SEPARABILITY IN AN ALGEBRA WITH SEMI-LINEAR HOMOMORPHISM

DAVID J. WINTER

The purpose of this paper is to outline a simple theory of separability for a non-associative algebra A with semi-linear homomorphism σ . Taking A to be a finite dimensional abelian Lie p-algebra L and σ to be the pth power operation in L, this separability is the separability of [2]. Taking A to be an algebraic field extension K over k and σ to be the Frobenius (pth power) homomorphism in K, this separability is the usual separability of K over k. The theory also applies to any unital non-associative algebra A over a field k and any unital homomorphism σ from A to A such that $\sigma(ke) \subset ke$, e being the identity element of A.

Throughout the paper, A is a non-associative algebra over a field k, with or without identity, and σ is a semi-linear homomorphism of non-associative rings from A to A; that is,

$$\sigma(x + y) = \sigma(x) + \sigma(y)$$

$$\sigma(xy) = \sigma(x)\sigma(y)$$

$$\sigma(\alpha x) = \bar{\sigma}(\alpha)\sigma(x)$$

for $x, y \in A$, $\alpha \in k$, $\bar{\sigma}$ being a suitable homomorphism of fields from k to k. In parts of the paper, we assume that A and σ are unital; that is, A has an identity e and $\sigma(e) = e$. Then a *unital subalgebra* of A is a subring B of A such that $e \in B$.

Definition 1. A σ -subspace (σ -subalgebra) of A is a subspace (subalgebra) V of A such that $\sigma(V) \subset V$.

Definition 2. For $x \in A$, $\langle x \rangle$ is the σ -subspace of A generated by x; that is, the k-span of $x, \sigma(x), \sigma^2(x), \ldots$.

Definition 3. An element x of A is σ -algebraic (σ -separable; σ -nilpotent) if $\langle x \rangle$ is finite dimensional ($\langle x \rangle = \langle \sigma(x) \rangle$; $\sigma^n(x) = 0$ for some positive integer n). If A and σ are unital, an element x of A is σ -radical if $\sigma^n(x) \in ke$ for some positive integer n.

We emphasize that all that is said in this paper about σ -radical objects is understood to apply only in the case where A and σ are unital.

Definition 4. The set of σ -algebraic (σ -separable; σ -nilpotent; σ -radical) elements of a σ -subspace V of A is denoted $V_{alg}(V_{sep}; V_{nllp}; V_{rad})$. If $V = V_{sep}(V = V_{rad})$, V is separable (radical).

Received July 24, 1971.

One sees readily that if V is a σ -subspace (σ -subalgebra) of A, then V_{alg} , V_{nllp} and V_{rad} are σ -subspaces (σ -subalgebras) of A. In order to enable us to prove that V_{sep} is also a σ -subspace (σ -subalgebra) of A, we now impose for the remainder of the paper the further condition on A that A be σ -algebraic.

Definition 5. A σ -subspace V is σ -regular if $\sigma | V$ is injective and σ maps each basis of V to a basis for V.

PROPOSITION 1. Let V be a finite dimensional σ -subspace of V. Then the following conditions are equivalent.

- (2) if x_1, \ldots, x_m are linearly independent elements of V, then $\sigma(x_1), \ldots, \sigma(x_m)$ are linearly independent;
- (3) if x_1, \ldots, x_m span V, then $\sigma(x_1), \ldots, \sigma(x_m)$ span V;
- (4) $\sigma(V)$ spans V.

Proof. (1) implies (2) since we can expand x_1, \ldots, x_m to a finite basis x_1, \ldots, x_n $(n \ge m)$. And (2) implies (3) since we can contract x_1, \ldots, x_m to a minimal spanning set x_1, \ldots, x_n $(n \le m)$, a basis, which then is mapped to a basis $\sigma(x_1), \ldots, \sigma(x_n)$ by (2). Clearly, (3) implies (4). And (4) implies (1); for, let x_1, \ldots, x_n be a basis for V. Since $\sigma(V)$ spans V and x_1, \ldots, x_n span V, $\sigma(x_1), \ldots, \sigma(x_n)$ span V. Thus, $\sigma(x_1), \ldots, \sigma(x_n)$ is a basis for V.

COROLLARY. An element x of A is σ -separable if and only if $\langle x \rangle$ is σ -regular.

Proof. A spanning set for $\langle x \rangle$ is $x, \sigma(x), \ldots, \sigma^n(x)$ for some *n*. Then a spanning set for $\langle \sigma(x) \rangle$ is easily seen to be $\sigma(x), \sigma^2(x), \ldots, \sigma^{n+1}(x)$. Now $\langle x \rangle = \langle \sigma(x) \rangle$ if and only if $\langle x \rangle$ is σ -regular by (3) of the above proposition.

