
5

Exact solutions

Any space-time metric can in a sense be regarded as satisfying
Einstein's field equations

(5.1)

(where we use the units of chapter 3), because, having determined the
left-hand side of (5.1) from the metric tensor of the space-time
(«^,g), one can define Tah as the right-hand side of (5.1). The matter
tensor so defined will in general have unreasonable physical properties;
the solution will be reasonable only if the matter content is reasonable.

We shall mean by an exact solution of Einstein's equations, a space-
time (~#,g) in which the field equations are satisfied with Tab the
energy-momentum tensor of some specified form of matter which
obeys postulate (a) ('local causality') of chapter 3, and one of the
energy conditions of §4.3. In particular, one may look for exact
solutions for empty space (Tah = 0), for an electromagnetic field (Tab

has the form (3.7)), for a perfect fluid (Tab has the form (3.8)), or for
a space containing an electromagnetic field and a perfect fluid.
Because of the complexity of the field equations, one cannot find
exact solutions except in spaces of rather high symmetry. Exact
solutions are also idealized in that any region of space-time is likely to
contain many forms of matter, while one can obtain exact solutions
only for rather simple matter content. Nevertheless, exact solutions
give an idea of the qualitative features that can arise in General
Relativity, and so of possible properties of realistic solutions of the field
equations. The examples we give will show many types of behaviour
which will be of interest in later chapters. We shall discuss solutions
with particular reference to their global properties. Many of these
global properties have only recently been discovered, although the
solutions have been known in a local form for some time.

In § 5.1 and § 5.2 we consider the simplest Lorentz metrics: those of
constant curvature. The spatially isotropic and homogeneous cosmo-
logical models are described in §5.3, and their simplest anisotropic

[117]
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118 EXACT SOLUTIONS [5

generalizations are discussed in § 5.4. It is shown that all such simple
models will have a singular origin provided that A does not take large
positive values. The spherically symmetric metrics which describe
the field outside a massive charged or neutral body are examined in
§5.5, and the axially symmetric metrics describing the field outside
a special class of massive rotating bodies are described in §5.6. It is
shown that some of the apparent singularities are simply due to a bad
choice of coordinates. In §5.7 we describe the Godel universe and in
§5.8 the Taub-NUT solutions. These probably do not represent the
actual universe but they are of interest because of their pathological
global properties. Finally some other exact solutions of interest are
mentioned in §5.9.

5.1 Minkowski space-time

Minkowski space-time (^,r\) is the simplest empty space-time in
General Relativity, and is in fact the space-time of Special Relativity.
Mathematically, it is the manifold i?4 with a flat Lorentz metric TQ.
In terms of the natural coordinates (z1, z2, z3, z*) on JR4, the metric y)
can be expressed in the form

ds2 = - (da;4)2 + (dz1)2 + (dz2)2 + (dz3)2. (5.2)

If one uses spherical polar coordinates (t, r, 6, <f>) where z* = t,
x* = rcosd, z2 = r sin 6 cos 0, z1 = rsinOsintp, the metric takes the

f o r m ds2 = -dt2 + dr2 + r2 (dd2 + sin2 6 d02). (5.3)

This metric is apparently singular for r = 0 and sin# = 0; however
this is because the coordinates used are not admissible coordinates at
these points. To obtain regular coordinate neighbourhoods one has to
restrict the coordinates, e.g. to the ranges 0 < r < oo, 0 < 6 < n,
0 < cj) < 2TT. One needs two such coordinate neighbourhoods to cover
the whole of Minkowski space.

An alternative coordinate system is given by choosing advanced
and retarded null coordinates v, w defined by v = t + r9 w = t — r
(r> v ^ w). The metric becomes

ds2 = - dv dw + \{v - w)2 (dd2 + sin2 0 d^2), (5.4)

where — oo < -y < oo, —co<w<co. The absence in the metric of
terms in dv2, dw2 corresponds to the fact that the surfaces {w = con-
stant}, {v = constant} are null (i.e. w.aw;bg

ab = 0 = v.av;bg
ab); see

figure 12.
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5.1] MINKOWSKI SPACE-TIME 119

w = constant
w = constant

/ \ l > !>
< = constant

v = constant

constant

C 30

(i) (")

FIGURE 12. Minkowski space. The null coordinate v(w) may be thought of as
incoming (outgoing) spherical waves travelling at the speed of light; they are
advanced (retarded) time coordinates. The intersection of a surface
[v = constant} with a surface {w = constant} is a two-sphere.

(i) The v, w coordinate surfaces (one coordinate is suppressed).
(ii) The (t, r) plane; each point represents a two-sphere of radius r.

In a coordinate system in which the metric takes the form (5.2), the
geodesies have the form xa(v) = bav + ca where ba and ca are constants.
Thus the exponential map expp: Tp-**J( is given by

where Xa are the components of X with respect to the coordinate basis
{djdxa} of Tp. Since exp is one-one and onto, it is a diffeomorphism
between Tp and Jt. Thus any two points of Ji can be joined by a
unique geodesic curve. As exp is defined everywhere on Tp for all p,
(^,ri) is geodesically complete.

For a spacelike three-surface ^ , the future (past) Cauchy develop-
ment D+(£f) (D~(S^)) is defined as the set of all points q e -# such that
each past-directed (future-directed) inextendible non-spacelike curve
through q intersects 5^, cf. § 6.5. If D+(£f) U D~(^) = Jt\ i.e. if every
inextendible non-spacelike curve in J( intersects < ,̂ then Sf is said
to be a Cauchy surface. In Minkowski space-time, the surfaces
{#4 = constant} are a family of Cauchy surfaces which cover the whole
of *Jl. One can however find inextendible spacelike surfaces which are
not Cauchy surfaces; for example the surfaces

K'-{- (*4)2 + (z1)2 + (*2)2 + (z3)2 = <r = constant},
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120 EXACT SOLUTIONS [5.1

where a < 0, x* < 0, are spacelike surfaces which lie entirely inside the
past null cone of the origin 0, and so are not Cauchy surfaces (see
figure 13). In fact the future Cauchy development of ^ is the region
bounded by £fa and the past light cone of the origin. By lemma 4.5.2,
the timelike geodesies through the origin 0 are orthogonal to the
surfaces Sfa. If reD+(S^)\j D~(Sfa) then the timelike geodesic
through r and 0 is the longest timelike curve between r and Sf^. If

Null
geodesic

Future null
cone of 0 «^_ TT .f .

Lniformly
accelerating
timelike

Surface
{x* = constant]

Past null
cone of 0

FIGURE 13. A Cauchy surface {xA = constant} in Minkowski space-time, and
spacelike surfaces Zf^, &*„. which are not Cauchy surfaces. The normal geodesies
to the surfaces ^ ^^ all intersect at 0p ^, „
to the surfaces ^^ ^^ all intersect at 0.

however r does not lie in D+(^>
a) U D~(S^) there is no longest timelike

curve between r and S^: either r lies in the region a ^ 0, in which case
there is no timelike geodesic through r orthogonal to 5^., or r lies in
the region a < 0, x4 ^ 0, in which case there is a timelike geodesic
through r orthogonal to 6^. but this geodesic is not the longest curve
between r and S^. as it contains a conjugate point to ^ at O (cf.
figure 13).

To study the structure of infinity in Minkowski space-time, we shall
use the interesting representation of this space-time given by Penrose.
From the null coordinates v, w, we define new null coordinates in
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5.1] MINKOWSKI SPACE-TIME 121

which the infinities of v, w have been transformed to finite values;
thus we define p, q by tan22 = v, tang = w where — \n<p< \n,
— \n<q<\TT (and p ^ g). Then the metric of (~#, Y)) takes the form

ds2 = sec2p sec2 q( - dp dq + £ sin2 (^ - g) (d02 + sin2 6 d<f)2)).

The physical metric YJ is therefore conformal to the metric g given by

ds2 = - ±dp dq + sin2 (p - q) (dd2 + sin2 6 d<j>2). (5.5)

This metric can be reduced to a more usual form by defining

t'=p + q, r'=p-q,

where -n < t'+ r' < n, -n < tf-r' < n, r' > 0; (5.6)

(5.5) is then

ds2 = -(dt')2 + (dr')2 + 8m2r'(dd2 + sm2dd<f>2). (5.7)

Thus the whole of Minkowski space-time is given by the region (5.6) of
Xifie m e t r i c •% o 1

ds2 | se ^ +r ))aec2(%(t -r ))ds2

where ds2 is determined by (5.7); the coordinates tf r of (5.3) are
related to t'} r

r by

2t = tan (\(t9 + r')) + tan {\(f - r'))f

2r = tan (£(*' + / ) ) - tan (\(tf - r')).

Now the metric (5.7) is locally identical to that of the Einstein static
universe (see §5.3), which is a completely homogeneous space-time.
One can analytically extend (5.7) to the whole of the Einstein static
universe, that is one can extend the coordinates to cover the manifold
R1 x AS3 where — 00 < t' < 00 and / , 6, <fi are regarded as coordinates
on 8Z (with coordinate singularities at r' = 0, r' = n and 6 = 0, 6 = TT
similar to the coordinate singularities in (5.3); these singularities can
be removed by transforming to other local coordinates in a neighbour-
hood of points where (5.7) is singular). On suppressing two dimensions,
one can represent the Einstein static universe as the cylinder
x2 + y2 = 1 imbedded in a three-dimensional Minkowski space with
metric ds2 = —dt2 + dx2 + dy2 (the full Einstein static universe can be
imbedded as the cylinder x2 + y2 + z2 + w2 = 1 in a five-dimensional
Euclidean space with metric ds2 = — dt2 + dx2 + dy2 + dz2 + dw2, cf.
Robertson (1933)).

One therefore has the situation: the whole of Minkowski space-time
is conformal to the region (5.6) of the Einstein static universe, that is,
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122 EXACT SOLUTIONS [5.1

to the shaded area in figure 14. The boundary of this region may there-
fore be thought of as representing the conformal structure of infinity
of Minkowski space-time. It consists of the null surfaces p = \n
(labelled f+) and q = -\TT (labelled J-) together with points p = \ir>
q = \n (labelled i+), p = \n, q = - \n (labelled i°) and p = - \n,
q = —\n (labelled i~). Any future-directed timelike geodesic in

V = n

t' = 0

FIGURE 14. The Einstein static universe represented by an imbedded cylinder;
the coordinates 6, (j> have been suppressed. Each point represents one half
of a two-sphere of area 47rsin2r/. The shaded region is conformal to the whole of
Minkowski space-time; its boundary (part of the null cones of i+, i° and i~)may
be regarded as the conformal infinity of Minkowski space—time.

Minkowski space approaches i+ (i~) for indefinitely large positive
(negative) values of its affine parameter, so one can regard any time-
like geodesic as originating at i~ and finishing at i+ (cf. figure 15 (i)).
Similarly one can regard null geodesies as originating at J~~ and ending
at */+, while spacelike geodesies both originate and end at i°. Thus one
may regard i+ and i~ as representing future and past timelike infinity,
«/+ and J~ as representing future and past null infinity, and i° as
representing spacelike infinity. (However non-geodesic curves do not
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5.1] MINKOWSKI SPACE-TIME 123

obey these rules; e.g. non-geodesic timelike curves may start on J~
and end on «/+.) Since any Cauchy surface intersects all timelike and
null geodesies, it is clear that it will appear as a cross-section of the
space everywhere reaching the boundary at i°.

= in) M\C*/
o c < i. i.i ! V^xifcC Surfaces
Surface {q = constant} | J / O f K M = constant}

Spacelike
geodesic

Timelike m

geodesies
Null'
geodesic

i° (regard as
one point)

Surface
{p = constant} lJJ^/^^^ = cons tan t}

^Two-spheres
constant}

(i) (i«

F I G U R E 15

(i) The shaded region of figure 14, with only one coordinate suppressed,
representing Minkowski space-time and its conformal infinity.

(ii) The Penrose diagram of Minkowski space-time; each point represents
a two-sphere, except for i+, i° and i~, each of which is a single point, and points
on the line r = 0 (where the polar coordinates are singular).

One can also represent the conformal structure of infinity by
drawing a diagram of the {t',r') plane, see figure 15 (ii). As in figure
12 (ii), each point of this diagram represents a sphere S2

9 and radial
null geodesies are represented by straight lines at + 45°. In fact, the
structure of infinity in any spherically symmetric space-time can be
represented by a diagram of this sort, which we shall call a Penrose
diagram. On such diagrams we shall represent infinity by single lines,
the origin of polar coordinates by dotted lines, and irremovable singu-
larities of the metric by double lines.

The conformal structure of Minkowski space we have described is
what one would regard as the 'normal' behaviour of a space-time at
infinity; we shall encounter different types of behaviour in later
sections.

Finally, we mention that one can obtain spaces locally identical to
) but with different (large scale) topological properties by identi-
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124 EXACT SOLUTIONS [5.1

fying points in J( which are equivalent under a discrete isometry
without a fixed point (e.g. identifying the point (z1, x2, x*9 x*) with the
point (z1

9z
2

9x^9a^ + c)9 where c is a constant, changes the topological
structure from i?4 to R* x S1, and introduces closed timelike lines into
the space-time). Clearly, {.J(, t\) is the universal covering space for
all such derived spaces, which have been studied in detail by Auslander
and Markus (1958).

5.2 De Sitter and anti-de Sitter space-times

The space-time metrics of constant curvature are locally characterized
by the condition Rabcd = T2R(gac9bd-9ad9bc)- T h i s equation is equiva-
lent to Cabcd = 0 = Rab — %Rgab; thus the Riemann tensor is determined
by the Ricci scalar R alone. It follows at once from the contracted
Bianchi identities that R is constant throughout space-time; in fact
these space-times are homogeneous. The Einstein tensor is

One can therefore regard these spaces as solutions of the field
equations for an empty space with A = \R, or for a perfect fluid with
a constant density R/327T and a constant pressure — R/327T. However
the latter choice does not seem reasonable, as in this case one cannot
have both the density and the pressure positive; in addition, the
equation of motion (3.10) is indeterminate for such a fluid.

