom&Gunnar, 2013; Glynn et al., 2018;
Kaliush et al., 2023; Powers & Casey, 2015; Schulenberg et al.,
2004). The method described in the current manuscript allows
researchers to test hypotheses about whether these periods are
sensitive periods for specific outcomes, or whether models
including other temporal patterns of exposures may have a
better fit.

The manuscript provides a tutorial on approaches to test
hypotheses about temporal issues and sensitive periods. The models
described in this tutorial allow for assessment of how associationsmay
change over time. The analytic approach described in this tutorial
is a modification of the multiple design matrix approach of
Srivastava (Srivastava & Giles, 1987b). For well-understood
relations, it is possible that the researcher can choose the correct
design matrix a priori. In many cases, however, it is not fully
understood how the longitudinal predictors and outcomes of
interest are associated. In both hypothesis-driven and exploratory
cases, it is important that the research consider what plausible
relations might exist. While it is possible that hypotheses may be
developed with a literature search, comparing the fit of a series of
different design matrices provides an empirical and rigorous test of
timing questions. As a result, we strongly suggest that researchers
test all of the models even if they have an a priori hypothesis that
one will be the best fit. Additionally, it is important that researchers
choose measures that are appropriate and measurable during the
timeframe of interest. For example, if a researcher was interested in
examining processes that occur during a specific developmental
period (e.g., puberty), it would not be appropriate to continue
modeling outcomes after this specific period.

When characterizing relations at sensitive periods, questions
are often asked about how secondary predictors may moderate or
mediate the association. When these types of questions arise and
the temporal structure of a relation is unknown, we recommend
that the research consider the two-step approach. First, use the
modeling framework presented above to define the best-fitting
temporal model of the primary predictor and outcome. Then,
consider hypotheses about moderation or mediation in a second
model, which includes the moderator or mediator of interest. This
approach was used in the example study when sex was examined as
a moderator following the initial stage of model identification.

Repeated measures of an exposure variable are typically
correlated. In practice, correlations among exposures always
introduce complexity in selecting a model. Muller and Fetterman
(2002) provided extensive discussions of detecting and treating
very high correlations among groups of exposures, often described
as collinearity, and model selection. Cheng and colleagues (2010)
provide some guidance on dealing with the complexity in “building
a good enough mixed model.” If scientific considerations lead to
exposures with moderate to high collinearity, then extra care must
be taken in selecting tests to make correct decisions. One appealing

approach is a backwards-stepdown strategy (Cheng et al., 2010;
Muller & Fetterman, 2002), with variables ordered by the
principles of chronology and parsimony. Chronological order
avoids anachronisms by requiring exposures occurring earlier in
time to be listed earlier in the model. Parsimonious order requires,
for example, main effects to be listed earlier in the model than
interactions. A backwards approach begins by comparing the
ultimate, most complex, model to the penultimate model, etc. The
approach ensures collinearity is accurately adjusted for statistically
and logically.

While the models and associated questions discussed in the
current manuscript are quite common in developmental psycho-
pathology and other fields, we do not cover an exhaustive list of
potential hypotheses and models. There are a variety of other
statistical models which can describe longitudinal series of exposures
and outcomes. Clusterbased approaches group participants together
with similar exposure patterns providing a categorical exposurewhich
summarizes longitudinal exposure (e.g., Nagin et al., 2018; Nagin,
2014; Nagin & Odgers, 2010; Nagin & Tremblay, 2001). Cumulative
approaches model exposure as area-under-the-curve, which is
computed as the average product of the length of exposure and the
strength of exposure. By contrast, the all-times-beforemodel explicitly
models the strength of the association between an exposure and
outcome across different points in time. Thus, the all-times-before
model cannot be considered a model of cumulative exposure.

This paper provides code written in SAS (SAS Institute Inc.,
2016). The programming language was chosen because SAS allows
hypothesis testing for the general linear mixed model using the
Kenward-Roger corrections (Kenward & Roger, 1997, 2009). The
Kenward Roger corrections ensure accurate type I error rates, and
thus the replicability of data analysis. Researchers who prefer other
programming languages can use our code as a template to produce
similar models in their preferred language.

The methods used in the paper have some limitations. The
manuscript considers a restricted class of temporal models. The
manuscript describes four models, and a series of hypothesis tests
to compare the models identified to test common questions in
developmental psychopathology (e.g., sensitive period, all-times-
before, and immediately-before). The four models described share
a common feature: the exposures are all measured before the
outcome. For many pairs of exposures and outcomes, however, a
model including both contemporaneous and antecedent measures
makes sense. Examples include models of pollution and cardiac
autonomic physiology (Parenteau et al., 2022), racism and mental
health (Liu et al., 2023), and stress and parenting (Brown et al.,
2020). For such pairs of exposures and outcomes, different models
than the four considered in this paper apply, including the
marching covariate, and the at-or-before models (Srivastava &
Giles, 1987b). The marching covariate model uses contempora-
neous exposures and outcomes and allows evaluating a hypothesis
that only synchronous measures of exposures and outcomes are
important. The at-or-before model uses exposures that are
measured at the same time as the outcome, or at any time before
the outcome. The at-or-before model allows evaluating whether
anteceding or contemporaneous exposures are associated with an
outcome. However, for the questions discussed in the current
manuscript, the restricted class of temporal models are appropriate.

Another limitation of the models described in this manuscript
is that they focus on a single sensitive period, rather than multiple
sensitive periods. Numerous developmental processes are theo-
rized to have multiple sensitive periods, such as cognitive
(Thompson & Steinbeis, 2020) and emotional development
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(Woodard & Pollak, 2020). Future work should build on the
current models to test multiple sensitive periods.

The strength of the manuscript is that it provides detailed
instructions for developmental psychopathology researchers to
understand temporal relations. The techniques described in this
manuscript could be used to identify the timing for averting
adverse sequelae of developmental issues. A thorough under-
standing of sensitive periods and developmental trajectories is
needed in order to create effective prevention and intervention
programming (Cicchetti, 2015a; Davis et al., 2018; Deer et al., 2019;
Granic, 2005; Hankin et al., 2023; Masten, 2006; Sroufe & Rutter,
1984). The hope is that this tutorial manuscript can add to the
analytic repertoire of researchers in the field, and help researchers
better understand approaches for repeated measures data.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S0954579424001299.
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