PROPOSITION 2. A σ -subspace V of A is σ -regular if and only if every finite dimensional σ -subspace of V is σ -regular.

Proof. Let V be σ -regular and let W be a finite dimensional σ -subspace of V. Let x_1, \ldots, x_n be linearly independent elements of W and let S be a basis for V containing x_1, \ldots, x_n . Then $\sigma(S)$ is a basis for V and $\sigma(x_1), \ldots, \sigma(x_n)$ are distinct elements of $\sigma(S)$. Thus, $\sigma(x_1), \ldots, \sigma(x_n)$ are linearly independent and W is σ -regular. Suppose conversely that every finite dimensional σ -subspace of V is σ -regular. Let S be a basis for V and let $x_1, \ldots, x_n \in S$. Then $x_1, \ldots, x_n \in W$ where $W = \sum_{i=1}^n \langle x_i \rangle$. Since W is a finite dimensional σ -subspace, W is σ -regular and $\sigma(x_1), \ldots, \sigma(x_n)$ are linearly independent. Thus, σ is injective and $\sigma(S)$ is linearly independent. Next, let $x \in V$. Then $x \in W$ where $W = \langle x \rangle$. Thus, x is in the span of $\sigma(W)$, hence in the span of $\sigma(V)$. Since S spans V, it follows that x is in the span of $\sigma(S)$. Thus, $\sigma(S)$ spans V and V is σ -regular.

COROLLARY. Let V be a σ -regular σ -subspace of V. Then any σ -subspace W of V is σ -regular.

PROPOSITION 3. Let V be the sum of a family V_{λ} of σ -regular σ -subspaces of A. Then V is σ -regular.

⁽¹⁾ V is σ -regular;

Proof. Let W be a finite dimensional σ -subspace of V. Then $W \subset \sum_{i=1}^{n} (W_i)$ for suitable finite dimensional σ -subspaces W_1, \ldots, W_n each of which is contained in one of the V_{λ} . By the above corollary the W_i are σ -regular. Thus, the span of $\sigma(\sum_{i=1}^{n} W_i) = \sum_{i=1}^{n} \sigma(W_i)$ is $\sum_{i=1}^{n} W_i$ and $\sum_{i=1}^{n} W_i$ is σ -regular. Thus, W is σ -regular. Now V is σ -regular by the above proposition.

In the following discussion, we use the notation V_1V_2 for the span of $\{xy|x \in V_1, y \in V_2\}$ for $V_1, V_2 \subset A$.

PROPOSITION 4. Let V_1 , V_2 be σ -regular σ -subspaces of A. Then V_1V_2 is a σ -regular σ -subspace of A.

Proof. Obviously, V_1V_2 is a σ -subspace. Let W be a finite dimensional σ -subspace of V_1V_2 . Then $W \subset W_1W_2$ for suitable finite dimensional σ -subspaces W_i of V_i (i = 1, 2). (Any finite subset of a σ -subspace V is contained in a finite dimensional σ -subspace of V.) Now the span of $\sigma(W_1W_2)$ contains the span of $\sigma(W_1)\sigma(W_2)$ and the latter is W_1W_2 . Since W_1W_2 is finite dimensional it is therefore σ -regular. Thus, W is σ -regular. It follows that V_1V_2 is σ -regular, by Proposition 2.

THEOREM 1. Let V be a σ -subspace (σ -subalgebra) of A. Then V is σ -separable if and only if V is σ -regular. Moreover, V_{sep} is a σ -subspace (σ -subalgebra) of A.

Proof. Suppose that V is σ -regular. Then $x \in V$ implies that $\langle x \rangle$ is σ -regular and hence that x is σ -separable. Thus, V is σ -separable. Next, suppose that $x \in V_{sep}$. Then $\langle x \rangle$ is σ -regular, so that $\langle x \rangle \subset V_{sep}$ by the above observation. Thus,

$$V_{\mathrm{sep}} = \sum_{x \in V_{\mathrm{sep}}} \langle x \rangle$$

and V_{sep} is a σ -regular σ -subspace of A, by Proposition 3. In particular, if V is σ -separable, then V is σ -regular. Suppose finally that V is a σ -subalgebra of A. Then $V_{\text{sep}}V_{\text{sep}}$ is σ -regular, by Proposition 4. Thus, $V_{\text{sep}}V_{\text{sep}} \subset V_{\text{sep}}$, and V_{sep} is a σ -subalgebra of A.

PROPOSITION 5. For $x \in A$, $\sigma^n(x)$ is separable for some n.