The space of constant curvature with R — 0 is Minkowski space-
time. The space for R > 0 is de Sitter space-time, which has the
topology R1 x Sz (see Schrodinger (1956) for an interesting account of
this space). It is easiest visualized as the hyperboloid

in flat five-dimensional space R5 with metric

- dv2 + dw2 + dx2 + dy2 + dz2 = ds2

(see figure 16). One can introduce coordinates (t, x> #> ^) o n the hyper-
boloid by the relations

a sinh (oc~H) = v, a cosh (orH) cos x = w,

a cosh (<x~H) sin x cos 6 — x, a cosh (a"1^) sin x sin 6 cos <f> = y,

a cosh (oc~H) sin x sin 6 sin (f> = z.
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5.2] DE SITTER SPACE-TIME 125

Null surfaces {t = —00}
are boundaries of

x=zJf coordinate patch

t increases

t increases \Wil , K « — G e o d e f c \ > ^ W ¥ i ^ Geodesic
t increases | j _ J S n o r m a l s V ^ H ^ normals

« = 0; 5L.J-L3 Surfaces of ! \ | L D e

minimum-^Ti^JT^ constant // \ f tVC> Surfaces of
distance fZJ I I J A time« // \ \ \ constant time I
between
geodesic.
normals

* increases , v infirfiMftR Timelike geodesic which

does not cross surfaces
{t = constant}

(i) (ii)

FIGURE 16. De Sitter space-time represented by a hyperboloid imbedded in
a five-dimensional flat space (two dimensions are suppressed in the figure).

(i) Coordinates (t, x* &•> 4>) cover the whole hyperboloid; the sections {t = con-
stant} are surfaces of curvature k = + 1.

(ii) Coordinates (t,x, y,z) cover half the hyperboloid; the surfaces
{t = constant} are flat three-spaces, their geodesic normals diverging from a
point in the infinite past.

In these coordinates, the metric has the form

ds2 = -dt2 + ot2. cosh2 (a"1*). {d#2 + sin2 x(dO2 + sin2 6 d^2)}.

The singularities in the metric at % = 0, x = ̂  a n ( i &t 0 = 0, d = n9

are simply those that occur with polar coordinates. Apart from these
trivial singularities, the coordinates cover the whole space for
— oo<£<oo, 0 *^ x ̂  n> 0 ̂  6 ̂  n, 0 ̂  <fi ^ 2n. The spatial sections
of constant t are spheres S* of constant positive curvature and are
Cauchy surfaces. Their geodesic normals are lines which contract
monotonically to a minimum spatial separation and then re-expand
to infinity (see figure 16 (i)).

One can also introduce coordinates

ocx . ocy az
a ' w + v' * w + v' w + v

on the hyperboloid. In these coordinates, the metric takes the form

ds2 = - di2 + exp (2a-1?) (d£2 + d£2 + d£2).
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126 EXACT SOLUTIONS [5.2

However these coordinates cover only half the hyperboloid as i is not
defined for w + v ^ 0 (see figure 16 (ii)).

The region of de Sitter space for which v + w > 0 forms the space-
time for the steady state model of the universe proposed by Bondi and
Gold (1948) and Hoyle (1948). In this model, the matter is supposed
to move along the geodesic normals to the surfaces {i = constant}. As
the matter moves further apart, it is assumed that more matter is
continuously created to maintain the density at a constant value.
Bondi and Gold did not seek to provide field equations for this model,
but Pirani (1955), and Hoyle and Narlikar (1964) have pointed out
that the metric can be considered as a solution of the Einstein equa-
tions (with A = 0) if in addition to the ordinary matter one introduces
a scalar field of negative energy density. This 'C '-field would also be
responsible for the continual creation of matter.

The steady state theory has the advantage of making simple and
definite predictions. However from our point of view there are two
unsatisfactory features. The first is the existence of negative energy,
which was discussed in § 4.3. The other is the fact that the space-time
is extendible, being only half of de Sitter space. Despite these aesthetic
objections, the real test of the steady state theory is whether its pre-
dictions agree with observations or not. At the moment it seems that
they do not, though the observations are not yet quite conclusive.

de Sitter space is geodesically complete; however, there are points
in the space which cannot be joined to each other by any geodesic.
This is in contrast to spaces with a positive definite metric, when
geodesic completeness guarantees that any two points of a space can
be joined by at least one geodesic. The half of de Sitter space which
represents the steady state universe is not complete in the past (there
are geodesies which are complete in the full space, and cross the
boundary of the steady state region; they are therefore incomplete in
that region).

To study infinity in de Sitter space-time, we define a time coordinate

*' b y tf = 2 arc tan (exp or11) - \TT,

where — \n < t' < \n. (5.8)

Then ds2 = a2 cosh2 (a"1*'). ds2,

where ds2 is given by (5.7) on identifying r' = X- Thus the de Sitter
space is conformal to that part of the Einstein static universe defined
by (5.8) (see figure 17 (i)). The Penrose diagram of de Sitter space is
accordingly as in figure 17 (ii). One half of this figure gives the Penrose
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r' = 0 r — it

-f+(t' = in), a sphere S3

~{t' = constant}

-t' = 0

-J-(t' =—JTT), a sphere S*

(i) ^ Time lines
(£ = constant)

q
111, ;

*—
^

= o o )

Surfaces
{t = constant}"

Surfaces.Time lines

iTtant) \\LtfW~ (' = constant)

(coordinate
singularity) f ^ w

J-(t=— oo) (coordinate \Coordinate
singularity) singularity (# = 0)

(ii) (iii)

FIGURE 17
(i) De Sitter space-time is conformal to the region —\n<t'<\-n of the

Einstein static universe. The steady state universe is conformal to the shaded
region.

(ii) The Penrose diagram of de Sitter space-time,
(iii) The Penrose diagram of the steady state universe.
In (ii), (iii) each point represents a two-sphere of area 27rsin2^;; null lines are

at 45°. x = 0 and X — n a r e identified.

diagram of the half of de Sitter space-time which constitutes the
steady state universe (figure 17 (iii)).

One sees that de Sitter space has, in contrast to Minkowski space,
a spacelike infinity for timelike and null lines, both in the future and
the past. This difference corresponds to the existence in de Sitter
space-time of both particle and event horizons for geodesic families
of observers.

In de Sitter space, consider a family of particles whose histories are
timelike geodesies; these must originate at the spacelike infinity J~
and end at the spacelike infinity«/+. Let p be some event on the world-
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Particle has been
O's world-line observed by O at p

Particle horizon
forO

^at p
Particles

? not yet
observed

Particle ^ g g ^ m \ VI f^0%Z%Z
world-"
lines

. /- Past null cone
of 0 at p

All particles
have been
observed
by 0 at p

Particle*
world - lhu _ ^ , , , , ^ , , , ^ . _

Past null cone
of 0 at p

(ii)

FlGUBE 18
(i) The particle horizon defined by a congruence of geodesic curves when

past null infinity *$~ is spacelike.
(ii) Lack of such a horizon if *?~ is null.

line of a particle 0 in this family, i.e. some time in its history (proper
time measured along 0's world-line). The past null cone of p is the set
of events in space-time which can be observed by 0 at that time. The
world-lines of some other particles may intersect this null cone; these
particles are visible to 0. However, there can exist particles whose
world-lines do not intersect this null cone, and so are not yet visible
to 0. At a later time 0 can observe more particles, but there still exist
particles not visible to 0 at that time. We say that the division of
particles into those seen by 0 at p and those not seen by 0 at p, is the
particle horizon for the observer 0 at the event p; it represents the
history of those particles lying at the limits of 0's vision. Note that it
is determined only when the world-lines of all the particles in the
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5.2] DE SITTER SPACE-TIME 129

family are known. If some particle lies on the horizon, then the events
is the event at which the particle's creation light cone intersects O's
world-line. In Minkowski space, on the other hand, all the other
particles are visible at any event p on O's world-line if they move on
timelike geodesies. As long as one considers only families of geodesic
observers, one may think of the existence of the particle horizon as a
consequence of past null infinity being spacelike (see figure 18).

All events outside the past null cone of p are events which are not,
and never have been, observable by 0 up to the time represented by
the event^p. There is a limit to O's world-line on«/+. In de Sitter space-
time, the past null cone of this point (obtained by a limiting process
in the actual space-time, or directly from the conformal space-time)
is a boundary between events which will at some time be observable
by 0, and those that will never be observable by 0. We call this surface
the future event horizon of the world-line. It is the boundary of the past
of the world-line. In Minkowski space-time, on the other hand, the
limiting null cone of any geodesic observer includes the whole of
space-time, so there are no events which a geodesic observer will never
be able to see. However if an observer moves with uniform acceleration
his world-line may have a future event horizon. One may think of the
existence of a future event horizon for a geodesic observer as being
a consequence of </+ being spacelike (see figure 19).

Consider the event horizon for the observer 0 in de Sitter space-time
and suppose that at some proper time (event p) on his world-line, his
light cone intersects the world-line of the particle Q. Then Q is always
visible to 0 at times after p. However there is on Q's world-line an
event r which lies on O's future event horizon; 0 can never see later
events on Q's world-line than r. Moreover an infinite proper time
elapses on O's world-line from any given point till he observes r, but
a finite proper time elapses along Q's world-line from any given event
to r, which is a perfectly ordinary event on his world-line. Thus 0 sees
a finite part of Q's history in an infinite time; expressed more physi-
cally, as 0 observes Q he sees a redshift which approaches infinity as
0 observes points on Q's world-line which approach r. Correspondingly,
Q never sees beyond some point on O's world-line, and sees nearby
points on O's world-line only with a very large redshift.

At any point on O's world-line, the future null cone is the boundary
of the set of events in space-time which 0 can influence at and after
that time. To obtain the maximal set of events in space-time that 0
could at any time influence, we take the future light cone of the limit
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C* O's world-line

_0's future null

-T \
. / " Q's world-line O's past null cone at p

Events 0
will never be
able to
influence

(i)

Geodesic observer
O's world-line

Non-geodesic observer
" J2's world-line

Past light cone of 0"
at ^ ; eventually includes
all space-time Future event horizon for R

(ii)

FIGURE 19

(i) The future event horizon for a particle O which exists when future infinity
*/+ is spacelike; also the past event horizon which exists when past infinity J~
is spacelike.

(ii) If future infinity consists of a null */+ and i°, there is no future event
horizon for a geodesic observer O. However an accelerating observer R may
have a future event horizon.

point of O's world-line on past infinity «/~; that is, we take the
boundary of the future of the world-line (which can be regarded as
O's creation light cone). This has a non-trivial existence for a geodesic
observer only if the past infinity J>~ is spacelike (and is in fact then
O's past event horizon). It is clear from the above discussion that
in the steady state universe, which has a null past infinity for timelike
and null geodesies and a spacelike future infinity, any fundamental
observer has a future event horizon but no past particle horizon.

One can obtain other spaces which are locally equivalent to the de
Sitter space, by identifying points in de Sitter space. The simplest such
identification is to identify antipodal points p, p' (see figure 16) on the
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hyperboloid. The resulting space is not time orientable; if time increases
in the direction of the arrow at p, the antipodal identification implies
it must increase in the direction of the arrow at p', but one cannot
continuously extend this identification of future and past half null
cones over the whole hyperboloid. Calabi and Markus (1962) have
studied in detail the spaces resulting from such identifications; they
show in particular that an arbitrary point in the resulting space can
be joined to any other point by a geodesic if and only if it is not time
orientable.

The space of constant curvature with R < 0 is called anti-de Sitter
space. It has the topology S1xR*> and can be represented as the
hyperboloid _u>_

in the flat five-dimensional space R5 with metric

ds2 = - (du)2 - {dv)2 + (dx)2 + (dy)2 + (dz)2.

There are closed timelike lines in this space; however it is not simply
connected, and if one unwraps the circle S1 (to obtain its covering
space R1) one obtains the universal covering space of anti-de Sitter
space which does not contain any closed timelike lines. This has the
topology of i?4. We shall in future mean by 'anti-de Sitter space', this
universal covering space.

It can be represented by the metric

ds2 = - d ^ + cos2^{d^2 + sinh2^(d(92 + sin2/9d^2)}. (5.9)

This coordinate system covers only part of the space, and has apparent
singularities at t = ± \n. The whole space can be covered by coordi-
nates {t\ r, 6, <j)} for which the metric has the static form

ds2 = - cosh2 r dt'2 + dr2 + sinh2 r(dd2 + sin2 6 d^2).

In this form, the space is covered by the surfaces {f = constant} which
have non-geodesic normals.

To study the structure at infinity, define the coordinate r' by

r' = 2 arctan (exp r) — \n, 0 ̂  rr < \n.

Then one finds ds2 = cosh2rd£2, where ds2 is given by (5.7); that is,
the whole of anti-de Sitter space is conformal to the region 0 ^ r' < \n
of the Einstein static cylinder. The Penrose diagram is shown in
figure 20; null and spacelike infinity can be thought of as a timelike
surface in this case. This surface has the topology R1 x S2.
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r' = In

t' =

f =-4*

Lines
{r = constant}

Surfaces
' = constant}

Surfaces
{t = constant}

Lines
{̂  = constant}

.Null geodesies
from infinity to r

(i)

Coordinate
singularity *-

Timelike
geodesies
fromjp

Null
geodesic

FIGURE 20
(i) Universal anti-de Sitter space is conformal to one half of the Einstein

static universe. While coordinates (t\ r, d, <j>) cover the whole space, coordinates
(t, x> &> $) cover only one diamond-shaped region as shown. The geodesies
orthogonal to the surfaces {t = constant} all converge at p and g, and then
diverge out into similar diamond-shaped regions.

(ii) The Penrose diagram of universal anti-de Sitter space. Infinity consists of
the timelike surface J and the disjoint points i+, i~. The projection of some
timelike and null geodesies is shown.
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One cannot find a conformal transformation which makes timelike
infinity finite without pinching off the Einstein static universe to a
point (if a conformal transformation makes the time coordinate finite
it also scales the space sections by an infinite factor), so we represent
timelike infinity by the disjoint points i+, i~.

The lines {#, #, ̂  constant} are the geodesies orthogonal to the
surfaces {t = constant}; they all converge to points q (respectively, p)
in the future (respectively, past) of the surface, and this convergence
is the reason for the apparent (coordinate) singularities in the original
metric form. The region covered by these coordinates is the region
between the surface t = 0 and the null surfaces on which these normals
become degenerate.

The space has two further interesting properties. First, as a con-
sequence of the timelike infinity, there exists no Cauchy surface
whatever in the space. While one can find families of spacelike
surfaces (such as the surfaces {f = constant}) which cover the space
completely, each surface being a complete cross-section of the space-
time, one can find null geodesies which never intersect any given
surface in the family. Given initial data on any such surface, one
cannot predict beyond the Cauchy development of the surface; thus
from the surface {t = 0}, one can predict only in the region covered by
the coordinates t, #, #, 0. Any attempt to predict beyond this region is
prevented by fresh information coming in from the timelike infinity.

Secondly, corresponding to the fact that the geodesic normals from
t = 0 all converge at p and q, all the past timelike geodesies from p
expand out (normal to the surfaces {t = constant}) and reconverge
at q. In fact, all the timelike geodesies from any point in this space
(to either the past or future) reconverge to an image point, diverging
again from this image point to refocus at a second image point, and
so on. The future timelike geodesies from p therefore never reach«/, in
contrast to the future null geodesies which go to«/ from p and form the
boundary of the future of p. This separation of timelike and null
geodesies results in the existence of regions in the future of p (i.e. which
can be reached from p by a future-directed timelike line) which cannot
be reached from p by any geodesic. The set of points which can be
reached by future-directed timelike lines from p is the set of points
lying beyond the future null cone of p\ the set of points which can be
reached from p by future-directed timelike geodesies is the interior of
the infinite chain of diamond-shaped regions similar to that covered
by coordinates (t,x,O,<fi)- One notes that all points in the Cauchy
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development of the surface t = 0 can be reached from this surface by
a unique geodesic normal to this surface, but that a general point
outside this Cauchy development cannot be reached by any geodesic
normal to the surface.

5.3 Robertson-Walker spaces

So far, we have not considered the relation of exact solutions to the
physical universe. Following Einstein, we can ask: can one find space-
times which are exact solutions for some suitable form of matter and
which give a good representation of the large scale properties of the
observable universe? If so, we can claim to have a reasonable 'cosmo-
logical model' or model of the physical universe.

However we are not able to make cosmological models without some
admixture of ideology. In the earliest cosmologies, man placed himself
in a commanding position at the centre of the universe. Since the time
of Copernicus we have been steadily demoted to a medium sized planet
going round a medium sized star on the outer edge of a fairly average
galaxy, which is itself simply one of a local group of galaxies. Indeed
we are now so democratic that we would not claim that our position in
space is specially distinguished in any way. We shall, following Bondi
(1960), call this assumption the Copernican principle.

A reasonable interpretation of this somewhat vague principle is to
understand it as implying that, when viewed on a suitable scale, the
universe is approximately spatially homogeneous.

By spatially homogeneous, we mean there is a group of isometries
which acts freely on e^, and whose surfaces of transitivity are space-
like three-surfaces; in other words, any point on one of these surfaces
is equivalent to any other point on the same surface. Of course, the
universe is not exactly spatially homogeneous; there are local irregu-
larities, such as stars and galaxies. Nevertheless it might seem reason-
able to suppose that the universe is spatially homogeneous on a large
enough scale.

While one can build mathematical models fulfilling this requirement
of homogeneity (see next section), it is difficult to test homogeneity
directly by observation, as there is no simple way of measuring the
separation between us and distant objects. This difficulty is eased by
the fact that we can, in principle, fairly easily observe isotropies in
extragalactic observations (i.e. we can see if these observations are the
same in different directions, or not), and isotropies are closely con-
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nected with homogeneity. Those observational investigations of iso-
tropy which have been carried out so far support the conclusion that
the universe is approximately spherically symmetric about us.

In particular, it has been shown that extragalactic radio sources are
distributed approximately isotropically, and that the recently ob-
served microwave background radiation, where it has been examined,
is very highly isotropic (see chapter 10 for further discussion).

It is possible to write down and examine the metrics of all space-
times which are spherically symmetric; particular examples are the
Schwarzschild and Reissner-Nordstrom solutions (see § 5.5); however
these are asymptotically flat spaces. In general, there can exist at most
two points in a spherically symmetric space from which the space looks
spherically symmetric. While these may serve as models of space-time
near a massive body, they can only be models of the universe consistent
with the isotropy of our observations if we are located near a very
special position. The exceptional cases are those in which the universe
is isotropic about every point in space time; so we shall interpret the
Copernican principle as stating that the universe is approximately
spherically symmetric about every point (since it is approximately
spherically symmetric about us).

As has been shown by Walker (1944), exact spherical symmetry
about every point would imply that the universe is spatially homo-
geneous and admits a six-parameter group of isometries whose surfaces
of transitivity are spacelike three-surfaces of constant curvature. Such
a space is called a Robertson-Walker (or Friedmanri) space (Minkowski
space, de Sitter space and anti-de Sitter space are all special cases of
the general Robertson-Walker spaces). Our conclusion, then, is that
these spaces are a good approximation to the large scale geometry of
space-time in the region that we can observe.

In the Robertson-Walker spaces, one can choose coordinates so that
the metric has the form

where da2 is the metric of a three-space of constant curvature and is
independent of time. The geometry of these three-spaces is qualita-
tively different according to whether they are three-spaces of constant
positive, negative or zero curvature; by rescaling the function S, one
can normalize this curvature K to be + 1 or — 1 in the first two cases.
Then the metric dor2 can be written

do-2 = dx2+
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where Tsin ;̂ if K = +1 ,

sinh^; if K — — 1.

The coordinate x r u n s from 0 to oo if K = 0 or — 1, but runs from 0 to
2TT if K = + 1. When i£ = 0 or — 1, the three-spaces are diffeomorphic
to E3 and so are 'infinite', but when K = -f 1 they are diffeomorphic
to a three-sphere S3 and so are compact (' closed' or' finite'). One could
identify suitable points in these three-spaces to obtain other global
topologies; it is even possible to do this, in the case of negative or zero
curvature, in such a way that the resulting three-space is compact
(Lobell (1931)). However such a compact surface of constant negative
curvature would have no continuous groups of isometries (Yano and
Bochner (1953))-although Killing vectors exist at each point, they
would not determine any global Killing vector fields and the local
groups of isometries they generate would not link up to form global
groups. In the case of zero curvature, a compact space could only have
a three-parameter group of isometries. In neither case would the
resulting space-time be isotropic. We shall not make such identifica-
tions, as our original reason for considering these spaces was that they
were isotropic (and so had a six-parameter group of isometries). In
fact the only identifications which would not result in an anisotropic
space would be to identify antipodal points on S3 in the case of constant
positive curvature.

The symmetry of the Robertson-Walker solutions requires that the
energy-momentum tensor has the form of a perfect fluid whose
density fi and pressure p are functions of the time coordinate t only,
and whose flow lines are the curves (#, 0, <fi) constant (so the coordinates
are comoving coordinates). This fluid can be thought of as a smoothed
out approximation to the matter in the universe; then the function
S(t) represents the separation of neighbouring flow lines, that is, of
'nearby5 galaxies.

The equation of conservation of energy (3.9) in these spaces takes
the form . o / . o . / a le <r.K

ju, = -3(/i+p)S /S. (5.10)

The Raychaudhuri equation (4.26) takes the form

4n(/i + 3p) — A = —3S"I8. (5.11)
The remaining field equation (which is essentially (2.35)) can be written

3S'2 = Sn(/iS3)IS + AS2 - 3K. (5.12)
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Whenever S' #0,(5.12) can in fact be derived, with an arbitrary value
of the constant K, as a first integral of (5.10), (5.11); so the real effect
of this field equation is to identify the integration constant as the
curvature of the metric do*2 of the three-spaces {t = constant}.

It is reasonable to assume (cf. the energy conditions, § 4.3) that ji is
positive and p is non-negative. (In fact, present estimates are
10~29gmcm~3 ^ ju0 ^ 10-31gmcm~3, JLC0 > p0^ 0). Then, if A is zero,
(5.11) shows that S cannot be constant; in other words the field equa-
tions then imply the universe is either expanding or contracting.
Observations of other galaxies show, as first found by Slipher and
Hubble, that they are moving away from us, and so indicate that the
matter in the universe is expanding at the present time. Current
observations give the value of S'/S at the present time as

H = (S'IS)\0 « 10-i0year-i,

believed correct to within a factor 2. From this, (5.11) shows that if
A is zero, S must have been zero a finite time t0 ago (that is, a time t0

measured along the world-line of our galaxy) where

t0 < H'1 « 1010 years.

From (5.10) it follows that the density decreases as the universe
expands, and conversely that the density was higher in the past,
increasing without bound as #->0. This is therefore not merely a
coordinate singularity (as for example, in anti-de Sitter universe
expressed in coordinates (5.9)); the fact that the density is infinite there
shows that some scalar defined by the curvature tensor is also infinite.
It is this that makes the singularity so much worse than in the corre-
sponding Newtonian situation; in both cases the world-lines of all the
particles intersect in a point and the density becomes infinite, but here
space-time itself becomes singular at the point S = 0. We must there-
fore exclude this point from the space-time manifold, as no known
physical laws could be valid there.

This singularity is the most striking feature of the Robertson-
Walker solutions. It occurs in all models in which fi + 3p is positive
and A is negative, zero, or with not too large a positive value. It would
imply that the universe (or at least that part of which we can have any
physical knowledge) had a beginning a finite time ago. However this
result has here been deduced from the assumptions of exact spatial
homogeneity and spherical symmetry. While these may be reasonable
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approximations on a large enough scale at the present time, they
certainly do not hold locally. One might think that, as one traced the
evolution of the universe back in time, the local irregularities would
grow and could prevent the occurrence of a singularity, causing the
universe to ' bounce' instead. Whether this could happen, and whether
physically realistic solutions with inhomogeneities would contain
singularities, is a central question of cosmology and constitutes the
principal problem dealt with in this book; it will turn out that there is
good evidence to believe that the physical universe does in fact become
singular in the past.

If some suitable relation between p and ju, is specified, (5.10) can be
integrated to give fi as a function of S. In fact the pressure is very
small at the present epoch. If one takes it and A to be zero, one finds
from (5.10) A „

where M is a constant, and (5.12) becomes

3S'2-6M/S = -3K = EjM. (5.13)

The first equation expresses the conservation of mass when the pres-
sure is zero, while the second (the Friedmann equation) is an energy
conservation equation for a comoving volume of matter; the constant
E represents the sum of the kinetic and potential energies. If E is
negative (i.e. K is positive), 8 will increase to some maximum value
and then decrease to zero; if E is positive or zero (i.e. K is negative or
zero), S will increase indefinitely.

The explicit solutions of (5.13) have a simple form if given in terms
of a rescaled time parameter r(£), defined by

AS-1^); (5.14)

they take the form

8 = (J0/3) (cosh 7-1) , t= (2£/3)(sinh7-7), if JT = - 1 ;

£ = 72, * = *r3, if K = 0;

flf = ( -^ /3) ( l -cos7) , t = (-.0/3) (7-sin 7), if K = 1.

(The case K = 0 is the Einstein-de Sitter universe; clearly S acti.)

Ifp is non-zero but positive, the qualitative behaviour is the same.
In particular if p = (7— l)fi where 7 is a constant, 1 < 7 < 2, one finds
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±7T/i = MfSzy, and the solution of (5.12) near the singularity takes the
form

S oc

If A is negative, the solution expands from an initial singularity,
reaches a maximum and then recollapses to a second singularity. If
A is positive, then for K = 0 or — 1 the solution expands forever and
asymptotically approaches the steady state model. For K = + 1 there
are several possibilities. If A is greater than some value Acrlt

(Acnt =(-E/3M)3l(3M)2 if p = 0) the solution will start from an
initial singularity and will expand forever asymptotically approaching
the steady state model. If A = Acrlt there is a static solution, the
Einstein static universe. (The metric form (5.7) is that of the particular
Einstein static solution for which fi+p = (47T)"1, A = 1 + 8np.) There
is also a solution which starts from an initial singularity and asympto-
tically approaches the Einstein universe, and one which starts from the
Einstein universe in the infinite past and expands forever. If A < Acrlt

there are two solutions-one expands from an initial singularity and
then recollapses to a second singularity; the other contracts from an
infinite radius in the infinite past, reaches a minimum radius, and then
re-expands. This and the universe asymptotic to the static universe
in the infinite past are the only solutions which could represent the
observed universe and which do not have a singularity. In these
models, S" is always positive, and this seems to be in conflict with
observations of redshifts of distant galaxies (Sandage (1961, 1968)).
Also, the maximum density in these models would not have been very
much larger than the present density. This would make it difficult to
understand phenomena such as the microwave background radiation
and the cosmic abundance of helium, which seem to point to a very
hot dense phase in the history of the universe.