Proof. Since $\langle x \rangle$ is finite dimensional, there exists a positive integer n such that

$$\langle x \rangle \supset \langle \sigma(x) \rangle \supset \ldots \supset \langle \sigma^n(x) \rangle = \langle \sigma^{n+1}(x) \rangle = \ldots$$

For such an n, $\sigma^n(x)$ is σ -separable.

Definition 6. Let V, W be unital σ -subalgebras of A. Then V is σ -separable if V is the W-span of $\sigma(V)$; that is,

$$V = \{ \sum_{i=1}^{m} \sigma(v_i) w_i | m \ge 1, v_1, \dots, v_m \in V, w_1, \dots, W_m \in W \}.$$

We now give necessary and sufficient conditions for a finite dimensional unital σ -algebra A to decompose as $A = A_{sep} \otimes_k A_{rad}$ (internal tensor product). The counterpart for fields is [1, p. 50].

THEOREM 2. Let A and σ be unital and suppose that A is finite dimensional and σ injective. Then $A = A_{sep} \otimes_k A_{rad}$ (internal tensor product) if and only if A/A_{rad} is σ -separable.

Proof. Suppose first that $A = A_{sep} \bigotimes_k A_{rad}$. Then since the k-span of $\sigma(A)$ contains A_{sep} , the A_{rad} -span of $\sigma(A)$ contains $A_{sep} \bigotimes_k A_{rad} = A$. (Note here that $A_{rad} \supset ke$.) Thus, A/A_{rad} is σ -separable. Suppose, conversely, that A/A_{rad} is σ -separable. Let b_1, \ldots, b_m span A over A_{rad} . Take n such that $\sigma^n(b_1), \ldots, \sigma^n(b_m)$ are σ -separable. Now b_1, \ldots, b_m span A over A_{rad} , so that $\sigma^n(b_1), \ldots, \sigma^n(b_m)$ span A over A_{rad} by the σ -separability of A/A_{rad} . Thus, $A \subset A_{sep}A_{rad}$. It remains to show that A_{sep} and A_{rad} are linearly disjoint over k. For this, let a_1, \ldots, a_m be linearly independent elements of A_{sep} and suppose that $\sum_{i=1}^n a_i c_i = 0$ where the c_i are in A_{rad} . Choose n such that $\sigma^n(c_i) \in ke$ for all i. Then $\sum_{i=1}^n \sigma^n(c_i)\sigma^n(a_i) = 0$. By the linear independence over k of the $\sigma^n(a_i), \sigma^n(c_i) = 0$ for all i. But σ is injective, so that the c_i are all 0. Thus, A_{sep} and A_{rad} are linearly disjoint over k and $A = A_{sep} \bigotimes_k A_{rad}$.

We conclude with a decomposition theorem which is a form of Fitting's lemma. It's counterpart for Lie p-algebras yields the decomposition of a linear transformation into its semi-simple and nilpotent parts (cf. [2, p. 120]).

THEOREM 3. Let A be finite dimensional and $\bar{\sigma}$ surjective. Then $A = A_{sep} \bigoplus A_{nilp}$ (internal direct sum).

Proof. For any n, $\sigma^n(A)$ and

$$\operatorname{Kern} \sigma^n = \{x | \sigma^n(x) = 0\}$$

are k-subspaces of A, since $k = \bar{\sigma}^n(k)$. Thus,

$$\sigma(A) \supset \sigma^2(a) \supset \ldots$$

and

Kern $\sigma \subset$ Kern $\sigma^2 \dots$

are chains of subspaces of A. Since A is finite dimensional, $\sigma^n(A) = \sigma^{n+1}(A)$ and Kern $\sigma^n = \text{Kern } \sigma^{n+1}$ for some n. Now $\sigma^n A = A_{\text{sep}}$, by Theorem 1, and Kern $\sigma^n = A_{\text{nilp}}$. Let $x \in A$ and choose $y \in A_{\text{sep}}$ such that $\sigma^n(x) = \sigma^n(y)$. This is possible since

$$A_{\text{sep}} = \sigma^n(A) = \sigma^{2n}(A) = \sigma^n(A_{\text{sep}}).$$

Now x = y + (x - y) with $y \in A_{sep}$. And $x - y \in A_{nilp}$ since $\sigma^n(x - y) = \sigma^n(x) - \sigma^n(y) = 0$.

Since $A_{sep} \cap A_{nilp} = \{0\}$, it follows that $A = A_{sep} \oplus A_{nilp}$.

References

1. Nathan Jacobson, Lectures in abstract algebra, Vol. III, Theory of Fields and Galois Theory (Van Nostrand, New York, 1964).

2. George Seligman, Modular lie algebras (Springer, New York, 1966).

University of Michigan, Ann Arbor, Michigan