Just as in the previous cases we have studied, one can find conformal
mappings of the Robertson-Walker spaces into the Einstein static
space. We use the coordinate r defined by (5.14) as a time coordinate;
then the metric takes the form

ds2 = S2(T){-dT2 + dx2+f2(x)(dd2 + sin2dd</>2)}. (5.15)

In the case K = +1 , this is already conformal to the Einstein static
space (put T = £',# = / to agree with the notation of (5.7)). Thus these
spaces are mapped into precisely that part of the Einstein static space
determined by the values taken by r. When p = A = 0, r lies in the
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range 0 < r < n, so the whole space is mapped into this region in the
Einstein static universe while its boundary is mapped into the three-
spheres r = 0, r = n. (If p > 0, it is mapped into a region for which
r takes values 0 < r < a < n, for some number a.) In the case K = 0,
the same coordinates represent the space as conformal to flat space
(see (5.15)), so on using the conformal transformations of §5.1, one
obtains these spaces mapped into some part of the diamond repre-
senting Minkowski space-time in the Einstein static universe (see
figure 14); the actual region is again determined by the values taken
by r. When A = 0, 0 < r < oo, so this space (which is the Einstein-
de Sitter space when p = 0) is conformal to the half t' > 0 of the
diamond which represents Minkowski space-time. In the case K = — 1,
one obtains the metric conformal to part of the region of the Einstein
static space for which \n ^ t' + r' ^ - \n> \n ^ t' -rr ^ - \n, on
defining

t' = arc tan (tanh £(7+ #)) +arc tan (tanh £(r — x)),

r' = arc tan (tanh \(r + x)) — &rc ̂ a n (tanh \(r — x))-

The part of this diamond-shaped region covered depends on the range
of r; when A = 0, the space is mapped into the upper half.

One thus obtains these spaces and their boundaries conformal to
some (generally finite) region of the Einstein static space, see figure
21 (i). However there is an important difference from the previous
cases: part of the boundary is not ' infinity' in the sense it was previ-
ously, but represents the singularity when 8 = 0. (The conformal
factor can be thought of as making infinity finite by giving an infinite
compression, but making the singular point S = 0 finite by an infinite
expansion.) In fact this makes little difference to the conformal dia-
grams; one can give the Penrose diagrams as before (see figures 21 (ii)
and 21 (iii)). In each case when p ^ 0 the singularity at t = 0 is repre-
sented by a spacelike surface; this corresponds to the existence of
particle horizons (defined precisely as in §5.2) in these spaces. Also
when K = + 1 the future boundary is spacelike, implying the existence
of event horizons for the fundamental observers; when K = 0 or — 1
and A = 0, future infinity is null and there are no future event horizons
for the fundamental observers in these spaces.

At this stage, one should examine the following question: anti-
de Sitter space could be expressed in the Robertson-Walker form (5.9)
and then expressed conformally as part of the Einstein static universe.
When one did so, one found that the Robertson-Walker coordinates
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FIGURE 21

(i) The Robertson-Walker spaces (p = A = 0) are conformal to the regions
of the Einstein static universe shown, in the three cases K = + 1, 0 and — 1.

(ii) Penrose diagram of a Robertson-Walker space with K = + 1 and
p = A = 0.

(iii) Penrose diagram of a Robertson-Walker space with K = 0 or — 1 and
p = A = 0.

covered only a small part of the full space-time. That is to say, the
space-time described by the Robertson-Walker coordinates could be
extended. One should therefore show that the Robertson-Walker
universes in which there is matter are in fact inextendible. This
follows because one can show that if fi > 0, p ^ 0 and X is any vector
at any point q, the geodesic y(v) through q = y(0) in the direction of X
is such that either
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(i) y(v) can be extended to arbitrary positive values of v9 or
(ii) there is some v0 > 0 such that the scalar invariant

is unbounded on y([0, v0)).
It is now clear that the surfaces {t = constant} are Cauchy surfaces

in these spaces. Further one sees that the singularity is universal in the
following sense: all timelike and null geodesies through any point in
the space approach it for some finite value of their affine parameter.

5.4 Spatially homogeneous cosmological models
We have seen that there are singularities in any Robertson-Walker
space-time in which fi > 0, p ^ 0 and A is not too large. However one
could not conclude from this that there would be singularities in
more realistic world models which allow for the fact that the universe
is not homogeneous and isotropic. In fact, one does not expect to find
that the universe can be very accurately described by any attainable
exact solution. However one can find exact solutions, less restricted
than the Robertson-Walker solutions, which may be reasonable
models of the universe, and see if singularities occur in them or not;
the fact that singularities do occur in such models gives an indication
that the existence of singularities may be a general property of all
space-times which can be regarded as reasonable models of the
universe.

A simple class of such solutions are those in which the requirement
of isotropy is dropped but the requirement of spatial homogeneity (the
strict Copernican principle) is retained (although the universe seems
approximately isotropic at the present time, there might have been
large anisotropies at an earlier epoch). Thus in these models one
assumes there exists a group of isometries Gr whose orbits in some part
of the model are spacelike hypersurfaces. (The orbit of a pointy under
the group Gr is the set of points into which p is moved by the action of
all elements of the group.) These models may be constructed locally by
well-known methods; see Heckmann and Schiicking (1962) for the
case r = 3, and Kantowski and Sachs (1967) for the case r = 4 (if
r > 4, the space-time is necessarily a Robertson-Walker space).

The simplest spatially homogeneous space-times are those in which
the group of isometries is Abelian; the group is then of type I in the
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classification given by Bianchi (1918), so we call these Bianchi I spaces.
We discuss Bianchi I spaces in some detail, and then give a theorem
showing singularities will occur in all non-empty spatially homogene-
ous models in which the timelike convergence condition (§4.3) is
satisfied.

Suppose the spatially homogeneous space-time has an Abelian
isometry group; for simplicity we assume A = 0 and that the matter
content is a pressure-free perfect fluid ('dust'). Then there exist
comoving coordinates (t, x, y, z) such that the metric takes the form

(5.16)
Defining the function S(t) by #3 = XYZ, the conservation equations
show that the density of matter is given by %nju, = M/83, where M is
a suitably chosen constant. The general solution of the field equations
can be written

X = S(t$IS)2 8* a, Y =

where S is given by ^ =

2 (> 0) is a constant determining the magnitude of the anisotropy (we
exclude the isotropic case (2 = 0), which is the Einstein-de Sitter
universe (§5.3)), and a( — \n < oc ^ \n) is a constant determining the
direction in which the most rapid expansion takes place. The average
rate of expansion is given by

8'

the expansion in the ^-direction is

X' _ 2
~X ~ 3 *

and the expansions Y'/Y, Z'/Z in the y, z directions are given by
similar expressions in which a is replaced by a + f TT, a + |TT respectively.

The solution expands from a highly anisotropic singular state at
t — 0, reaching a nearly isotropic phase for large t when it is nearly the
same as the Einstein-de Sitter universe. The average length S increases
monotonically as t increases, its initial high rate of change (8 oc ti for
small t) decreasing steadily (8 oc $ for large t). Thus the universe
evolves more rapidly, at early times, than its isotropic equivalent.

Suppose one considers the time-reverse of the model, and follows
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this forward in time towards the singularity. The initially almost
isotropic contraction will become very anisotropic at late times. For
general values of a, i.e. a 4= \ir, the term 1 + 2 sin (a 4- f n) will be nega-
tive. Thus the collapse in the ^-direction would halt, and, for suffi-
ciently early times, be replaced by an expansion, the rate of expansion
becoming indefinitely large for early enough times. In the x- and
^-directions, on the other hand, the collapse would continue mono-
tonically towards the singularity. Thus if one considers the forward
direction of time in the original model, one has a 'cigar' singularity:
matter collapses in along the z-axis from infinity, halts, and then
starts re-expanding, while in the x- and ^-directions the matter
expands monotonically at all times. If one could receive signals from
early enough times in such a model, one would see a maximum red-
shift in the z-direction, at earlier times matter in this direction being
observed with progressively smaller redshifts and then with in-
definitely increasing Wwe-shifts.

The behaviour in the exceptional case a = \n is rather different. In
this case, the terms 1 + 2 sin (a + § n) and 1 + 2 sin (a + |TT) both vanish.
Thus the expansions in the axis directions are

X' _ 2 1 + 3S/2 Y^_Z^_2 1

If one follows the time-reversed model, the rate of collapse in the
y- and z-directions slows asymptotically down to zero, while the rate
of collapse in the ^-direction increases indefinitely. In the original
model, one has a ' pancake' singularity: matter expands monotonically
in all directions, starting from an indefinitely high expansion rate in
the x-direction but from zero expansion rates in the y- and z-directions.
Indefinitely high redshifts would be seen in the x-direction, but there
would be limiting redshifts in the y- and z-directions.

Further examination shows that in the general (' cigar') case, there
is a particle horizon in every direction despite the anisotropic expan-
sion. However in the exceptional ('pancake') case, no horizon occurs
in the x-direction; in fact the particles that can be seen by an observer
at the origin at time tQ are characterized by coordinate values (x, y, z)
lying within the infinite cylinder

<p2

where p = _ ^ _ « 0 + S)j - ( — S j ).
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While we have here considered these models for vanishing pressure
and A term only, properties of these spaces with more realistic matter
contents can easily be obtained; for example if one has either a perfect
fluid with p = (y — l)/i, y a constant (1 < y < 2), or a mixture of
a photon gas and matter with pressure p < \/i9 the behaviour near the
singularity is the same as in the dust case.

An interesting consequence of the non-existence of a particle
horizon in the ^-direction in the exceptional ('pancake5) case, is that
one can extend the solution continuously across the singularity. We
shall show this explicitly in the case of the dust solution.

The metric takes the form (5.16) where now

X(t) = *(fJf(* + :£))-*, Y(t) = Z(t) = (fJf(t + L))l. (5.17)

We now choose new coordinates r, rj which satisfy the equations

tanh(2*/9MS) = V/r, exp

One then finds that the space with metric (5.16), (5.17) is given in the
new coordinates by

ds2 = A2(t) (— dr2 -f d^2) + B2(t) (dy2 + dz2) (5.18)
where

/ / . v\
, (5.19)

the whole space (for t > 0) being mapped into the region i^ defined by
r > 0, r2 — 7)2 > 0. The function t(T,r/) is now defined implicitly as the
solution of the equation

2 ( *^ S > (5.20)

for which t > 0. The (r, rj) plane is given in conformally flat coordinates.
The region "f in this plane, bounded by the surface t = 0, is shown in
figure 22. In this diagram, the world-lines of the particles are straight
lines diverging from the origin.

The functions A(t), B(t) are continuous as t-> 0 from above. One can
therefore extend the solution continuously to the whole (r,?/) plane
by specifying that (5.19) holds everywhere, (5.20) holds inside 1^9 and
that ., , „

t(T,7)) = 0

holds outside "T. Then (5.18) is a C° metric which is a solution of the
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World-lines
of galaxies
{x = constant}

Galaxies not seen by 0 at p

Galaxy O's world-line
world-lines;
these have -
been seen

constant}

Singularity

Past light cone
of point p = (r0, 0, 0)

(ii)

FIGURE 22. Dust-filled Bianchi I space with a pancake singularity.
(i) The (T, rj) plane; null lines are at ± 45°.
(ii) A half-section of the space in (r, y, y) coordinates (the z-coordinate is

suppressed), showing the past light cone of the point p = (T0, 0, 0). There is a
particle horizon in the ̂ -direction but not in the x- (i.e. TJ) direction.

field equations equivalent to (5.16), (5.17) inside y*, and is a flat
space-time outside ir. However the solution is not C1 across the
boundary of *V*, and in fact the density of matter becomes infinite on
this boundary (as $->0 there). Since the first derivatives are not
square integrable, the Einstein field equations cannot be interpreted
on the boundary even in a distributional sense (see §8.4). While the
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extension onto the boundary is unique, it is in no way unique beyond
the boundary. We have carried out the extension in the case of dust;
a similar extension could be carried out if one had a mixture of matter
and radiation.

Let us now return to considering general non-empty spatially homo-
geneous models. The existence of a singularity in these models will
follow directly from Raychaudhuri's equation if the motion of the
matter is geodesic and without rotation (as must be the case, for
example, if the world-lines are orthogonal to the surfaces of homo-
geneity) and the timelike convergence condition is satisfied; however
there exist such spaces in which the matter accelerates and rotates,
and either of these factors could possibly prevent the existence of a
singularity. The following result, which is an improved version of a
theorem of Hawking and Ellis (1965), shows that in fact neither
acceleration nor rotation can prevent the existence of singularities in
these models.

Theorem
(JK, g) cannot be timelike geodesically complete if:

(1) RabK
aKb > 0 for all timelike and null vectors K (this is true

if the energy-momentum tensor is type I (§4.3) and fi+Pi > 0,

(2) there exist equations of motion for the matter fields such that
the Cauchy problem has a unique solution (see chapter 7);

(3) the Cauchy data on some spacelike three-surface 3^ is invariant
under a group of diffeomorphisms of J f which is transitive on ^ .

Since the intrinsic geometry of 3C is invariant under a transitive
group of diffeomorphisms, these are isometries and ^f is complete,
i.e. cannot have any boundary. It can be shown (see § 6.5) that if there
is a non-spacelike curve which intersects J f more than once, then there
exists a covering manifold e^of Jl in which each connected component
of the image of 3f will not intersect any non-spacelike curve more than
once. We shall assume that Jl is timelike geodesically complete, and
show that this is inconsistent with conditions (1), (2) and (3).

Let Jf7 be a connected component of the image of ^ in Jt. By (3),
the Cauchy data on $ is homogeneous. Therefore by condition (2),
the Cauchy development of any region of $ is isometric to the Cauchy
development of any other similar region of $. This implies that the
surfaces {s = constant} are homogeneous if they lie within the Cauchy
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X A.

development of Jf, where s is the distance from Jf measured along
the geodesic normals to M\ These surfaces must lie either entirely
within or entirely outside the Cauchy development of M\ as otherwise
there would be equivalent regions in $ which had inequivalent
Cauchy evolutions. The surfaces {s = constant} will lie in the Cauchy
development of Jf as long as they remain spacelike, because the
boundary of the Cauchy development of $ (if it exists) must be null
(§6.5).

The geodesies orthogonal to $ will be orthogonal to the surfaces
{s = constant}, as a vector representing the separation of points equal
distances along neighbouring geodesies will remain orthogonal to the
geodesies if it is so initially.. As in §4.1, one can represent the spatial
separation of neighbouring geodesies orthogonal to 3/f by a matrix A
which is the unit matrix on $. By homogeneity, it will be constant on
the surfaces {s = constant} while these lie in the Cauchy development
of Jf. While A is non-degenerate, the map from jfr to a surface
{s = constant} defined by the normal geodesies will be of rank three
and so the surfaces will be spacelike three-surfaces contained within
the Cauchy development of Jf. The expansion

6 = (detA)-1d(detA)/d5

of these geodesies obeys Raychaudhuri's equation (4.26) with the
vorticity and acceleration zero. By condition (1), Rah V

aVb is positive
for all timelike vectors Va. Thus 6 will become infinite and A will be
degenerate for some finite positive or negative value s0 of s. The map
from Jf to the surface s = s0 can have at most rank two; there will
therefore be at least one vector field Z on Jf such that AZ = 0. The
integral curves of this vector field are curves in Jf which are mapped by
the geodesic normals to one point in the surface s = s0. Thus this
surface will be at most two-dimensional. As the geodesies lie in the
Cauchy development of Jfr for |s| < |so|, the surface s = s0 will lie in
the Cauchy development or on the boundary of the Cauchy develop-
ment of Jf7. By condition (1), the energy-momentum tensor has a
unique timelike eigenvector at each point. These eigenvectors will
form a C1 timelike vector field whose integral curves may be thought
of as representing the flow lines of the matter. As the surface s = s0 lies
in the Cauchy development of $ or on its boundary, all the flow lines
that pass through it must intersect J^. But then as $ is homogeneous,
all the flow lines that pass through $ must pass through s = s0. Thus
the flow lines define a difFeomorphism between Jft and the surface
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s = s0. This is impossible, as Jf? is three-dimensional and s = s0 is
two-dimensional. D

In fact, if all the flow lines were to pass through a two-dimensional
surface, one would expect the matter density to become infinite. We
have now seen that a large scale rotation or acceleration cannot, by
itself, prevent the occurrence of singularities in a universe model
obeying the strict Copernican principle. In later theorems we shall see
that irregularities are in general also unable to prevent the occurrence
of singularities in world models.

5.5 The Schwarzschild and Reissner-Nordstrom solutions

While the spatially homogeneous solutions may be good models for the
large scale distribution of matter in the universe, they are inadequate
for describing, for example, the local geometry of space-time in the
solar system. One can describe this geometry to a good approximation
by the Schwarzschild solution, which represents the spherically sym-
metric empty space-time outside a spherically symmetric massive
body. In fact, all the experiments which have so far been carried out
to test the difference between the General Theory of Relativity and
Newtonian theory are based on predictions by this solution.

The metric can be given in the form

l--^\dt2+ll—-J dr2 + r2(d02 + sin26>d$$2), (5.21)

where r > 2m. It can be seen that this space-time is static, i.e. d/dt is
a timelike Killing vector which is a gradient, and is spherically sym-
metric, i.e. is invariant under the group of isometries $0(3) operating
on the spacelike two-spheres {t, r constant} (cf. appendix B). The
coordinate r in this metric form is intrinsically defined by the require-
ment that 477T2 is the area of these surfaces of transitivity. The solution
is asymptotically flat as the metric has the form gab = yab + 0(1/r) for
large r. Comparison with Newtonian theory (cf. § 3.4) shows that m
should be regarded as the gravitational mass, as measured from
infinity, of the body producing the field. It should be emphasized that
this solution is unique: if any solution of the vacuum field equations
is spherically symmetric, it is locally isometric to the Schwarzschild
solution (although it may of course look totally different if it is given
in some other coordinate system; see appendix B and Bergmann,
Cahen and Komar (1965)).
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Normally one would regard the Schwarzschild metric for r greater
than some value r0 > 2m as being the solution outside some spherical
body, the metric inside the body (r < r0) having a different form
determined by the energy-momentum tensor of the matter in the
body. However it is interesting to see what happens when the metric
is regarded as an empty space solution for all values of r.

The metric is then singular when r = 0 and when r = 2m (there are
also the trivial singularities of polar coordinates when 6 = 0 and
0 = n). One must therefore cut r = 0 and r = 2m out of the manifold
defined by the coordinates (t, r, 6,0), since in § 3.1 we took space-time
to be represented by a manifold with a Lorentz metric. Cutting out the
surface r = 2m divides the manifold into two disconnected components
for which 0 < r < 2m and 2m < r < oo. Since we took the space-time
manifold to be connected, we must consider only one of these com-
ponents and the obvious one to choose is the one for r > 2m, which
represents the external field. One must then ask whether this manifold
<Jl with the Schwarzschild metric g is extendible, i.e. whether there
is a larger manifold JC into which Ji can be imbedded and a suitably
differentiate Lorentz metric g' on Jt' which coincides with g on the
image of J(. The obvious place where Jt might be extended is where
r tends to 2m. A calculation shows that although the metric is singular
at r = 2m in the Schwarzschild coordinates (t, r,d,<fi),no scalar poly-
nomials of the curvature tensor and the metric diverge as r-> 2m. This
suggests that the singularity at r = 2m is not a real physical singularity,
but rather one which is a result of a bad choice of coordinates.

To confirm this, and to show that (u^, g) can be extended, define

Then v = t + r*

is an advanced null coordinate, and

w = t — r*

is a retarded null coordinate. Using coordinates (v, r, d, <fi) the metric
takes the Eddington-Finkelstein form g' given by

ds2 = -(l-^\dv2 + 2dvdr + r2(dd2 + sin2dd<f>2). (5.22)

The manifold J( is the region 2m < r < oo, but the metric (5.22) is
non-singular and indeed analytic on the larger manifold Jt' for which
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0 < r < oo. The region of {Jt\ g') for which 0 < r < 2m is in fact
isometric to the region of the Schwarzschild metric for which
0 < r < 2m. Thus by using different coordinates, i.e. by taking a
different manifold, we have extended the Schwarzschild metric so that
it is no longer singular at r = 2m. In the manifold Jl' the surface
r = 2m is a null surface, as can be seen from the Finkelstein diagram
(figure 23). This is a section (d,<f> constant) of the space-time; each
point represents a two-sphere of area 47rr2. Some null cones and radial
null geodesies are indicated on this diagram. Surfaces {t = constant}
are indicated; one sees that t becomes infinite on the surface r = 2m.

This representation of the Schwarzschild solution has the odd
feature that it is not time symmetric. One might expect this from the
cross term (dv dr) in (5.22); it is qualitatively clear from the Finkelstein
diagram. The most obvious asymmetry is that the surface r ;= 2m acts
as a one-way membrane, letting future-directed timelike and null
curves cross only from the outside (r > 2m) to the inside (r < 2m). Any
past-directed timelike or null curve in the outside region cannot cross
into the inside region. No past-directed timelike or null curve within
r = 2m can approach r = 0. However any future-directed timelike or
null curve which crosses the surface r = 2m approaches r = 0 within
a finite affine distance. As r-> 0, the scalar RabcdRabcd diverges as m2/r6.
Therefore r = 0 is a real singularity; the pair {,Jl'> g') cannot be
extended in a C2 manner or in fact even in a C° manner across r = 0.

If one uses the coordinate w instead of v, the metric takes the form
g" given by

ds2 = - \

This is analytic on the manifold *J(" defined by the coordinates
(w, r, d, <j>) for 0 < r < oo. Again the manifold Ji is the region
2m < r < oo and the new region 0 < r < 2m is isometric to the region
0 < r < 2m of the Schwarzschild metric, but the isometry reverses
the direction of time. In the manifold ^#", the surface r = 2m is again
a null surface which acts as a one-way membrane. However this time
it acts in the other direction of time, letting only past-directed time-
like or null curves cross from the outside (r > 2m) to the inside
(r < 2m).

One can in fact make both extensions {Ji', g') and {JH", g") simul-
taneously; that is to say, there is a still larger manifold J(* with
metric g* into which both {JKf, g') and (JK", g") can be isometrically
imbedded, so that they coincide on the region r > 2m which is
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w = constant—"

\ / \\\ \ T ^
w = constant

constant

Accelerating
observer

/ / at constant r-value

Radially falling
particle hits
singularity
at r = 0

i> =s constant

FIGURE 23. Section (6, <j>) constant of the Schwarzschild solution.
(i) Apparent singularity at r = 2m when coordinates (t,r) are used.
(ii) Finkelstein diagram obtained by using coordinates (v, r) (lines at 45° are

lines of constant v). Surface r = 2m is a null surface on which t — oo.
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isometric to {JK, g). A construction of this larger manifold has been
given by Kruskal (1960). To obtain it, consider (JK, g) in the coordi-
nates (v, w, 6,0); then the metric takes the form

ds2 = - (1 - ^j \ dv dw + r2(d02 + sin2 0 d</>2),

where r is determined by

\{v — w) = r + 2mlog(r — 2m).

This presents the two-space (6, <f> constant) in null conformally flat
coordinates, as the space with metric ds2 = — dvdw is flat. The most
general coordinate transformation which leaves this two-space
expressed in such conformally flat double null coordinates is v' = v'(v),
w' = w'{w) where v' and w' are arbitrary C1 functions. The resulting
metric is

ds2 = - (1 - — ) ^ f ^ dv' dw' + r2(d02 + sin2 d d62).
\ r ) dv dw T

To reduce this to a form corresponding to that obtained earlier for
Minkowski space-time, define

x' = \(v'-w')> t' = \( )

The metric takes the final form

ds2 = F2{t\ x') ( - dt'2 + da;'2) + r2(t', x') (dd2 + sin2 6 d<f>2). (5.23)

The choice of the functions v\ w' determines the precise form of the
metric. Kruskal's choice was v' = exp(v/4m), w' = — exp( — w/^m).
Then r is determined implicitly by the equation

(t')2 - (x')2 = - (r - 2m) exp (r/2m) (5.24)

and F is given by
F2 = exp ( - r/2m). 16m2/r. (5.25)

On the manifold JK* defined by the coordinates (t',x',d}<f>) for
(t')2- (x')2 < 2m, the functions r and F (defined by (5.24), (5.25)) are
positive and analytic. Defining the metric g* by (5.23), the region I of
(«^*> 6*) defined by x' > \t'\ is isometric to («^,g), the region of the
Schwarzschild solution for which r > 2m. The region defined by
x' > — t' (regions I and II in figure 24) is isometric to the advanced
Finkelstein extension {JK', g'). Similarly the region defined by x' > t'
(regions I and II ' in figure 24) is isometric to the retarded Finkelstein
extension {Jt", g"). There is also a region I', defined by x' < — \t'\,
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V

r = constant
> 2m

2m

r = constant
< 2m

0 1 future singularity^ r — constant < 2m

r = 2m -^

•• constant > 2 m -

t = constant

(ii)

FIGURE 24. The maximal analytic Schwarzschild extension. The 6, <f> coordinates
are suppressed; null lines are at ± 45°. Surfaces {r = constant} are homogeneous.

(i) The Kruskal diagram, showing asymptotically flat regions I and I ' and
regions II, II ' for which r < 2m.

(ii) Penrose diagram, showing conformal infinity as well as the two
singularities.

which turns out to be again isometric with the exterior Schwarzschild
solution {J(, g). This can be regarded as another asymptotically flat
universe on the other side of the Schwarzschild 'throat'. (Consider the
section t = 0. The two-spheres {r = constant} behave as in Euclidean
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space, for large r; however for small r, they have an area which
decreases to the minimum value 16nm2 and then increases again, as the
two spheres expand into the other asymptotically flat three-space.)
The regions I' and II are isometric with the advanced Finkelstein
extension of region I', and similarly I ' and II ' are isometric with the
retarded Finkelstein extension of I', as can be seen from figure 24.
There are no timelike or null curves which go from region I to region I'.
All future-directed timelike or null curves which cross the part of the
surface r = 2m represented here by t' = \x'\ approach the singularity
at t' = (2m + (x')2)b, where r = 0. Similarly past-directed timelike or
null curves which cross t' = — \x'\ approach another singularity at
V = - (2m + (x')2)i, where again r = 0.

The Kruskal extension (-#*, g*) is the unique analytic and locally
inextendible extension of the Schwarzschild solution. One can con-
struct the Penrose diagram of the Kruskal extension by defining new
advanced and retarded null coordinates

v" — arctan(v'(2m)~i), w" — arctan(w'(2m)-i)

for — 7T < v" + w" < 7T and — \n < v" < \TT, —\TT< W" < \TT

(see figure 24 (ii)). This may be compared with the Penrose diagram
for Minkowski space (figure 15 (ii)). One now has future, past and null
infinities for each of the asymptotically flat regions I and I'. Unlike
Minkowski space, the conformal metric is continuous but not differ-
entiable at the points i°.

If we consider the future light cone of any point outside r = 2m,
the radial outwards geodesic reaches infinity but the inwards one
reaches the future singularity; if the point lies inside r = 2m, both these
geodesies hit the singularity, and the entire future of the point is ended
by the singularity. Thus the singularity may be avoided by any
particle outside r = 2m (so it is not ' universal' as it is in the Robertson-
Walker spaces), but once a particle has fallen inside r = 2m (in region
II) it cannot evade the singularity. This fact will turn out to be closely
related to the following property: each point inside region II represents
a two-sphere that is a closed trapped surface. This means the following:
consider any two-sphere p (represented by a point in figure 24) and
two two-spheres q, s formed by photons emitted radially outwards,
inwards at one instant from p. The area of q (which is given by 47rr2)
will be greater than the area of p, but the area of s will be less than the
area of p, if all three lie in a region r > 2m. However if they all lie in
the region II where r < 2m, then the areas of both q and s will be less
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than the area of p (in the figure, r decreases as one moves from the
bottom to the top of region II). In that case, we say that p is a closed
trapped surface. Each point inside region II ' represents a time-
reversed closed trapped surface (the existence of trapped surfaces is
a necessary consequence of the fact that the surfaces r = constant are
spacelike), and correspondingly all particles in region II ' must have
come from the singularity in the past. We shall see in chapter 8 that
the existence of the singularities is closely related to the existence of
the closed trapped surfaces.

The Reissner-Nordstrom solution represents the space-time outside
a spherically symmetric charged body carrying an electric charge (but
with no spin or magnetic dipole, so this is not a good representation of
the field outside an electron). The energy-momentum tensor is there-
fore that of the electromagnetic field in the space-time which results
from the charge on the body. It is the unique spherically symmetric
asymptotically flat solution of the Einstein-Maxwell equations and is
locally rather similar to the Schwarzschild solution; there exist
coordinates in which the metric has the form

(5.26)

where m represents the gravitational mass and e the electric charge of
the body. This asymptotically flat solution would normally be
regarded as the solution outside the body only, the interior being
filled in with some other suitable metric; but it is again interesting to
see what happens if we regard it as a solution for all r.

If e2 > m2 the metric is non-singular everywhere except for the
irremovable singularity at r = 0; this may be thought of as the point
charge which produces the field. If e2 < m2, the metric also has singu-
larities at r+ and r_, where r±= m± (m2 — e2)i; it is regular in the
regions defined by oo > r > r+, r+ > r > r_ and r_ > r > 0 (if e2 = m2,
only the first and third regions exist). As in the Schwarzschild case,
these singularities may be removed by introducing suitable coordinates
and extending the manifold to obtain a maximal analytic extension
(Graves and Brill (1960), Carter (1966)). The major differences that
arise are due to the existence of two zeros in the factor in front of dt2,
rather than one as in the Schwarzschild case. In particular this implies
that the first and third regions are both static, whereas the second
region (when it exists) is spatially homogeneous but is not static.
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To obtain the maximally extended manifold, we proceed in steps
analogous to those in the Schwarzschild case. Defining the coordinate

r * b y *

then for r > r+,

i T
r* = r + -—-—- log (r — r,) — -—-—-log (r — r) if e2 < m2,

(r+ — r_) (r+-r__) &v

2
r* = r + m log ((r — m)2) if e2 = m2,

e2 > m2.r* = r + mlog(r 2 —2mr + e2) + -3 -arc t an I — -) if

e2 — m2 \c2 — m2/

Defining advanced and retarded coordinates v, w by

v = t + r*, w = t — r*

the metric (5.26) takes the double null form

1 — ^ + y d v d w + r2(d02 + sin20d02). (5.27)

In the case e2 < m2, define new coordinates v", w" by

v" = arc tan I exp I -^—^^Ip w" ~ arctanl —expl — +
 2 "^^)l •

Then the metric (5.27) takes the form

1 _ tHH +1^) 64 y
 +

 x2 cosec 2v" cosec 2^" dv* dw"

+ r2(d6>2 + sin2l9d02), (5.28)
where r is defined implicitly by

tan v" tan w" = — exp 11 -^—~ I r I (r — r+)i (r — r_)~a/2

and a = (r+)~2 (^_)2. The maximal extension is obtained by taking
(5.28) as the metric g*, and Jl* as the maximal manifold on which
this metric is C2.

The Penrose diagram of the maximal extension is shown in figure 25.
There are an infinite number of asymptotically flat regions, where
r > r+; these are denoted by I. These are connected by intermediate
regions II and III where r+ > r > r_ and r_ > r > 0 respectively.
There is still an irremovable singularity at r = 0 in each region III,
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> = 0 | | llr = 0
((singularity)

Homogeneous=
surfaces
{r = constant} v

—irvw^^r^^ . i .—*o"> H
= 0

" (singularity)
Orthogonal
surfaces
{t = constant}

FIGURE 25. Penrose diagram for the maximally extended Reissner-Nordstrom
solution (e2 < m2). An infinite chain of asymptotically flat regions I
(oo > r > r+) are connected by regions II (r+ > r > r_) and III (r_ > r > 0);
each region III is bounded by a timelike singularity at r = 0.

but unlike in the Schwarzschild solution, it is timelike and so can be
avoided by a future-directed timelike curve from a region I which
crosses r = r+. Such a curve can pass through regions II, III and II
and re-emerge into another asymptotically flat region I. This raises
the intriguing possibility that one might be able to travel to other

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511524646.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511524646.006
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universes by passing through the 'wormholes' made by charges.
Unfortunately it seems that one would not be able to get back again
to our universe to report what one had seen on the other side.

The metric (5.28) is analytic everywhere except at r = r_ where it is
degenerate but one can define different coordinates v'" and w'" by

w'" = arc tan I —

where n is an integer ^ 2(r+)2 (r_)~2. In these coordinates, the metric
is analytic everywhere except at r = r+ where it is degenerate. The
coordinates v'" and w'" are analytic functions of v" and w" for r 4= r+

or r_. Thus the manifold J?* can be covered by an analytic atlas, con-
sisting of local coordinate neighbourhoods defined by coordinates v"
and w" for r 4= r_ and by local coordinate neighbourhoods defined by
v"' and w'" for r 4= r+. The metric is analytic in this atlas.

The case e2 = m2 can be extended similarly; the case e2 > m2 is
already inextendible in the original coordinates. The Penrose diagrams
of these two cases are given in figure 26.

In all these cases, the singularity is timelike. This means that, unlike
in the Schwarzschild solution, timelike and null curves can always
avoid hitting the singularities. In fact the singularities appear to be
repulsive: no timelike geodesic hits them, though non-geodesic time-
like curves and radial null geodesies can. The spaces are thus timelike
(though not null) geodesically complete. The timelike character of the
singularity also means that there are no Cauchy surfaces in these
spaces: given any spacelike surface, one can find timelike or null curves
which run into the singularity and do not cross the surface. For
example in the case e2 < m2, one can find a spacelike surface S? which
crosses two asymptotically flat regions I (figure 25). This is a Cauchy
surface for the two regions I and the two neighbouring regions II.
However in the neighbouring regions III to the future there are past-
directed inextendible timelike and null curves which approach the
singularity and do not cross the surface r = r_. This surface is there-
fore said to be the future Cauchy horizon for Sf. The continuation of
the solution beyond r = r_ is not determined by the Cauchy data on £?.
The continuation we have given is the only locally inextendible
analytic one, but there will be other non-analytic C00 continuations
which satisfy the Einstein-Maxwell equations.
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(singularity)

r = 0
(singularity)

r = 0
(singularity)

7 = 0
(singularity)

Surfaces
= constant}

^Homogeneous
surfaces {r = constant}

' = m
t = constant

(i)

r = 0
(singularity)

Homogeneous
surfaces
{r = constant}

(ii)

FIGURE 26. Penrose diagrams for the maximally extended Reissner-Nordstrom
solutions: />v „ . #..v _

(I) e2 = m2, (n) e2 > m2.
In the first case there is an infinite chain or regions I (oo > r > m) connected by
regions III (m > r > 0). The points p are not part of the singularity at r = 0, but
are really exceptional points at infinity.
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A particle P crossing the surface r = r+ would appear to have
infinite redshift to an observer 0 whose world-line remains outside
r = r+ and approaches the future infinity i+ (figure 25). In the region II
between r = r+ and r — r_, the surfaces of constant r are spacelike and
so each point of the figure represents a two-sphere which is a closed
trapped surface. An observer P crossing the surface r = r_ would see
the whole of the history of one of the asymptotically flat regions I in
a finite time. Objects in this region would therefore appear to be
infinitely blue-shifted as they approached i+. This suggests that the
surface r = r_ would be unstable against small perturbations in the
initial data on the spacelike surface £f, and that such perturbations
would in general lead to singularities onr = r_.

5.6 The Kerr solution

In general, astronomical bodies are rotating and so one would not
expect the solution outside them to be exactly spherically symmetric.
The Kerr solutions are the only known family of exact solutions which
could represent the stationary axisymmetric asymptotically flat field
outside a rotating massive object. They will be the exterior solutions
only for massive rotating bodies with a particular combination of
multipole moments; bodies with different combinations of moments
will have other exterior solutions. The Kerr solutions do however
appear to be the only possible exterior solutions for black holes (see
§9.2 and §9.3).

The solutions can be given in Boyer and Lindquist coordinates
(r, 6, <f>, t) in which the metric takes the form

ds2 = p2 (^ + dd2\ + (r2 + a2) sin2 6 d<j>2 - dt2 + ^ (a sin2 6 d<j> - dt)2,

(5.29)
where p2(r> 6) = r2 + a2 cos2 6 and A(r) = r2 — 2mr + a2.

m and a are constants, m representing the mass and ma the angular
momentum as measured from infinity (Boyer and Price (1965)); when
a = 0 the solution reduces to the Schwarzschild solution. This metric
form is clearly invariant under simultaneous inversion of t and <j>>
i.e. under the transformation t-> — t, <j)-> — <j), although it is not
invariant under inversion of t alone (except when a = 0). This is what
one would expect, since time inversion of a rotating object produces
an object rotating in the opposite direction.
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When a2 > ra2, A > 0 and the above metric is singular only when
r = 0. The singularity at r = 0 is not in fact a point but a ring, as can
be seen by transforming to Kerr-Schild coordinates (x,y,z}i), where

x + iy = (r + ia)sin#expi

z = rcosd, 1= ((dJ + ^ +

In these coordinates, the metric takes the form

where r is determined implicitly, up to a sign, in terms of x, y, z by

= 0.

For r =(= 0, the surfaces {r = constant} are confocal ellipsoids in the
(x, y, z) plane, which degenerate for r = 0 to the disc z2 + y2 ^ a2,2 = 0.
The ring x2 -Vy2 = a2, z = 0 which is the boundary of this disc, is a real
curvature singularity as the scalar polynomial RabcdR

abcd diverges
there. However no scalar polynomial diverges on the disc except at
the boundary ring. The function r can in fact be analytically con-
tinued from positive to negative values through the interior of the disc
x2 + y2 < a2, z = 0, to obtain a maximal analytic extension of the
solution.

To do this, one attaches another plane defined by coordinates
(x\y\z') where a point on the top side of the disc x2 + y2 < a2, z = 0
in the (x, y, z) plane is identified with a point with the same x and y
coordinates on the bottom side of the corresponding disc in the
(xf, y', z') plane. Similarly a point on the bottom side of the disc in the
(x, y, z) plane is identified with a point on the top side of the disc in the
(x\ yr, z') plane (see figure 27). The metric (5.30) extends in the obvious
way to this larger manifold. The metric on the (#', y\ z') region is again
of the form (5.29), but with negative rather than positive values of r.
At large negative values of r, the space is again asymptotically flat
but this time w,ith negative mass. For small negative values of r near
the ring singularity, the vector djdcj) is timelike, so the circles
(t = constant, r = constant, 6 = constant) are closed timelike curves.
These closed timelike curves can be deformed to pass through any
point of the extended space (Carter (1968 a)). This solution is geodesic-
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ally incomplete at the ring singularity. However the only timelike and
null geodesies which reach this singularity are those in the equatorial
plane on the positive r side (Carter (1968a)).

Symmetry
Symmetry axis

2 1 % * = cons fcan t 0 = constant 6 = °

r = constant \

FIGURE 27. The maximal extension of the Kerr solution for a2 > m2 is obtained
by identifying the top of the disc x2 + y2 < a2, z = 0 in the (x, y, z) plane with the
bottom of the corresponding disc in the (x', y', z') plane, and vice versa. The
figure shows the sections y = 0, y' — 0 of these planes. On circling twice round
the singularity at x2 + y2 = a2, z = 0 one passes from the (x, y, z) plane to the
(x\ y\ zf) plane (where r is negative) and back to the (x, y, z) plane (where r is
positive).

The extension in the case a2 < m2 is rather more complicated,
because of the existence of the two values r+ = m + (m2 — a2)b and
r_ = m-(m2—a2)$ of r at which A(r) vanishes. These surfaces are
similar to the surfaces r = r+, r = r_ in the Reissner-Nordstrom
solution. To extend the metric across these surfaces, one transforms
to the Kerr coordinates (r,d,<f)+,u+), where

du+ = dt + (r2 + a2) A"1 dr, d^+ = d^ 4- aA"1 dr.

The metric then takes the form

ds2 = p2 dd2 - 2a sin2 6 dr d(j)+ + 2 dr d^+

+/>~2[(r2 + a2)2 - Aa2 sin2 0] sin2 0 d$5+
2

- 4ap~2mr sin2 0 d^+ du+-(l- 2mrp~2) du+
2 (5.31)
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on the manifold defined by these coordinates, and is analytic at
r = r+ and r = r_. One again has a singularity at r = 0, which has the
same ring form and geodesic structure as that described above. The
metric can also be extended on the manifold defined by the coordinates
(r, 6, <fi_, u_) where

du_ = dt- (r2 + a2) A"1 dr, &<j)_ = d(j> - aA"1 dr;

the metric again takes the form (5.31), with <fi+,u+ replaced by — §L,
— u_. The maximal analytic extension can be built up by a combination
of these extensions, as in the Reissner-Nordstrom case (Boyer and
Lindquist (1967), Carter (1968a)). The global structure is very similar
to that of the Reissner-Nordstrom solution except that one can now
continue through the ring to negative values of r. Figure 28 (i) shows
the conformal structure of the solution along the symmetry axis. The
regions I represent the asymptotically flat regions in which r > r+.
The regions II (r_ < r < r+) contain closed trapped surfaces. The
regions III ( — oo < r < r_) contain the ring singularity; there are
closed timelike curves through every point in a region III, but no
causality violation occurs in the other two regions.

In the case a2 = m2, r+ and r_ coincide and there is no region II. The
maximal extension is similar to that of the Reissner-Nordstrom solu-
tion when e2 = m2. The conformal structure along the symmetry axis
in this case is shown in figure 28 (ii).

The Kerr solutions, being stationary and axisymmetric, have a
two-parameter group of isometries. This group is necessarily Abelian
(Carter (1970)). There are thus two independent Killing vector fields
which commute. There is a unique linear combination Ka of these
Killing vector fields which is timelike at arbitrarily large positive and
negative values of r. There is another unique linear combination Ra

of the Killing vector fields which is zero on the axis of symmetry. The
orbits of the Killing vector Ka define the stationary frame, that is, an
object moving along one of these orbits appears to be stationary with
respect to infinity. The orbits of the Killing vector Ra are closed curves,
and correspond to the rotational symmetry of the solution.

In the Schwarzschild and Reissner-Nordstrom solutions, the
Killing vector Ka which is timelike at large values of r is timelike
everywhere in the region I, becoming null on the surfaces r = 2m and
r = r+ respectively. These surfaces are null. This means that a particle
which crosses one of these surfaces in the future direction cannot
return again to the same region. They are the boundary of the region
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r = r+ r = r+

(i)

FIGURE 28. The conformal structure of the Kerr solutions along the axis of
symmetry, (i) in the case 0 < a2 < m2, (ii) in the case a2 = m2. The dotted lines
are lines of constant r; the regions I, II and III in case (i) are divided by r = r+
and r = r_, and the regions I and III in case (ii) by r = ra. In both cases, the
structure of the space near the ring singularity is as in figure 27.

of the solution from which particles can escape to the infinity «/+ of
a particular region I, and are called the event horizons of that«/+. (They
are in fact the event horizon in the sense of § 5.2 for an observer moving
on any of the orbits of the Killing vector Ka in the region I.)

In the Kerr solution on the other hand, the Killing vector Ka is
spacelike in a region outside r = r+, called the ergosphere (figure 29).
The outer boundary of this region is the surface r = m 4- (m2 — a2 cos2 6)i
on which Ka is null. This is called the stationary limit surface since it is
the boundary of the region in which particles travelling on a timelike
curve can travel on an orbit of the Killing vector Ka, and so remain at
rest with respect to infinity. The stationary limit surface is a timelike
surface except at the two points on the axis, where it is null (at these
points it coincides with the surface r = r+). Where it is timelike it can
be crossed by particles in either the ingoing or the outgoing direction.
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Symmetry axis
(0-0)

Equatorial
plane
(0 = J*)

Stationary
limit
surface

Ergosphere

Event horizon

Ring
singularity

FIGURE 29. In the Kerr solution with 0 < a2 < m2, the ergosphere lies between
the stationary limit surface and the horizon at r = r+. Particles can escape to
infinity from region I (outside the event horizon r = r+) but not from region II
(between r = r+ and r = r_) and region III (r < r_; this region contains the
ring singularity).

©

Ergosphere

Singularity

©
-̂**-_——^ ^^

Stationary
limit surface

FIGURE 30. The equatorial plane of a Kerr solution with m2 > a2. The circles
represent the position a short time later of flashes of light emitted by the points
represented by heavy dots.
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It is therefore not the event horizon for,/+. In fact the event horizon
is the surface r = r+ = m + (m2 — a2)i. Figure 30 shows why this is. It
shows the equatorial plane 6 = \n\ each point in this figure represents
an orbit of the Killing vector Ka, i.e. it is stationary with respect
to «/+. The small circles represent the position a short time later of
flashes of light emitted from the points represented by the heavy
black dots. Outside the stationary limit the Killing vector Ka is time-
like and so lies within the light cone. This means that the point in
figure 30 representing the orbit of emission lies within the wavefront
of the light.

On the stationary limit surface, Ka is null and so the point repre-
senting the orbit of emission lies on the wavefront. However the wave-
front lies partly within and partly outside the stationary limit surface;
it is therefore possible for a particle travelling along a timelike curve
to escape to infinity from this surface. In the ergosphere between the
stationary limit surface and r = r+9 the Killing vector Ka is spacelike
and so the point representing the orbit of emission lies outside the
wavefront. In this region it is impossible for a particle moving on a
timelike or null curve to travel along an orbit of the Killing vector and
so to remain at rest with respect to infinity. However the positions of
the wavefronts are such that the particles can still escape across the
stationary limit surface and so out to infinity. On the surface r = r+9

the Killing vector Ka is still spacelike. However the wavefront corre-
sponding to a point on this surface lies entirely within the surface.
This means that a particle travelling on a timelike curve from a point
on or inside the surface cannot get outside the surface and so cannot
get out to infinity. The surface r = r+ is therefore the event horizon
for c/+ and is a null surface.

Although the Killing vector Ka is spacelike in the ergosphere, the
magnitude KaRbK[aRb] of the Killing bivector K[aRb] is negative every-
where outside r = r+, except on the axis Ra = 0 where it vanishes.
Therefore Ka and Ra span a timelike two-surface and so at each point
outside r = r+ off the axis there is a linear combination of Ka and Ra

which is timelike. In a sense, therefore, the solution in the ergosphere
is locally stationary, although it is not stationary with respect to
infinity. In fact there is no one linear combination of Ka and Ra which
is timelike everywhere outside r = r+. The magnitude of the Killing
bivector vanishes on r = r+, and is positive just inside this surface.
On r = r+i both Ka and Ra are spacelike but there is a linear combina-
tion which is null everywhere on r = r+ (Carter (1969)).
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The behaviour of the ergosphere and the horizon we have discussed
will play an important part in our discussion of black holes in §9.2
and §9.3.

Just as the Reissner-Nordstrom solution can be thought of as
a charged version of the Schwarzschild solution, so there is a family of
charged Kerr solutions (Carter (1968a)). Their global properties are
very similar to those of the uncharged Kerr solutions.

5.7 Godel's universe

In 1949, Kurt Godel published a paper (Godel (1949)) which provided
a considerable stimulus to investigation of exact solutions more com-
plex than those examined so far. He gave an exact solution of
Einstein's field equations in which the matter takes the form of a
pressure-free perfect fluid (Tab = puauh where p is the matter density
and ua the normalized four-velocity vector). The manifold is i?4 and
the metric can be given in the form

ds2 = - dt2 4- dx2 - \ exp (2(^2) cox) dy2 + dz2 - 2 exp ((^2) tox) dt dy,

where co > 0 is a constant; the field equations are satisfied if u = d/dx°
(i.e. ua = 8%) and 4np = W2 = _ A

The constant o) is in fact the magnitude of the vorticity of the flow
vector ua.

This space-time has a five-dimensional group of isometries which
is transitive, i.e. it is a completely homogeneous space-time. (An
action of a group is transitive on J( if it can map any point of J( into
any other point of *Jt.) The metric is the direct sum of the metric gx

given by

d^2 = - d*2 + dx2 - \ exp (2( /̂2) cox) dy2 - 2 exp ((^2) <ox) dt dy

on the manifold ^ = Rz defined by the coordinates (t,x,y), and the
metric g2 given by ^ 2 = dz2

on the manifold Jt^ = R1 defined by the coordinate z. In order to
describe the properties of the solution it is sufficient to consider only

'I, gi).

Defining new coordinates (£', r, (j>) on JKX by

exp ((^2) OJX) = cosh 2r + cos <f> sinh 2r,

ojy exp ((^2) cox) = sin <fi sinh 2r,

tan \{<j) + cot- Q2) t') = exy(- 2r) tan J0,
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the metric &x takes the form

dsx
2 = 2w-2( - d*'2 + dr2 - (sinh4 r - sinh2 r) d</>2 + 2(̂ /2) sinh2 r d(/> dt),

where — co <t < oo, 0 ^ r < oo, and 0 ^ (/> ^ 2TT, ^ = 0 being identified
with ^ = 2n; the flow vector in these coordinates is u = (coj (*J2)) d/dt'.
This form exhibits the rotational symmetry of the solution about the
axis r = 0. By a different choice of coordinates the axis could be chosen
to lie on any flow line of the matter.

r = 0
(coordinate axis)

Matter world-line 's future null cone(r, * constant) \ H frefocusses a t p.

p 's null cone refocusses at p

Caustic on p's
future null cone

r = log (1+V2)
(closed null curve)

-7?'s future
null cone

P
(closed spacelike
curve) A

FIGURE 31. Godel's universe with the irrelevant coordinate z suppressed. The
space is rotationally symmetric about any point; the diagram represents cor-
rectly the rotational symmetry about the axis r = 0, and the time invariance.
The light cone opens out and tips over as r increases (see line L) resulting in
closed timelike curves. The diagram does not correctly represent the fact that
all points are in fact equivalent.

The behaviour of {JK^ gx) is illustrated in figure 31. The light cones
on the axis r = 0 contain the direction djdt' (the vertical direction on
the diagram) but not the horizontal directions 8/dr and djdcj). As one
moves away from the axis, the light cones open out and tilt in the
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^-direction so that at a radius r — log(l-\-^j2), d/d</> is a null vector
and the circle of this radius about the origin is a closed null curve.
At greater values of r, d/d<p is a timelike vector and circles of constant
r, t' are closed timelike curves. As (u^, gx) has a four-dimensional
group of isometries which is transitive, there are closed timelike curves
through every point of {JKV g^, and hence through every point of the
Godel solution (JK, g).

This suggests that the solution is not very physical. The existence
of closed timelike curves in this solution implies that there are no
imbedded three-dimensional surfaces without boundary in JK which
are spacelike everywhere. For a closed timelike curve which crossed
such a surface would cross it an odd number of times. This would mean
that the curve could not be continuously deformed to zero, since a
continuous deformation can change the number of crossings only by
an even number. This would contradict the fact that JK is simply
connected, being homeomorphic to JK4. The existence of closed time-
like lines also shows that there can be no cosmic time coordinate t in *J(
which increases along every future-directed timelike or null curve.

The Godel solution is geodesically complete. The behaviour of the
geodesies can be described in terms of the decomposition into {JKXi gx)
and (JK2, g2). Since the metric g2 of ^ 2 is flat, the component of the
geodesic tangent vector inJK2 is constant, i.e. the ^-coordinate varies
linearly with the affine parameter on the geodesic. It is sufficient there-
fore to describe the behaviour of geodesies in (JKXi gx). The null
geodesies from a pointy on the axis of coordinates (figure 31) diverge
from the axis initially, reach a caustic at r = log (1 + (V2))> a n ( i then
reconverge to a point p' on the axis. The behaviour of timelike geo-
desies is similar: they reach some maximum value of r less than
log (1 + (V2)) and then reconverge to p'. A point q at a radius r greater
than log (1 + Q2)) can be joined to p by a timelike curve but not by
a timelike or null geodesic.

Further details of Godel's solution can be found in Godel (1949),
Kundt (1956).

5-8 Taub-NUT space

In 1951, Taub discovered a spatially homogeneous empty space solu-
tion of Einstein's equations with topology RxS* and metric given by

ds* = - U-1 dt* + (»)» U(di/r + cos 6 d(j>f

+ (t* + Z2) (d02 + sin2 6 d<f>2), (5.32)
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where
2(mt + l)

U(t) = —1+ -̂ ~2—Tg— , m and I are positive constants.

Here d, $, \jr are Euler coordinates on $3, so 0 ̂  \]r ^ 477", 0 < 6 ̂  TT,
0 ^ ^ ^ 2TT. This metric is singular at t = t± =m± (ra2 + I2)i, where
U — 0. It can in fact be extended across these surfaces to give a space
found LJ Newman, Tamburino and Unti (1963), but before discussing
the extension we shall consider a simple two-dimensional example
given by Misner (1967) which has many similar properties.

This space has the topology Sl x R1 and the metric g given by

where 0 ^ ijr ^ 2n. This metric is singular when t — 0. However if one
takes the manifold ^ defined by }]r and by 0 < t < oo, (yft', g) can
be extended by defining \Jr' = i/f — \ogt. The metric then takes the
form g' given by ^ = +

This is analytic on the manifold *J(' with topology S1 x R1 defined by
}jf' and by — oo < t < oo. The region t > 0 of ( ^ ' , gr) is isometric with
{J(, g). The behaviour of {J(\ g;) is shown in figure 32. There are
closed timelike lines in the region t < 0, but there are none when
t > 0. One family of null geodesies is represented by the vertical lines
in figure 32; these cross the surface t = 0. The other family spiral
round and round as they approach t = 0, but never actually cross this
surface, and these geodesies have only finite affine length. Thus the
extension (JK', g') is not symmetric between the two families of null
geodesies, although the original space {J(, g) was. However one can
define another extension {J(\ g") in which the behaviour of the two
families of null geodesies is interchanged. To do so define i/r" by
\Jr" = r̂ + log£. The metric takes the form g" given by

ds2 = -2dfr"dt + t(dijr")2.

This is analytic on the manifold Jt" with topology S1 x R1 defined
by ijf" and — oo < t < oo. The region t > 0 of (^", g") is isometric
with (JK, g). In a sense, what we have done by defining ijf" is to untwist
the second family of null geodesies so that they become vertical lines,
and can be continued beyond t = 0. However this twisting winds up
the first family of null geodesies so that they spiral around and cannot
be continued beyond t = 0. One has therefore two inequivalent locally
inextendible analytic extensions of (^, g), both of which are geodesic-
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•t

(i)

Surfaces ^ = constant

Points in a surface
{a = constant}
which are
equivalent
under 0

(ii)

FIGURE 32. Misner's two-dimensional example.
(i) Extension of region I across the boundary t = 0 into II. The vertical null

geodesies are complete, but the twisted null geodesies are incomplete.
(ii) The universal covering space is two-dimensional Minkowski space. Under

the discrete subgroup G of the Lorentz group, points s are equivalent; similarly
points r, q and t are equivalent, (i) is obtained by identifying equivalent points
in regions I and II.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511524646.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511524646.006


5.8] TAUB-NUT SPACE 173

ally incomplete. The relation between these two extensions can be
seen clearly by going to the covering space of (JK, g).

This is in fact the region I of two-dimensional Minkowski space
(̂ /f, rj) contained within the future null cone of a pointy (figure 32 (ii)).
The isometries of {~>#,r\) which leave p fixed form a one-dimensional
group (the Lorentz group of r\) whose orbits are the hyperbolae
{cr = constant} where c = I2 — x2 and t, x are the usual Minkowski
coordinates. The space (JK, g) is the quotient of (/, 9j) by the discrete
subgroup G of the Lorentz group consisting of An (n integer) where
A maps (I, x) to

(t cosh 7T + x sinh n, x cosh n + i sinh n),

i.e. one identifies the points

(t cosh nn + x sinh nn, x cosh nn +1 sinh nn)

for all integer values of n, and these correspond to the point

t = \(t2 -x2), xjr = 2 arc tanh (x/t) in Ji.

The action of the isometry group G in the region I is properly dis-
continuous. The action of a group H on a manifold ^V is said to be
properly discontinuous if:

(1) each point q e Jf has a neighbourhood °tt such that A(%)(\%= 0
for each AeH which is not the identity element, and

(2) if*?, rej\r are such that there is no A e H with Aq = r, then there
are neighbourhoods °tt and °U' of q and r respectively such that there
is no BeH with B(W) n °W 4= 0 .

Condition (1) implies that the quotient JV^JH is a manifold, and
condition (2) implies that it is Hausdorff. Thus the quotient (I,9j)/(? is
the HausdorfF space (JK, g). The action of G is also properly discon-
tinuous in the regions I + II(?>— x). Thus (I + II,YJ)/C? is also a
Hausdorff space; in fact it is (JKf, g')- Similarly (I + III, r\)jG is the
Hausdorff space {<J(\ g") where I + III is the region i > x. From this
it can be seen how it is that one family of null geodesies can be com-
pleted in the extension (JK\ g') while the other family can be com-
pleted in the extension (.Jt", g"). This suggests that one might perform
both extensions at the same time. However the action of the group on
the region (I + II + III) (i.e. t > —\x\) satisfies condition (1) but condi-
tion (2) is not satisfied for points q on the boundary between I and II
and points r on the boundary between I and III. Therefore the quotient
(I + II -h III, yj)/6r is not HausdorfF although it is still a manifold.
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This kind of non-Hausdorff behaviour is different from that in the
example given in §2.1. In that example, one could have continuous
curves which bifurcate, one branch going into one region and another
branch going into another region. Such behaviour of an observer's
world-line would be very uncomfortable. However the manifold
(I -f II + III)/6r does not have any such bifurcating curves; curves in I
can be extended into II or III but not into both simultaneously. Thus
one might be prepared to relax the Hausdorff requirement on a space-
time model to allow this sort of situation but not the sort in which one
gets bifurcating curves. Further work on non-Hausdorff space-times
can be found in the papers of Hajicek (1971).

Condition (1) is in fact satisfied by the action of G on ̂  — {p}. Thus
the space (JK — {p}, r\)jG is in some sense the maximal non-Hausdorff
extension of {JK, g). However it is still not geodesically complete
because there are geodesies which pass through the point p which has
been left out. If p is included the action of the group does not satisfy
condition (1), and so the quotient JKjG is not even a non-Hausdorff
manifold. However consider the bundle of linear frames L(^/), i.e. the
collection of all pairs (X, Y), X, Y e Tg) of linearly independent vectors
at all points qe^tf'. The action of an element A of the isometry group
G on ^// induces an action A * on L(^) which takes the frame (X, Y)
at q to the frame (A^^A^Y) at A(q). This action satisfies condi-
tion (1) because even for (X,Y)eTp, i ^ X + X and A%Y 4= Y unless
A = identity, and satisfies condition (2) even if X and Y lie on the null
cone of p. Thus the quotient L(JX)jG is a Hausdorff manifold. It is
a fibre bundle over the non-Hausdorff non-manifold ^ jG. One could
in a sense regard it as the bundle of linear frames for this space. The
fact that the bundle of frames can be well behaved even though the
space is not, suggests that it is useful to look at singularities by using
the bundle of linear frames. A general procedure for doing this will
be given in §8.3.

We shall now return to the four-dimensional Taub space (JK, g)
where JKi&Blx S3 and g is given by (5.32). As *Jl is simply connected,
one cannot take a covering space as we did in the two-dimensional
example. However one can achieve a similar result by considering «^
as a fibre bundle over S2 with fibre R1xS1; the bundle projection
n: JK-^82 is defined by (*,^,0,0)->(0,0). This is in fact the pro-
duct with the *-axis of the Hopf fibering £3->£2 (Steenrod (1951))
which has fibre S1. The space (JK, g) admits a four-dimensional group
of isometries whose surfaces of transitivity are the three-spheres
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{t = constant}. This group of isometries maps fibres of the bundle
n: JK-^S2 into fibres, and so the pairs {IF, g) are all isometric, where
IF is a fibre (!F « R1xS1) and g is the metric induced on the fibre
by the four-dimensional metric g on ^ . The fibre IF can be regarded
as the (t,T/r) plane, and the metric g on !F is obtained from (5.32) by
dropping the terms in dd and d^; thus g is given by

ds2 = - l7-1c«8 + 4PI7(d^)a. (5.33)

The tangent space Tq at the point qeJf can be decomposed into
a vertical subspace Vq which is tangent to the fibre and is spanned by
the vectors djdt and d/dr/r, and a horizontal subspace Hq which is
spanned by the vectors djdd and d/d^> — cos 6 djdxjr. Any vector X e Tq

can be split into a part X r lying in Vq and a part XH lying in Hq. The
metric g on Tq can then be expressed as

g(X,Y) = gr(Xv,Yr) + (t* + l*)gH(n*XH9n*YH), (5.34)

where gv = g and gH is the standard metric on the two-sphere given
by ds2 = dd2 + sin2 6 d<j)2. Thus although the metric g is not the direct
sum of gF and (t2 +12) &H (because R1 x Ss is not the direct product of
R1 x S1 with AS2) it can nevertheless be regarded as such a sum locally.

The interesting part of the metric g is contained in g r and we shall
therefore consider analytic extensions of the pair («^,gF). When com-
bined with the metric gH of the two-sphere as in (5.34), these give
analytic extensions of (<J(, g).

The metric g r , given by (5.33), has singularities at t = t± where
U = 0. However if one takes the manifold «̂ "0 defined by ty and by
t_ < t < t+, (J^Q, gF) can be extended by defining

u(ty
The metric then takes the form g r ' given by

ds2 = Udijr'{lU(t)dirr -dt).

This is analytic on the manifold !F' with topology S1xR defined by
^ 'and by -oo < t < oo. The region £_ < t < t+of(Ff, gF') is isometric
with (lF0, gr) . There are no closed timelike curves in the region
t_ < t < t+ but there are for t < t_ and for t > t+. The behaviour is very
much as for the space ( ^ ' , g') we considered before, except that there
are now two horizons (at t = t_ and t = t+) instead of the one horizon
(at t = 0). One family of null geodesies crosses both horizons t = t_ and
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t = t+ but the other family spirals round near these surfaces and is
incomplete.

As before, one can make another extension by defining the
coordinate .

The metric then takes the form gF" given by

ds2 = 4ldf{lU{t)df* + dt)

which is analytic on the manifold !F" defined by rjr" and by
— oo < t < oo, and is again isometric to («^0, gF) on t_ < t < t+.

Once again one can show the relation between the different exten-
sions by going to the covering space. The covering space of ^"0 is the
manifold ^ 0 defined by the coordinates — oo < iff < oo and by
t_ < t < t+. On <#0 the metric gF can be written in the double null form

d8* = 4PU{t)d&'df*9 (5.35)

where —oo<i/r'<ooi—co<ijr"< oo. One can extend this in a manner
similar to that used in the Reissner-Nordstrom solution. Define new
coordinates (u+, v+) and (u_, v_) on JF0 by

u± = arctan(exp^7a±)> v± = arc tan (— (exp — ^7a±))>

, t+-t_ t+-t_
where a + = . , y2 and oc_ = ; ;+ 4/(m^ + Z2) 4nl(m

n is some integer greater than (m +̂ + l2)/(mt_ + Z2). Then the metric gF

obtained by applying this transformation to (5.35) is analytic on the
manifold & shown in figure 33, where the coordinates (u+,v+) are
analytic coordinates except at t = t_ where they are at least C3, and the
coordinates (u_, v_) are analytic coordinates except at t = t+ where
they are at least C3. This is rather similar to the extension of the (t, r)
plane of the Reissner-Nordstrom solution.

The space (# , gr) has a one-dimensional group of isometries, the
orbits of which are shown in figure 33. Near the points p+> p_ the
action of this group is similar to that of the Lorentz group in two-
dimensional Minkowski space (figure 32 (ii)). Let G be the discrete
subgroup of the isometry group generated by a non-trivial element A
of the isometry group. The space («̂ *0, gF) is the quotient of one of
the regions (II+, gv) by G. The space (J^', gF') is the quotient

gF)/G, and {&", gF") is the quotient
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Homogeneous surfaces
: U = constant} (timelike

t = -oo-^ X X I / ^ ^ - ^ S S \ 1 / ^ = -oo group orbits)

Homogeneous surfaces
{t = constant} (spacelike
group orbits)

FIGURE 33. Penrose diagram of the maximally extended covering space of a
two-dimensional section of Taub-NUT space, showing orbits of the isometry
group. Taub-NUT space and its extensions are obtained from part of this space
by identification of points under a discrete subgroup of the isometry group.

One would also obtain a Hausdorff manifold by taking the quotient of
(I+ + II+ + I_): this corresponds to extending like («^', &/) at the
surface t = t+ but extending like (^", gF") at the surface t = t_. By-
taking the quotient of the whole space & minus the points p+ and p_
one obtains a non-Hausdorff manifold; and taking the quotient of &
one obtains a non-Hausdorff non-manifold in a way analogous to that
in the example above. As in that example, one can take the quotient
of the bundle of linear frames over fF and obtain a Hausdorff manifold.

By combining these extensions of the (t, r/r) plane with the coordi-
nates (6, <fi) one can obtain corresponding extensions of the four-
dimensional space (Jt, g). In particular, the two extensions {^'^y)
and (^", gF") give rise to two different locally inextendible analytic
extensions of {JK, g), and both are geodesically incomplete.

Consider one of these extensions, say (JKr, g'). The three-spheres
which are the surfaces of transitivity of the isometry group are space-
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like surfaces in the region t_ < t < t+ and are timelike for t > t+ and
t < t_. The two surfaces of transitivity t = t_ and t = t+ are null
surfaces and they form the Cauchy horizon of any spacelike surface
contained in the region t_ < t < t+9 because there are timelike curves
in the regions t < t__ and t > t+ which do not cross t = t_ and t = t+

respectively (for example, closed timelike curves exist in the regions
t < t_ and t > t+). The region of space-time t_ ^ t ^ t+ is compact yet
there are timelike and null geodesies which remain within it and are
incomplete. This kind of behaviour will be considered further in
chapter 8.

Further details of Taub-NUT space may be found in Misner and
Taub (1969), Misner (1963).

5.9 Further exact solutions
We have examined in this chapter a number of exact solutions and
used them to give examples of the various global properties which we
shall wish to discuss more generally later. Although a large number of
exact solutions are known locally, relatively few have been examined
globally. To complete this chapter, we shall mention briefly two other
interesting families of exact solutions whose global properties are
known.

The first of these are the plane wave solutions of the empty space
field equations. These are homeomorphic to i?4, and global coordinates
(y, z, u, v), which range from — oo to -f oo, can be chosen so that the
metric takes the form

ds2 = 2 du dv + dy2 + dz2 + H(y, z, u) d^2,

where H = (y2- z2)f(u) - 2yzg(u);

f(u) and g(u) are arbitrary C2 functions determining the amplitude
and polarization of the wave. These spaces are invariant under a five-
parameter group of isometries multiply transitive on the null surfaces
{u = constant}; a special subclass, in which/(w) = cos2w,<7(w) = sin 2u,
admit an extra Killing vector field, and are homogeneous space-times
invariant under a six-parameter group of isometries. These spaces
do not contain any closed timelike or null curves; however they
admit no Cauchy surfaces (Penrose (1965a)). Local properties
of these spaces have been studied in detail by Bondi, Pirani and
Robinson (1959), and global properties by Penrose (1965a); Oszvath
and Schlicking (1962) have studied global properties of the higher
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symmetry space. The way in which two impulsive plane waves scatter
each other and give rise to a singularity has been studied by Khan and
Penrose (1971).

The other is the five-parameter family of exact solutions of the
source-free Einstein-Maxwell equations found by Carter (19686) (see
also Demianski and Newman (1966)). These include the Schwarzschild,
Reissner-Nordstrom, Kerr, charged Kerr, Taub-NUT, de Sitter and
anti-de Sitter solutions as special cases. A description of some of their
global properties is given in Carter (1967). Some cases closely related
to this family have been examined by Ehlers and Kundt (1962) and
Kinnersley and Walker (1970).
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